Search results for: computational thought
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2807

Search results for: computational thought

2207 Computational Fluid Dynamics Analysis of a Biomass Burner Gas Chamber in OpenFOAM

Authors: Óscar Alfonso Gómez Sepúlveda, Julián Ernesto Jaramillo, Diego Camilo Durán

Abstract:

The global climate crisis has affected different aspects of human life, and in an effort to reverse the effects generated, we seek to optimize and improve the equipment and plants that produce high emissions of CO₂, being possible to achieve this through numerical simulations. These equipments include biomass combustion chambers. The objective of this research is to visualize the thermal behavior of a gas chamber that is used in the process of obtaining vegetable extracts. The simulation is carried out with OpenFOAM taking into account the conservation of energy, turbulence, and radiation; for the purposes of the simulation, combustion is omitted and replaced by heat generation. Within the results, the streamlines generated by the primary and secondary flows are analyzed in order to visualize whether they generate the expected effect, and the energy is used to the maximum. The inclusion of radiation seeks to compare its influence and also simplify the computational times to perform mesh analysis. An analysis is carried out with simplified geometries and with experimental data to corroborate the selection of the models to be used, and it is obtained that for turbulence, the appropriate one is the standard k - w. As a means of verification, a general energy balance is made and compared with the results of the numerical analysis, where the error is 1.67%, which is considered acceptable. From the approach to improvement options, it was found that with the implementation of fins, heat can be increased by up to 7.3%.

Keywords: CFD analysis, biomass, heat transfer, radiation, OpenFOAM

Procedia PDF Downloads 100
2206 An Interdisciplinary Approach to Investigating Style: A Case Study of a Chinese Translation of Gilbert’s (2006) Eat Pray Love

Authors: Elaine Y. L. Ng

Abstract:

Elizabeth Gilbert’s (2006) biography Eat, Pray, Love describes her travels to Italy, India, and Indonesia after a painful divorce. The author’s experiences with love, loss, search for happiness, and meaning have resonated with a huge readership. As regards the translation of Gilbert’s (2006) Eat, Pray, Love into Chinese, it was first translated by a Taiwanese translator He Pei-Hua and published in Taiwan in 2007 by Make Boluo Wenhua Chubanshe with the fairly catching title “Enjoy! Traveling Alone.” The same translation was translocated to China, republished in simplified Chinese characters by Shanxi Shifan Daxue Chubanshe in 2008 and renamed in China, entitled “To Be a Girl for the Whole Life.” Later on, the same translation in simplified Chinese characters was reprinted by Hunan Wenyi Chubanshe in 2013. This study employs Munday’s (2002) systemic model for descriptive translation studies to investigate the translation of Gilbert’s (2006) Eat, Pray, Love into Chinese by the Taiwanese translator Hu Pei-Hua. It employs an interdisciplinary approach, combining systemic functional linguistics and corpus stylistics with sociohistorical research within a descriptive framework to study the translator’s discursive presence in the text. The research consists of three phases. The first phase is to locate the target text within its socio-cultural context. The target-text context concerning the para-texts, readers’ responses, and the publishers’ orientation will be explored. The second phase is to compare the source text and the target text for the categorization of translation shifts by using the methodological tools of systemic functional linguistics and corpus stylistics. The investigation concerns the rendering of mental clauses and speech and thought presentation. The final phase is an explanation of the causes of translation shifts. The linguistic findings are related to the extra-textual information collected in an effort to ascertain the motivations behind the translator’s choices. There exist sets of possible factors that may have contributed to shaping the textual features of the given translation within a specific socio-cultural context. The study finds that the translator generally reproduces the mental clauses and speech and thought presentation closely according to the original. Nevertheless, the language of the translation has been widely criticized to be unidiomatic and stiff, losing the elegance of the original. In addition, the several Chinese translations of the given text produced by one Taiwanese and two Chinese publishers are basically the same. They are repackaged slightly differently, mainly with the change of the book cover and its captions for each version. By relating the textual findings to the extra-textual data of the study, it is argued that the popularity of the Chinese translation of Gilbert’s (2006) Eat, Pray, Love may not be attributed to the quality of the translation. Instead, it may have to do with the way the work is promoted strategically by the social media manipulated by the four e-bookstores promoting and selling the book online in China.

Keywords: chinese translation of eat pray love, corpus stylistics, motivations for translation shifts, systemic approach to translation studies

Procedia PDF Downloads 157
2205 Remodeling English Language Arts Lessons: Critical Thinking- Based Pedagogy

Authors: Majed Al-Quran

Abstract:

Language arts, as a domain of learning, principally covers the study of literature and the arts of reading and writing. These three areas deal with the art of conceptualizing and representing in language how people live and might live their lives. And all three are significantly concerned with gaining command of language and expression. Of course, there is no command of language separate from the command of thought. The paper addresses how EFL learners can develop insight and sense into what can be earned from literature and a sense of putting experiences into words. It further shows how critical thinking-based instruction helps students develop command of their own ideas, which consequently requires command over the words in which they express them. Critical thinking stipulates that in words and ideas, there is the power to create systems of beliefs and multiple conceptions of life. Remodeling language lessons aim at overcoming the challenge of stimulating learners to cultivate a new and different conception of language skills, including those of reading and writing.

Keywords: language arts, remodeling, critical thinking, pedagogy

Procedia PDF Downloads 55
2204 Psychiatric Nurses' Perception of Patient Safety Culture: A Qualitative Study

Authors: Amira A. Alshowkan, Aleya M. Gamal

Abstract:

Background: Patient safety is a vital element in providing high quality health care. In psychiatric wards, numerous of physical and emotional factors have been found to affect patient safety. In addition, organization, healthcare provider and patients were identified to be significant factors in patient safety. Aim: This study aims to discover nurses' perception of patient safety in psychiatric wards in Saudi Arabian. Method: Date will be collected through semi-structure face to face interview with nurses who are working at psychiatric wards. Data will be analysed thought the used of thematic analysis. Results: The results of this study will help in understanding the psychiatric nurses' perception of patient safety in Saudi Arabia. Several suggestions will be recommended for formulation of policies and strategies for psychiatric wards. In addition, recommendation to nursing education and training will be tailored in order to improve patient safety culture.

Keywords: patient safety culture, psychiatric, qualitative, Saudi Arabia

Procedia PDF Downloads 331
2203 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model

Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng

Abstract:

The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.

Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation

Procedia PDF Downloads 221
2202 Impact of Architecture to Well-being and Health

Authors: Adedayo Jeremiah Adeyekun, Samuel Olugbemiga Ishola

Abstract:

This paper is intended to examine how architecture influences its occupants and how is what we design and build be used by its inhabitants. It also reviews the effect of Architecture to our convenience. According to history of architecture, this issue has materialized in various methods with control of space, through philosophy of experience with social and cultural influences and through art. What these all share in common is the area of strategies, when used from an architectural point of view, are thoughtful in nature. We thought of how architecture influences us, and thereafter we provide recommendation. As humans, we are encouraged to develop our houses to suit our living regarding to health, and it is the desire of every good architect to provide houses that will encourage comfort. We have acquired understanding from questions with rational point of views on the impact of Architecture to our health. As a result, this paper will certainly reinforce the requirement for architects to design a structure that will certainly urge the social and cultural convenience of the environment. To accomplish the goals of this study, experts in the discipline of architecture and wellness were interviewed, and information was originated from journals, publications and textbooks associated to architecture in order to establish the influence of architecture to our wellness.

Keywords: architecture, well-being, health, impact, environment

Procedia PDF Downloads 65
2201 The Continuing Professional Development of the Assessment through Research-Based Learning in Higher Education of Thailand

Authors: P. Junpeng, A. Tungkasamit

Abstract:

Research-based learning is the key for the national research universities of Thailand. The indicator reflects the success of the study in assessing the learning outcomes of students. The development of the lecturers is the most important mechanism in driving. Nowadays the lecturers lack the knowledge and skills of assessment for learning. Therefore, this study aims to develop the knowledge and skills for lecturer’s assessment through research-based learning in higher education. The target group were lecturers who teach in higher education from Khon Kaen University of Thailand. This study was a research and development involved the concept of continuing professional development. Research was conducted in 3 phases: 1) to inspire one’s thought, to accomplish both knowledge and skill, 2) to focus on changes, and 3) to reflect the changes as well as suggest the guidelines for development. The results showed that the lecturers enhanced their knowledge and skill in assessment and emphasized on assessment for learning rather than assessment of learning.

Keywords: research-based nexus, professional development, assessment for learning, higher education

Procedia PDF Downloads 343
2200 Explosion Mechanics of Aluminum Plates Subjected to the Combined Effect of Blast Wave and Fragment Impact Loading: A Multicase Computational Modeling Study

Authors: Atoui Oussama, Maazoun Azer, Belkassem Bachir, Pyl Lincy, Lecompte David

Abstract:

For many decades, researchers have been focused on understanding the dynamic behavior of different structures and materials subjected to fragment impact or blast loads separately. The explosion mechanics, as well as the impact physics studies dealing with the numerical modeling of the response of protective structures under the synergistic effect of a blast wave and the impact of fragments, are quite limited in the literature. This article numerically evaluates the nonlinear dynamic behavior and damage mechanisms of Aluminum plates EN AW-1050A- H24 under different combined loading scenarios varied by the sequence of the applied loads using the commercial software LS-DYNA. For one hand, with respect to the terminal ballistic field investigations, a Lagrangian (LAG) formulation is used to evaluate the different failure modes of the target material in case of a fragment impact. On the other hand, with respect to the blast field analysis, an Arbitrary Lagrangian-Eulerian (ALE) formulation is considered to study the fluid-structure interaction (FSI) of the shock wave and the plate in case of a blast loading. Four different loading scenarios are considered: (1) only blast loading, (2) only fragment impact, (3) blast loading followed by a fragment impact and (4) a fragment impact followed by blast loading. From the numerical results, it was observed that when the impact load is applied to the plate prior to the blast load, it suffers more severe damage due to the hole enlargement phenomenon and the effects of crack propagation on the circumference of the damaged zone. Moreover, it was found that the hole from the fragment impact loading was enlarged to about three times in diameter as compared to the diameter of the projectile. The validation of the proposed computational model is based in part on previous experimental data obtained by the authors and in the other part on experimental data obtained from the literature. A good correspondence between the numerical and experimental results is found.

Keywords: computational analysis, combined loading, explosion mechanics, hole enlargement phenomenon, impact physics, synergistic effect, terminal ballistic

Procedia PDF Downloads 159
2199 Problems in Computational Phylogenetics: The Germano-Italo-Celtic Clade

Authors: Laura Mclean

Abstract:

A recurring point of interest in computational phylogenetic analysis of Indo-European family trees is the inference of a Germano-Italo-Celtic clade in some versions of the trees produced. The presence of this clade in the models is intriguing as there is little evidence for innovations shared among Germanic, Italic, and Celtic, the evidence generally used in the traditional method to construct a subgroup. One source of this unexpected outcome could be the input to the models. The datasets in the various models used so far, for the most part, take as their basis the Swadesh list, a list compiled by Morris Swadesh and then revised several times, containing up to 207 words that he believed were resistant to change among languages. The judgments made by Swadesh for this list, however, were subjective and based on his intuition rather than rigorous analysis. Some scholars used the Swadesh 200 list as the basis for their Indo-European dataset and made cognacy judgements for each of the words on the list. Another dataset is largely based on the Swadesh 207 list as well although the authors include additional lexical and non-lexical data, and they implement ‘split coding’ to deal with cases of polymorphic characters. A different team of scholars uses a different dataset, IECoR, which combines several different lists, one of which is the Swadesh 200 list. In fact, the Swadesh list is used in some form in every study surveyed and each dataset has three words that, when they are coded as cognates, seemingly contribute to the inference of a Germano-Italo-Celtic clade which could happen due to these clades sharing three words among only themselves. These three words are ‘fish’, ‘flower’, and ‘man’ (in the case of ‘man’, one dataset includes Lithuanian in the cognacy coding and removes the word ‘man’ from the screened data). This collection of cognates shared among Germanic, Italic, and Celtic that were deemed important enough to be included on the Swadesh list, without the ability to account for possible reasons for shared cognates that are not shared innovations, gives an impression of affinity between the Germanic, Celtic, and Italic branches without adequate methodological support. However, by changing how cognacy is defined (ie. root cognates, borrowings vs inherited cognates etc.), we will be able to identify whether these three cognates are significant enough to infer a clade for Germanic, Celtic, and Italic. This paper examines the question of what definition of cognacy should be used for phylogenetic datasets by examining the Germano-Italo-Celtic clade as a case study and offers insights into the reconstruction of a Germano-Italo-Celtic clade.

Keywords: historical, computational, Italo-Celtic, Germanic

Procedia PDF Downloads 30
2198 A New Family of Integration Methods for Nonlinear Dynamic Analysis

Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran

Abstract:

A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.

Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy

Procedia PDF Downloads 619
2197 Effects of Pore-Water Pressure on the Motion of Debris Flow

Authors: Meng-Yu Lin, Wan-Ju Lee

Abstract:

Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge.

Keywords: debris flow, diffusion, Lagrangian particle method, pore-pressure diffusivity, pore-water pressure

Procedia PDF Downloads 116
2196 Qualitative Measurement of Literacy

Authors: Indrajit Ghosh, Jaydip Roy

Abstract:

Literacy rate is an important indicator for measurement of human development. But this is not a good one to capture the qualitative dimension of educational attainment of an individual or a society. The overall educational level of an area is an important issue beyond the literacy rate. The overall educational level can be thought of as an outcome of the educational levels of individuals. But there is no well-defined algorithm and mathematical model available to measure the overall educational level of an area. A heuristic approach based on accumulated experience of experts is effective one. It is evident that fuzzy logic offers a natural and convenient framework in modeling various concepts in social science domain. This work suggests the implementation of fuzzy logic to develop a mathematical model for measurement of educational attainment of an area in terms of Education Index. The contribution of the study is two folds: conceptualization of “Education Profile” and proposing a new mathematical model to measure educational attainment in terms of “Education Index”.

Keywords: education index, education profile, fuzzy logic, literacy

Procedia PDF Downloads 297
2195 Self-Awareness on Social Work Courses: A Study of Students Perceptions of Teaching Methods in an English University

Authors: Deborah Amas

Abstract:

Global accreditation standards require Higher Education Institutions to ensure social work students develop self-awareness by reflecting on their personal values and critically evaluating how these influence their thinking for professional practice. The knowledge base indicates there are benefits and vulnerabilities for students when they self-reflect and more needs to be understood about the learning environments that nurture self-awareness. The connection between teaching methods and self-awareness is of interest in this paper which reports findings from an on-line survey with students on BA and MA qualifying social work programs in an English university (n=120). Students were asked about the importance of self-awareness and their experiences of teaching methods for self-reflection. Generally, students thought that self-awareness is of high importance in their education. Students also shared stories that illuminated deeper feelings about the potential risks associated with self-disclosure. The findings indicate that students appreciate safe opportunities for self-reflection, but can be wary of associated assessments or feeling judged. The research supports arguments to qualitatively improve facilitation of self-awareness through the curriculum.

Keywords: reflection, self-awareness, self-reflection, social work education

Procedia PDF Downloads 277
2194 Emotional and Embodied Knowledge and Responses

Authors: Salman Khokhar

Abstract:

The geopolitical landscape in Pakistan has become shrouded with suspicion between the state and the Ahmadiyya Muslim Community. The study argues that the social mobility of the community has become severely compromised, especially after the inception of the blasphemy laws and their subsequent enhancements in later years. The securitization of the community has ensured that the daily lives of Ahmadi Muslims have become severely restricted as their integration and assimilation into society become defined through their religious identity and beliefs. Consequently, performing congregational prayers or engaging in any other community activity is carried out secretly as the repercussions of such actions may lead to incarceration or, in some cases, even more extreme apprehension measures. The securitization of Ahmadis, and their daily lives are severely curtailed in Pakistan; however, due to transnational approaches, the community must implement specific measures to ensure the safety of its members, even in the West. The eyes of suspicion are always on the activities of the Ahmadiyya Muslim Community, and the community’s headquarters in Rabwah is always being viewed with suspicious lenses. The study considers how secrecy has enveloped the everyday life of the Ahmadi Muslim community and how it embodies characteristics which we thought had come to an end many years ago.

Keywords: freedom, ideology, Islam, persecution

Procedia PDF Downloads 103
2193 Enhancing Residential Architecture through Generative Design: Balancing Aesthetics, Legal Constraints, and Environmental Considerations

Authors: Milena Nanova, Radul Shishkov, Damyan Damov, Martin Georgiev

Abstract:

This research paper presents an in-depth exploration of the use of generative design in urban residential architecture, with a dual focus on aligning aesthetic values with legal and environmental constraints. The study aims to demonstrate how generative design methodologies can innovate residential building designs that are not only legally compliant and environmentally conscious but also aesthetically compelling. At the core of our research is a specially developed generative design framework tailored for urban residential settings. This framework employs computational algorithms to produce diverse design solutions, meticulously balancing aesthetic appeal with practical considerations. By integrating site-specific features, urban legal restrictions, and environmental factors, our approach generates designs that resonate with the unique character of urban landscapes while adhering to regulatory frameworks. The paper places emphasis on algorithmic implementation of the logical constraint and intricacies in residential architecture by exploring the potential of generative design to create visually engaging and contextually harmonious structures. This exploration also contains an analysis of how these designs align with legal building parameters, showcasing the potential for creative solutions within the confines of urban building regulations. Concurrently, our methodology integrates functional, economic, and environmental factors. We investigate how generative design can be utilized to optimize buildings' performance, considering them, aiming to achieve a symbiotic relationship between the built environment and its natural surroundings. Through a blend of theoretical research and practical case studies, this research highlights the multifaceted capabilities of generative design and demonstrates practical applications of our framework. Our findings illustrate the rich possibilities that arise from an algorithmic design approach in the context of a vibrant urban landscape. This study contributes an alternative perspective to residential architecture, suggesting that the future of urban development lies in embracing the complex interplay between computational design innovation, regulatory adherence, and environmental responsibility.

Keywords: generative design, computational design, parametric design, algorithmic modeling

Procedia PDF Downloads 33
2192 New Media and Its Role in Shaping the 'Bersih Movement' in Malaysia

Authors: Rosyidah Muhamad

Abstract:

New media is facilitating collective action in ways never thought possible. Although the broader political climate may have a powerful influence on the success or failure of emerging social movement organizations, the Internet is enabling groups previously incapable of political action to find their voices Whether this shift is offering greater relative benefit to previously underrepresented or incumbent political fixtures is subject to debate, but it is clear that like-minded people are now able to better locate and converse with each other via many Internet. The recent social movement in Malaysia – the BERSIH Movement had attracted demonstrators from countries all over the world. The movement with an unforeseen mixture of nationalities became world news. Interestingly, the new media seemed to play a crucial role in the organization of the protests around the world. This article maps this movement via an analysis of their websites. It examines the contribution of these websites based on the collective identity, actual mobilization and a network of organizations. This research indicates signs of an integration of different organizations that contributed to an important role of the new media.

Keywords: Bersih Movement, Malaysian politics, new media, social movement

Procedia PDF Downloads 260
2191 Using Computational Fluid Dynamics (CFD) Modeling to Predict the Impact of Nuclear Reactor Mixed Tank Flows Using the Momentum Equation

Authors: Joseph Amponsah

Abstract:

This research proposes an equation to predict and determine the momentum source equation term after factoring in the radial friction between the fluid and the blades and the impeller's propulsive power. This research aims to look at how CFD software can be used to predict the effect of flows in nuclear reactor stirred tanks through a momentum source equation and the concentration distribution of tracers that have been introduced in reactor tanks. The estimated findings, including the dimensionless concentration curves, power, and pumping numbers, dimensionless velocity profiles, and mixing times 4, were contrasted with results from tests in stirred containers. The investigation was carried out in Part I for vessels that were agitated by one impeller on a central shaft. The two types of impellers employed were an ordinary Rushton turbine and a 6-bladed 45° pitched blade turbine. The simulations made use of numerous reference frame techniques and the common k-e turbulence model. The impact of the grid type was also examined; unstructured, structured, and unique user-defined grids were looked at. The CFD model was used to simulate the flow field within the Rushton turbine nuclear reactor stirred tank. This method was validated using experimental data that were available close to the impeller tip and in the bulk area. Additionally, analyses of the computational efficiency and time using MRF and SM were done.

Keywords: Ansys fluent, momentum equation, CFD, prediction

Procedia PDF Downloads 59
2190 CFD Simulation for Thermo-Hydraulic Performance V-Shaped Discrete Ribs on the Absorber Plate of Solar Air Heater

Authors: J. L. Bhagoria, Ajeet Kumar Giri

Abstract:

A computational investigation of various flow characteristics with artificial roughness in the form of V-types discrete ribs, heated wall of rectangular duct for turbulent flow with Reynolds number range (3800-15000) and p/e (5 to 12) has been carried out with k-e turbulence model is selected by comparing the predictions of different turbulence models with experimental results available in literature. The current study evaluates thermal performance behavior, heat transfer and fluid flow behavior in a v shaped duct with discrete roughened ribs mounted on one of the principal wall (solar plate) by computational fluid dynamics software (Fluent 6.3.26 Solver). In this study, CFD has been carried out through designing 3-demensional model of experimental solar air heater model analysis has been used to perform a numerical simulation to enhance turbulent heat transfer and Reynolds-Averaged Navier–Stokes analysis is used as a numerical technique and the k-epsilon model with near-wall treatment as a turbulent model. The thermal efficiency enhancement because of selected roughness is found to be 16-24%. The result predicts a significant enhancement of heat transfer as compared to that of for a smooth surface with different P’ and various range of Reynolds number.

Keywords: CFD, solar collector, airheater, thermal efficiency

Procedia PDF Downloads 267
2189 Teenagers’ Decisions to Undergo Orthodontic Treatment: A Qualitative Study

Authors: Babak Nematshahrbabaki, Fallahi Arezoo

Abstract:

Objective: The aim of this study was to describe teenagers’ decisions to undergo orthodontic treatment through a qualitative study. Materials and methods: Twenty-three patients (12 girls), aged 12–18 years, at a dental clinic in Sanandaj the western part of Iran participated. Face-to-face and semi-structured interviews and two focus group discussions were held to gather data. Data analyzed by the grounded theory method. Results: ‘Decision-making’ was the core category. During the data analysis four main themes were developed: ‘being like everyone else’, ‘being diagnosed’, ‘maintaining the mouth’ and ‘cultural-social and environmental factors’. Conclusions: cultural- social and environmental factors have crucial role in decision-making to undergo orthodontic treatment. The teenagers were not fully conscious of these external influences. They thought their decision to undergo orthodontic treatment is independent while it is related to cultural- social and environmental factors.

Keywords: decision-making, qualitative study, teenager, orthodontic treatment

Procedia PDF Downloads 429
2188 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump

Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun

Abstract:

A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.

Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation

Procedia PDF Downloads 284
2187 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor

Procedia PDF Downloads 68
2186 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung

Authors: Yu-Chen Hsu, Kuang C. Lin

Abstract:

The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.

Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows

Procedia PDF Downloads 294
2185 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience

Authors: Karen C. Olufokunbi, Odetunji A. Odejobi

Abstract:

The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.

Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics

Procedia PDF Downloads 149
2184 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person

Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito

Abstract:

A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.

Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation

Procedia PDF Downloads 231
2183 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 200
2182 Political Alienation: Paving the Road to Corruption

Authors: Mabrouka Al-Werfalli

Abstract:

This paper aims to highlight reasons beyond the prevalence of “culture of corruption” amongst Libyans. One of the most prominent reason for the Libyan revolution in February 2011 was the pervasiveness of corruption. Corruption in Libya remained a significant problem despite harsh legislation and a robust anti-corruption discourse undertaken by the previous regime. The long-standing political corruption in Libya has offered ample opportunity for the evolution of a structure of negative values and morals. This has formed what is termed as a “culture of corruption”, which has induced people to accept and justify corrupt behaviour. The paper is a part of a study concerns the phenomenon of political alienation in Libya which was based on a survey conducted in 2001 in the city of Benghazi. The finding shows that abuse of power looms large within all activities. Embezzlement and misuse of public funds for personal enrichment is thought to be rife within public bodies, institutions, companies, factories, banks and enterprises owned entirely or partially by the state.

Keywords: corruption, culture of corruption, participation in corruption, abuse of power, embezzlement, political alienation, anti-corruption

Procedia PDF Downloads 337
2181 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata

Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen

Abstract:

This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.

Keywords: composite, blending, optimization, lamination parameters

Procedia PDF Downloads 202
2180 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results

Authors: Stewart A. Keir, Faik A. Hamad

Abstract:

This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.

Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave

Procedia PDF Downloads 220
2179 A User-Friendly Approach for Design and Economic Analysis of Standalone PV System for the Electrification of Rural Area of Eritrea

Authors: Tedros Asefaw Gebremeskel, Xaoyi Yang

Abstract:

The potential of solar energy in Eritrea is relatively high, based on this truth, there are a number of isolated and remote villages situated far away from the electrical national grid which don’t get access to electricity. The core objective of this work is to design a most favorable and cost-effective power by means of standalone PV system for the electrification of a single housing in the inaccessible area of Eritrea. The sizing of the recommended PV system is achieved, such as radiation data and electrical load for the typical household of the selected site is also well thought-out in the design steps. Finally, the life cycle cost (LCC) analysis is conducted to evaluate the economic viability of the system. The outcome of the study promote the use of PV system for a residential building and show that PV system is a reasonable option to provide electricity for household applications in the rural area of Eritrea.

Keywords: electrification, inaccessible area, life cycle cost, residential building, stand-alone PV system

Procedia PDF Downloads 115
2178 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 85