Search results for: deep groundwater potential
13041 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 12713040 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 16913039 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 25213038 Geochemical Composition of Deep and Highly Weathered Soils Leyte and Samar Islands Philippines
Authors: Snowie Jane Galgo, Victor Asio
Abstract:
Geochemical composition of soils provides vital information about their origin and development. Highly weathered soils are widespread in the islands of Leyte and Samar but limited data have been published in terms of their nature, characteristics and nutrient status. This study evaluated the total elemental composition, properties and nutrient status of eight (8) deep and highly weathered soils in various parts of Leyte and Samar. Sampling was done down to 3 to 4 meters deep. Total amounts of Al₂O₃, As₂O₃, CaO, CdO, Cr₂O₃, CuO, Fe₂O₃, K₂O, MgO, MnO, Na₂O, NiO, P₂O₅, PbO, SO₃, SiO₂, TiO₂, ZnO and ZrO₂ were analyzed using an X-ray analytical microscope for eight soil profiles. Most of the deep and highly weathered soils have probably developed from homogenous parent materials based on the regular distribution with depth of TiO₂ and ZrO₂. Two of the soils indicated high variability with depth of TiO₂ and ZrO₂ suggesting that these soils developed from heterogeneous parent material. Most soils have K₂O and CaO values below those of MgO and Na₂O. This suggests more losses of K₂O and CaO have occurred since they are more mobile in the weathering environment. Most of the soils contain low amounts of other elements such as CuO, ZnO, PbO, NiO, CrO and SO₂. Basic elements such as K₂O and CaO are more mobile in the weathering environment than MgO and Na₂O resulting in higher losses of the former than the latter. Other elements also show small amounts in all soil profile. Thus, this study is very useful for sustainable crop production and environmental conservation in the study area specifically for highly weathered soils which are widespread in the Philippines.Keywords: depth function, geochemical composition, highly weathered soils, total elemental composition
Procedia PDF Downloads 26313037 Performance of Constant Load Feed Machining for Robotic Drilling
Authors: Youji Miyake
Abstract:
In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling
Procedia PDF Downloads 19413036 Role of the Marshes in the Natural Decontamination of Surface Water: A Case of the Redjla Marsh, North-Eastern Algerian
Authors: S. Benessam, T. H. Debieche, A. Drouiche, S. Mahdid, F. Zahi
Abstract:
The marsh is the impermeable depression. It is not very deep and presents the stagnant water. Their water level varies according to the contributions of water (rain, groundwater, stream etc.), when this last reaches the maximum level of the marsh, it flows towards the downstream through the discharge system. The marsh accumulates all the liquid and solid contributions of upstream part. In the North-East Algerian, the Redjla marsh is located on the course of the Tassift river. Its contributions of water come from the upstream part of the river, often characterized by the presence of several pollutants in water related to the urban effluents, and its discharge system supply the downstream part of the river. In order to determine the effect of the marsh on the water quality of the river this study was conducted. A two-monthly monitoring of the physicochemical parameters and water chemistry of the river were carried out, before and after the marsh, during the period from November 2013 to January 2015. The results show that the marsh plays the role of a natural purifier of water of Tassift river, present by drops of conductivity and concentration of the pollutants (ammonium, phosphate, iron, chlorides and bicarbonates) between the upstream part and downstream of the marsh. That indicates that these pollutants are transformed with other chemical forms (case of ammonium towards nitrate), precipitated in complex forms or/and adsorbed by the sediments of the marsh. This storage of the pollutants in the ground of the marsh will be later on a source of pollution for the plants and river water.Keywords: marsh, natural purification, urban pollution, nitrogen
Procedia PDF Downloads 26313035 A Comparison of Methods for Neural Network Aggregation
Authors: John Pomerat, Aviv Segev
Abstract:
Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning
Procedia PDF Downloads 16213034 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 14513033 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 26613032 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco
Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali
Abstract:
This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco
Procedia PDF Downloads 1713031 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights
Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu
Abstract:
Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network
Procedia PDF Downloads 27213030 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 9313029 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique
Authors: Bashar Tarawneh, Yasser Hakam
Abstract:
Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.Keywords: compaction, RIC, ground improvement, CPT
Procedia PDF Downloads 36513028 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network
Authors: Asmau Mukhtar Ahmed, Olga Duran
Abstract:
Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image
Procedia PDF Downloads 11213027 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 16113026 Vertical Structure and Frequencies of Deep Convection during Active Periods of the West African Monsoon Season
Authors: Balogun R. Ayodeji, Adefisan E. Adesanya, Adeyewa Z. Debo, E. C. Okogbue
Abstract:
Deep convective systems during active periods of the West African monsoon season have not been properly investigated over better temporal and spatial resolution in West Africa. Deep convective systems are investigated over seven climatic zones of the West African sub-region, which are; west-coast rainforest, dry rainforest, Nigeria-Cameroon rainforest, Nigeria savannah, Central African and South Sudan (CASS) Savannah, Sudano-Sahel, and Sahel, using data from Tropical Rainfall Measurement Mission (TRMM) Precipitation Feature (PF) database. The vertical structure of the convective systems indicated by the presence of at least one 40 dBZ and reaching (attaining) at least 1km in the atmosphere showed strong core (highest frequency (%)) of reflectivity values around 2 km which is below the freezing level (4-5km) for all the zones. Echoes are detected above the 15km altitude much more frequently in the rainforest and Savannah zones than the Sudano and Sahel zones during active periods in March-May (MAM), whereas during active periods in June-September (JJAS) the savannahs, Sudano and Sahel zones convections tend to reach higher altitude more frequently than the rainforest zones. The percentage frequencies of deep convection indicated that the occurrences of the systems are within the range of 2.3-2.8% during both March-May (MAM) and June-September (JJAS) active periods in the rainforest and savannah zones. On the contrary, the percentage frequencies were found to be less than 2% in the Sudano and Sahel zones, except during the active-JJAS period in the Sudano zone.Keywords: active periods, convective system, frequency, reflectivity
Procedia PDF Downloads 15213025 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 9013024 Online Yoga Asana Trainer Using Deep Learning
Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam
Abstract:
Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN
Procedia PDF Downloads 24013023 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 33113022 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 14513021 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 15813020 An Ecological Grandeur: Environmental Ethics in Buddhist Perspective
Authors: Merina Islam
Abstract:
There are many environmental problems. Various counter measures have been taken for environmental problems. Philosophy is an important contributor to environmental studies as it takes deep interest in meaning analysis of the concept environment and other related concepts. The Buddhist frame, which is virtue ethical, remains a better alternative to the traditional environmental outlook. Granting the unique role of man in immoral deliberations, the Buddhist approach, however, maintains a holistic concept of ecological harmony. Buddhist environmental ethics is more concerned about the complete moral community, the total ecosystem, than any particular species within the community. The moral reorientation proposed here has resemblance to the concept of 'deep ecology. Given the present day prominence of virtue ethics, we need to explore further into the Buddhist virtue theory, so that a better framework to treat the natural world would be ensured. Environment has turned out to be one of the most widely discussed issues in the recent times. Buddhist concepts such as Pratityasamutpadavada, Samvrit Satya, Paramartha Satya, Shunyata, Sanghatvada, Bodhisattva, Santanvada and others deal with interdependence in terms of both internal as well external ecology. The internal ecology aims at mental well-being whereas external ecology deals with physical well-being. The fundamental Buddhist concepts for dealing with environmental Problems are where the environment has the same value as humans as from the two Buddhist doctrines of the Non-duality of Life and its Environment and the Origination in Dependence; and the inevitability of overcoming environmental problems through the practice of the way of the Bodhisattva, because environmental problems are evil for people and nature. Buddhism establishes that there is a relationship among all the constituents of the world. There is nothing in the world which is independent from any other thing. Everything is dependent on others. The realization that everything in the universe is mutually interdependent also shows that the man cannot keep itself unaffected from ecology. This paper would like to focus how the Buddhist’s identification of nature and the Dhamma can contribute toward transforming our understanding, attitudes, and actions regarding the care of the earth. Environmental Ethics in Buddhism presents a logical and thorough examination of the metaphysical and ethical dimensions of early Buddhist literature. From the Buddhist viewpoint, humans are not in a category that is distinct and separate from other sentient beings, nor are they intrinsically superior. All sentient beings are considered to have the Buddha-nature, that is, the potential to become fully enlightened. Buddhists do not believe in treating of non-human sentient beings as objects for human consumption. The significance of Buddhist theory of interdependence can be understood from the fact that it shows that one’s happiness or suffering originates from ones realization or non-realization respectively of the dependent nature of everything. It is obvious, even without emphasis, which in the context of deep ecological crisis of today there is a need to infuse the consciousness of interdependence.Keywords: Buddhism, deep ecology, environmental problems, Pratityasamutpadavada
Procedia PDF Downloads 31413019 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN
Procedia PDF Downloads 12813018 Preliminary Geophysical Assessment of Soil Contaminants around Wacot Rice Factory Argungu, North-Western Nigeria
Authors: A. I. Augie, Y. Alhassan, U. Z. Magawata
Abstract:
Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.Keywords: contaminant, leachate, soil, groundwater, electrical, resistivity
Procedia PDF Downloads 16013017 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods
Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne
Abstract:
The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.
Procedia PDF Downloads 2313016 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 30013015 Explaining the Relationship between Religiosity and Resilience
Authors: Rita Phillips, Mark Burgess, Maga Berlinski
Abstract:
Although the positive impact of religiosity on well-being, health, and life-coping abilities is well known, up to date research has failed to provide scientific evidence for the relationship reasons. Therefore the present study took a qualitative approach by examining how religiosity interacts in coping with emotionally distressful situations, for which wedding preparations are an example. Wedding preparations, related to the experience of ambiguous emotions, can be the reason for phases of high distress. Although being per-se religious ceremonies, they are also socially-scripted and characterized by people’s striving for personally meaningful celebrations. The negotiation of these many influences can evoke conflicts. To reveal components of religiosity which contribute to stress-resolution, eight biographic-narrative interviews with recently married spouses were conducted. Participants were from different nationalities and Catholic deep-belief communities in order to determine factors independent from national-culture and social-subgroup. The audio-tape recorded, transcribed and translated interviews were analyzed by Interpretative Phenomenological Analysis. Opposing previous research on wedding-related conflicts but in-line with the quantitative account on the relation between stress-resilience and religiosity, the present study found participants reporting very low levels of distress and ambiguity. Although similar areas of potential conflicts were revealed, deep-belief Christians seemed to handle them in a different way. Participants freed themselves from own and others’ rigor mundane expectations by their spiritual preparation and the focus on a divine instance. This evoked a feeling of perceived closeness to God and of unconditional love, resulting in acceptance of oneself and others. Through relativizing mundane goods, participants perceived absolute freedom. Thus belief did not supplement coping strategies, previously defined in the literature, but substituted them. The paper implies that in explaining the connection between stress-resilience and religiosity, one’s perception and experience of unconditional love might outweigh other social or personal factors. However, further qualitative investigations are needed to fully explain the phenomenon.Keywords: deep-belief, religiosity, resilience, wedding
Procedia PDF Downloads 24413014 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation
Authors: Tokihiko Akita, Seiichi Mita
Abstract:
A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation
Procedia PDF Downloads 9313013 Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India
Authors: Anurakti Shukla, Sudhakar Srivastava
Abstract:
Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer.Keywords: cyanoclean, gloeotrichia, oscillatoria, phormidium, phycoremediation
Procedia PDF Downloads 14213012 Water Accessibility at Household Levels in Zambia: A Case Study of Fitobaula Settlement
Authors: Emmanuel Sachikumba, Micheal Msoni, Westone Mafuleka
Abstract:
Zambia has a good climate with favourable rainfall pattern; this provides sufficient recharge for the surface and groundwater resources. In spite of the sufficient surface and ground water resources, accessibility to water at household levels is problematic both in quality and quantity. The study examined water accessibility as well as water quality at the household level. The research looked at the sources of water for the households and considered the complications of accessibility to water and the available opportunities therein. The investigation involved fifty households and the data was collected by the use of questionnaires (to assess accessibility) and laboratory tests (for ascertaining water quality). In addition to this, government departments such as the health, agriculture, forestry and education as well as the municipal council were interviewed on the topic under study. The study was descriptive in nature where clustered sampling procedures using simple random methods were utilised to select the households which were to participate in the study. The key findings were that; accessibility to water household levels is still a challenge in the settlement as most of the point sources (shallow wells, the stream and the river) were found to be contaminated. In addition to this, it was found that there was no direct relationship between the economic performance of a household and the accessibility to water. The study also observed that there were opportunities for the people in the settlement as they were increasingly getting into the education system, and adult literacy was being encouraged in the settlement. Furthermore, the settlement has groundwater resources which indicate that there can be sufficient water provision for the settlers.Keywords: accessibility, household, water, settlement
Procedia PDF Downloads 450