Search results for: data driven and knowledge driven
29766 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 1329765 Customers’ Satisfaction of ASEAN Camp: A Camp to Provide Training and Knowledge to Faculty and Staff Members
Authors: Kevin Wongleedee, Atcharapun Daiporn
Abstract:
This research paper was aimed to examine the level of satisfaction of the faculty and staff members who participated in the ASEAN camp. The population of this study included all the faculty and staff members who participated in the activities of the ASEAN camp during January 2014. Based on 106 faculty and staff members who answered the questionnaire, the data were complied by using SPSS. Mean and standard deviation were utilized in analyzing the data. The findings revealed that the average mean of satisfaction was 4.16, and standard deviation was 0.6634. Moreover, the mean average can be used to rank the level of satisfaction from each of the following factors: useful knowledge, technique of explaining knowledge, understanding materials, appropriateness of knowledge, document available, time of activities, service from staff, and public relation.Keywords: ASEAN camp, customer, satisfaction, faculty and staff members
Procedia PDF Downloads 38829764 A Game-Based Product Modelling Environment for Non-Engineer
Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige
Abstract:
In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.Keywords: game-based learning, knowledge based engineering, product modelling, design automation
Procedia PDF Downloads 15329763 Education 5.0 and the Proliferation of Social Entrepreneurs in Zimbabwe: Challenges and Opportunities for the Nation
Authors: Tsuu Faith Machingura, Doreen Nkala, Daniel Madzanire
Abstract:
Higher and tertiary Education in Zimbabwe is driven by is a five-pillar Education 5.0 model, which thrusts upon teaching, community engagement, research, innovation and industrialisation. Migration from the previous three-pillar model, the focus of which was on teaching, research and community engagement, to the current one saw universities churning out prolific social entrepreneurs. Apart from examining challenges social entrepreneurs face, the study aimed to identify opportunities that are available for the country as a corollary of the proliferation of social entrepreneurs. A sample of 20 participants comprising 15 social entrepreneurs and five lecturers was purposively drawn. Focus group and face to face interviews were used to gather data. The study revealed that the current higher and tertiary education model in Zimbabwe has stimulated proliferation of social entrepreneurs. It was recommended that a sound financial support system was needed to support new entrepreneurs.Keywords: social entrepreneurs, education 5.0, innovation, industrialisation
Procedia PDF Downloads 8629762 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 53429761 A Concept of Data Mining with XML Document
Authors: Akshay Agrawal, Anand K. Srivastava
Abstract:
The increasing amount of XML datasets available to casual users increases the necessity of investigating techniques to extract knowledge from these data. Data mining is widely applied in the database research area in order to extract frequent correlations of values from both structured and semi-structured datasets. The increasing availability of heterogeneous XML sources has raised a number of issues concerning how to represent and manage these semi structured data. In recent years due to the importance of managing these resources and extracting knowledge from them, lots of methods have been proposed in order to represent and cluster them in different ways.Keywords: XML, similarity measure, clustering, cluster quality, semantic clustering
Procedia PDF Downloads 37529760 Evaluating the Effectiveness of Methods That Increase the Knowledge of Youths about the Sexually Transmitted Diseases
Authors: Gonul Kurt, Semra Aciksoz
Abstract:
All types of interventions that increase the knowledge and awareness of youths about Sexually Transmitted Diseases (STD) are considered to be important for safe sex life and sexual health. The aim of this study was to determine the knowledge levels of nursing students about STD and evaluate the effectiveness of peer education and brochure methods to increase the knowledge and awareness about STD. This interventional study was carried out by participation of nursing students attending the first and second grade in a school of nursing on February–May 2015. The study participants were 200 undergraduate nursing student volunteers. The students were given education by peer trainers and brochure methods. First-grade students were divided into five groups with block randomization method and each group were given education by five peer trainers. Second-grade students were given education with brochure by the researchers. The knowledge level of study groups was evaluated before and after educational intervention. The data were collected using the “Data Collection Form” and “Sexually Transmitted Diseases Information Form”. The questionnaire forms developed by the researchers after the literature review. The SPSS 15.0 package software was used for the evaluation of the data obtained from the study. Data were analyzed by Mann-Whitney-U-Test, Wilcoxon Signed Ranks Test and Mc Nemar Test. A p value of <0.05 was regarded as statistically significant. All of participants in the study were female nursing students. The mean age of students was 18.99±0.32 years old in the peer education group and 20.04±0.37 in the brochure education group. There was no statistically significant difference between knowledge levels of the students in both groups before the education (p>0.05). It was determined that an increase in knowledge levels of the students in both groups after the education. This increase was statistically significant (p<0.05). It was determined that knowledge level of the students about STD in brochure group was higher than the peer education group (p<0.001). The results of this study indicate that brochure education method was more effective than the peer education method in both increasing knowledge and awareness about STD.Keywords: education method, knowledge, nursing students, sexually transmitted diseases
Procedia PDF Downloads 29529759 Knowledge Audit Model for Requirement Elicitation Process
Authors: Laleh Taheri, Noraini C. Pa, Rusli Abdullah, Salfarina Abdullah
Abstract:
Knowledge plays an important role to the success of any organization. Software development organizations are highly knowledge-intensive organizations especially in their Requirement Elicitation Process (REP). There are several problems regarding communicating and using the knowledge in REP such as misunderstanding, being out of scope, conflicting information and changes of requirements. All of these problems occurred in transmitting the requirements knowledge during REP. Several researches have been done in REP in order to solve the problem towards requirements. Knowledge Audit (KA) approaches were proposed in order to solve managing knowledge in human resources, financial, and manufacturing. There is lack of study applying the KA in requirements elicitation process. Therefore, this paper proposes a KA model for REP in supporting to acquire good requirements.Keywords: knowledge audit, requirement elicitation process, KA model, knowledge in requirement elicitation
Procedia PDF Downloads 34229758 Technology Transfer of Indigenous Technologies: Emerging Aid to Indian Health Sector
Authors: Tripta Dixit, Smita Sahu, William Selvamurthy, Sadhana Srivastava
Abstract:
India is battling with the issues of accessibility, affordability and availability of quality health to the masses. Indian medical heritage which dated back to 3000 BC unveils the rich knowledge pool which has undergone a perceptible change over years, such as eradication of many communicable diseases, increasing individual awareness of quality health and import driven medical device market etc. Despite a slew of initiatives the holistic slogan of ‘health for all’ remains elusive and a concern for the nation. The 21st-century projects a myriad of challenges like cultural diversity, large population, demographic dividend and geographical segmentation leading to varied needs of people as per their regional conditions of climate, disease prevalence, nutrition and sanitation. But these challenges are also opportunities for the development of indigenous, low cost and accessible technologies to tackle them. This requires reinforcing the potential of indigenous technologies in coordination with prevailing health issues in various regions of country. This paper emphasis on the strategy for exploring the indigenous technologies with entrusted up-scaling to meet the diverse needs of the people. This review proposes to adopt technology transfer as a strategy to establish a vibrant ecosystem for identifying and up-scaling the indigenous medical technologies with diligent hand-holding for public health.Keywords: health, indigenous, medical technology, technology transfer
Procedia PDF Downloads 25029757 A Multi-Level Approach to Improve Sustainability Performances of Industrial Agglomerations
Authors: Patrick Innocenti, Elias Montini, Silvia Menato, Marzio Sorlini
Abstract:
Documented experiences of industrial symbiosis are always triggered and driven only by economic goals: environmental and (even rarely) social results are sometimes assessed and declared as effects of virtuous behaviours, but are merely casual and un-pursued side externalities. Even worse: all the symbiotic project candidates entailing economic loss for just one of the (also dozen) partners are simply stopped without considering the overall benefit for the whole partnership. The here-presented approach aims at providing methodologies and tools to effectively manage these situations and fostering the implementation of virtuous symbiotic investments in manufacturing aggregations for a more sustainable production.Keywords: business model, industrial symbiosis, industrial agglomerations, sustainability
Procedia PDF Downloads 28829756 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System
Authors: A. Mohamed Mydeen, Pallapa Venkataram
Abstract:
The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.Keywords: knowledge representation, pervasive computing, agent technology, ECA rules
Procedia PDF Downloads 33729755 Towards an Environmental Knowledge System in Water Management
Authors: Mareike Dornhoefer, Madjid Fathi
Abstract:
Water supply and water quality are key problems of mankind at the moment and - due to increasing population - in the future. Management disciplines like water, environment and quality management therefore need to closely interact, to establish a high level of water quality and to guarantee water supply in all parts of the world. Groundwater remediation is one aspect in this process. From a knowledge management perspective it is only possible to solve complex ecological or environmental problems if different factors, expert knowledge of various stakeholders and formal regulations regarding water, waste or chemical management are interconnected in form of a knowledge base. In general knowledge management focuses the processes of gathering and representing existing and new knowledge in a way, which allows for inference or deduction of knowledge for e.g. a situation where a problem solution or decision support are required. A knowledge base is no sole data repository, but a key element in a knowledge based system, thus providing or allowing for inference mechanisms to deduct further knowledge from existing facts. In consequence this knowledge provides decision support. The given paper introduces an environmental knowledge system in water management. The proposed environmental knowledge system is part of a research concept called Green Knowledge Management. It applies semantic technologies or concepts such as ontology or linked open data to interconnect different data and information sources about environmental aspects, in this case, water quality, as well as background material enriching an established knowledge base. Examples for the aforementioned ecological or environmental factors threatening water quality are among others industrial pollution (e.g. leakage of chemicals), environmental changes (e.g. rise in temperature) or floods, where all kinds of waste are merged and transferred into natural water environments. Water quality is usually determined with the help of measuring different indicators (e.g. chemical or biological), which are gathered with the help of laboratory testing, continuous monitoring equipment or other measuring processes. During all of these processes data are gathered and stored in different databases. Meanwhile the knowledge base needs to be established through interconnecting data of these different data sources and enriching its semantics. Experts may add their knowledge or experiences of previous incidents or influencing factors. In consequence querying or inference mechanisms are applied for the deduction of coherence between indicators, predictive developments or environmental threats. Relevant processes or steps of action may be modeled in form of a rule based approach. Overall the environmental knowledge system supports the interconnection of information and adding semantics to create environmental knowledge about water environment, supply chain as well as quality. The proposed concept itself is a holistic approach, which links to associated disciplines like environmental and quality management. Quality indicators and quality management steps need to be considered e.g. for the process and inference layers of the environmental knowledge system, thus integrating the aforementioned management disciplines in one water management application.Keywords: water quality, environmental knowledge system, green knowledge management, semantic technologies, quality management
Procedia PDF Downloads 21929754 Moderating Role of Positive External Factors in Relationship of Abusive Supervision and Knowledge Sharing
Abstract:
Knowledge sharing is very important in organizations for their future progress and survival. This study investigates the impact of destructive leadership (abusive supervision) on knowledge sharing in employees. Further, the authors want to investigate a context variable (group cohesion) and explore its cross level influence on the relationship of abusive supervision and knowledge sharing. Conservation of resource theory (COR) claims loss of psychological capital (an internal positive resource) in employees due to abusive supervision and hence decrease occurs in knowledge sharing. This study tests psychological capital as mediator and group cohesion as moderator in relationship of abusive supervision and knowledge sharing. Data was collected from 239 respondents from more than 40 different organizations and 50 different groups from all over Pakistan. Results show that abusive supervision has negative effect on knowledge sharing through reduction in psychological capital of employees, and increased group cohesion in employees reduces this negative effect improving psychological capital in employees.Keywords: abusive supervision, knowledge sharing, psychological capital, group cohesion, conservation of resources
Procedia PDF Downloads 21529753 A Framework for Successful TQM Implementation and Its Effect on the Organizational Sustainability Development
Authors: Redha Elhuni, M. Munir Ahmad
Abstract:
The main purpose of this research is to construct a generic model for successful implementation of Total Quality Management (TQM) in oil sector, and to find out the effects of this model on the organizational sustainability development (OSD) performance of Libyan oil and gas companies using the structured equation modeling (SEM) approach. The research approach covers both quantitative and qualitative methods. A questionnaire was developed in order to identify the quality factors that are seen by Libyan oil and gas companies to be critical to the success of TQM implementation. Hypotheses were developed to evaluate the impact of TQM implementation on O SD. Data analysis reveals that there is a significant positive effect of the TQM implementation on OSD. 24 quality factors are found to be critical and absolutely essential for successful TQM implementation. The results generated a structure of the TQMSD implementation framework based on the four major road map constructs (Top management commitment, employee involvement and participation, customer-driven processes, and continuous improvement culture).Keywords: total quality management, critical success factors, oil and gas, organizational sustainability development (SD), Libya
Procedia PDF Downloads 27229752 Fractional Order Sallen-Key Filters
Authors: Ahmed Soltan, Ahmed G. Radwan, Ahmed M. Soliman
Abstract:
This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which are unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples of the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained.Keywords: Sallen-Key, fractance, stability, low-pass filter, analog filter
Procedia PDF Downloads 71429751 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels
Authors: Tal Remez, Or Litany, Alex Bronstein
Abstract:
The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.Keywords: binary pixels, maximum likelihood, neural networks, sparse coding
Procedia PDF Downloads 20029750 Strategies for Success: Strategic Thinking’s Critical Role in Entrepreneurial
Authors: Silvia Rahmita
Abstract:
Entrepreneurial success is crucial for economic growth, competitiveness, and job creation, yet many entrepreneurs face failure due to various challenges. This paper explores the critical role of strategic thinking in mitigating entrepreneurial failure. Entrepreneurial competencies—encompassing knowledge, skills, and traits—are essential for creating and growing ventures. Despite these competencies, numerous entrepreneurs fail due to poor management, inadequate support, and ineffective policies. The paper categorizes entrepreneurial failures into financial, operational, market, product or service, strategic, leadership, legal, human capital, technological, and environmental failures. Each failure type can be addressed through strategic thinking, which involves foresight, balancing short-term and long-term goals, and hypothesis-driven processes. By integrating strategic thinking into their approach, entrepreneurs can enhance risk management, adapt to market changes, and sustain growth. This process involves setting clear goals, innovating products, and maintaining a competitive edge. Ultimately, strategic thinking provides a framework for proactive planning, adaptation, and continuous improvement, reducing the likelihood of failure and ensuring long-term success. Entrepreneurs who prioritize strategic thinking are better equipped to navigate the complexities of the business environment and achieve sustainable growth.Keywords: entrepreneurial failure, strategic thinking, risk management, business failure
Procedia PDF Downloads 3829749 Knowledge Elicitation Approach for Formal Ontology Design: An Exploratory Study Applied in Industry for Knowledge Management
Authors: Ouassila Labbani-Narsis, Christophe Nicolle
Abstract:
Building formal ontologies remains a complex process for companies. In the literature, this process is based on the technical knowledge and expertise of domain experts, without further details on the used methodologies. Possible problems of disagreements between experts, expression of tacit knowledge related to high level know-how rarely verbalized, qualification of results by using cases, or simply adhesion of the group of experts, remain currently unsolved. This paper proposes a methodological approach based on knowledge elicitation for the conception of formal, consensual, and shared ontologies. The proposed approach is experimentally tested on industrial collaboration projects in the field of manufacturing (associating knowledge sources from multinational companies) and in the field of viticulture (associating explicit knowledge and implicit knowledge acquired through observation).Keywords: collaborative ontology engineering, knowledge elicitation, knowledge engineering, knowledge management
Procedia PDF Downloads 7629748 The Analysis of Regulation on Sustainability in the Financial Sector in Lithuania
Authors: Dalia Kubiliūtė
Abstract:
Lithuania is known as a trusted location for global business institutions, and it attracts investors with it’s competitive environment for financial service providers. Along with the aspiration to offer a strong results-oriented and innovations-driven environment for financial service providers, Lithuanian regulatory authorities consistently implement the European Union's high regulatory standards for financial activities, including sustainability-related disclosures. Since European Union directed its policy towards transition to a climate-neutral, green, competitive, and inclusive economy, additional regulatory requirements for financial market participants are adopted: disclosure of sustainable activities, transparency, prevention of greenwashing, etc. The financial sector is one of the key factors influencing the implementation of sustainability objectives in European Union policies and mitigating the negative effects of climate change –public funds are not enough to make a significant impact on sustainable investments, therefore directing public and private capital to green projects may help to finance the necessary changes. The topic of the study is original and has not yet been widely analyzed in Lithuanian legal discourse. There are used quantitative and qualitative methodologies, logical, systematic, and critical analysis principles; hence the aim of this study is to reveal the problem of the implementation of the regulation on sustainability in the Lithuanian financial sector. Additional regulatory requirements could cause serious changes in financial business operations: additional funds, employees, and time have to be dedicated in order for the companies could implement these regulations. Lack of knowledge and data on how to implement new regulatory requirements towards sustainable reporting causes a lot of uncertainty for financial market participants. And for some companies, it might even be an essential point in terms of business continuity. It is considered that the supervisory authorities should find a balance between financial market needs and legal regulation.Keywords: financial, legal, regulatory, sustainability
Procedia PDF Downloads 10229747 The Application of System Approach to Knowledge Management and Human Resource Management Evidence from Tehran Municipality
Authors: Vajhollah Ghorbanizadeh, Seyed Mohsen Asadi, Mirali Seyednaghavi, Davoud Hoseynpour
Abstract:
In the current era, all organizations need knowledge to be able to manage the diverse human resources. Creative, dynamic and knowledge-based Human resources are important competitive advantage and the scarcest resource in today's knowledge-based economy. In addition managers with skills of knowledge management must be aware of human resource management science. It is now generally accepted that successful implementation of knowledge management requires dynamic interaction between knowledge management and human resource management. This is emphasized at systematic approach to knowledge management as well. However human resource management can be complementary of knowledge management because human resources management with the aim of empowering human resources as the key resource organizations in the 21st century, the use of other resources, creating and growing and developing today. Thus, knowledge is the major capital of every organization which is introduced through the process of knowledge management. In this context, knowledge management is systematic approach to create, receive, organize, access, and use of knowledge and learning in the organization. This article aims to define and explain the concepts of knowledge management and human resource management and the importance of these processes and concepts. Literature related to knowledge management and human resource management as well as related topics were studied, then to design, illustrate and provide a theoretical model to explain the factors affecting the relationship between knowledge management and human resource management and knowledge management system approach, for schematic design and are drawn.Keywords: systemic approach, human resources, knowledge, human resources management, knowledge management
Procedia PDF Downloads 37229746 The Impact of Information Technology Monitoring on Employee Theft and Productivity
Authors: Ajayi Oluwasola Felix
Abstract:
This paper examines how firm investments in technology-based employee monitoring impact both misconduct and productivity. We use unique and detailed theft and sales data from 392 restaurant locations from five firms that adopt a theft monitoring information technology (IT) product. We use difference-in-differences (DD) models with staggered adoption dates to estimate the treatment effect of IT monitoring on theft and productivity. We find significant treatment effects in reduced theft and improved productivity that appear to be primarily driven by changed worker behavior rather than worker turnover. We examine four mechanisms that may drive this productivity result: economic and cognitive multitasking, fairness-based motivation, and perceived increases of general oversight. The observed productivity results represent substantial financial benefits to both firms and the legitimate tip-based earnings of workers. Our results suggest that employee misconduct is not solely a function of individual differences in ethics or morality, but can also be influenced by managerial policies that can benefit both firms and employees.Keywords: information technology, monitoring, misconduct, employee theft
Procedia PDF Downloads 41729745 Biofeedback-Driven Sound and Image Generation
Authors: Claudio Burguez, María Castelló, Mikaela Pisani, Marcos Umpiérrez
Abstract:
BIOFEEDBACK exhibition offers a unique experience for each visitor, combining art, neuroscience, and technology in an interactive way. Using a headband that captures the bioelectric activity of the brain, the visitors are able to generate sound and images in a sequence loop, making them an integral part of the artwork. Through this interactive exhibit, visitors gain a deeper appreciation of the beauty and complexity of the brain. As a special takeaway, visitors will receive an NFT as a present, allowing them to continue their engagement with the exhibition beyond the physical space. We used the EEG Biofeedback technique following a closed-loop neuroscience approach, transforming EEG data captured by a Muse S headband in real-time into audiovisual stimulation. PureData is used for sound generation and Generative Adversarial Networks (GANs) for image generation. Thirty participants have experienced the exhibition. For some individuals, it was easier to focus than others. Participants who said they could focus during the exhibit stated that at one point, they felt that they could control the sound, while images were more abstract, and they did not feel that they were able to control them.Keywords: art, audiovisual, biofeedback, EEG, NFT, neuroscience, technology
Procedia PDF Downloads 7129744 A Review on Existing Challenges of Data Mining and Future Research Perspectives
Authors: Hema Bhardwaj, D. Srinivasa Rao
Abstract:
Technology for analysing, processing, and extracting meaningful data from enormous and complicated datasets can be termed as "big data." The technique of big data mining and big data analysis is extremely helpful for business movements such as making decisions, building organisational plans, researching the market efficiently, improving sales, etc., because typical management tools cannot handle such complicated datasets. Special computational and statistical issues, such as measurement errors, noise accumulation, spurious correlation, and storage and scalability limitations, are brought on by big data. These unique problems call for new computational and statistical paradigms. This research paper offers an overview of the literature on big data mining, its process, along with problems and difficulties, with a focus on the unique characteristics of big data. Organizations have several difficulties when undertaking data mining, which has an impact on their decision-making. Every day, terabytes of data are produced, yet only around 1% of that data is really analyzed. The idea of the mining and analysis of data and knowledge discovery techniques that have recently been created with practical application systems is presented in this study. This article's conclusion also includes a list of issues and difficulties for further research in the area. The report discusses the management's main big data and data mining challenges.Keywords: big data, data mining, data analysis, knowledge discovery techniques, data mining challenges
Procedia PDF Downloads 10829743 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters
Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu
Abstract:
Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.Keywords: induction heating, LQR controller, skin depth, temperature field
Procedia PDF Downloads 4029742 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 6929741 Innovation in Sustainable Development: Sustainable Place-Making Strategies in Hong Kong
Authors: Tris Kee
Abstract:
As the urban design discipline develops renewed interests in participatory design and collaborative place-making, it becomes critical to review the potential and limitations in current processes to ensure a sustainable method for future development.This paper explores how collaborative design can be a key to future sustainable urban development through two case studies from Asia.The process involves a multi-disciplinary collaboration and an innovative learning process by sharing ideas as well as careful consideration on social, economic and political circumstances among government and district stakeholders.This intrinsic proposition of innovative participatory planning implies interdisciplinary collaboration between professionals and local residents to integrate knowledge into new urban place-making thinking.Design innovation in contemporary society can manifest itself in the discourse sustainable urban development by bottom-up planning and community driven design. This paper examines the emerging design pedagogy which promotes interdisciplinary coalition of professionals and local stakeholders in community development as an innovative design rubric to create a sustainable urban approach.Through two case studies in Hong Kong, this paper reviews and critically evaluates the process of how the notion of sustainable development in contemporary urban planning theory is underpinned by the collaborative design practice.Keywords: collaborative design, design innovation, sustainable development, urban development
Procedia PDF Downloads 38529740 The Case for Creativity in the Metaverse
Authors: D. van der Merwe
Abstract:
As the environment and associated media in which creativity is expressed transitions towards digital spaces, that same creativity undergoes a transition from individual to social forms of expression. This paper explores how the emerging social construction collectively called ‘The Metaverse’ will fundamentally alter creativity: by examining creativity as a social rather than individual process, as well as the mimetic logic underlying the platforms in which this creativity is expressed, a crisis in identity, commodification and social programming is revealed wherein the artist is more a commodity than their creations, resulting in prosthetic personalities pandering to an economic logic driven by biased algorithms. Consequently the very aura of the art and creative media produced within the digital domain must be re-assessed in terms of its cultural and exhibition value.Keywords: aura, commodification, creativity, metaverse, mimesis, social programming
Procedia PDF Downloads 729739 Investigating the Effect of Artificial Intelligence on the Improvement of Green Supply Chain in Industry
Authors: Sepinoud Hamedi
Abstract:
Over the past few decades, companies have appeared developing concerns in connection to the natural affect of their fabricating exercises. Green supply chain administration has been considered by the producers as a attainable choice to decrease the natural affect of operations whereas at the same time moving forward their operational execution. Contemporaneously the coming of digitalization and globalization within the supply chain space has driven to a developing acknowledgment of the importance of data preparing methodologies, such as enormous information analytics and fake insights innovations, in improving and optimizing supply chain execution. Also, supply chain collaboration in part intervenes the relationship between manufactured innovation and supply chain execution Ponders appear that the use of BDA-AI advances includes a significant impact on natural handle integration and green supply chain collaboration conjointly underlines that both natural handle integration and green supply chain collaboration have a critical affect on natural execution. Correspondingly savvy supply chain contributes to green execution through overseeing green connections and setting up green operations.Keywords: green supply chain, artificial intelligence, manufacturers, technology, environmental
Procedia PDF Downloads 7129738 Weak Solutions Of Stochastic Fractional Differential Equations
Authors: Lev Idels, Arcady Ponosov
Abstract:
Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.Keywords: delay equations, operator methods, stochastic noise, weak solutions
Procedia PDF Downloads 20629737 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 20