Search results for: cointegration approach in panel data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34619

Search results for: cointegration approach in panel data

34019 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling

Authors: Sushma Ghogale

Abstract:

With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.

Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis

Procedia PDF Downloads 97
34018 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 73
34017 Predicting Dose Level and Length of Time for Radiation Exposure Using Gene Expression

Authors: Chao Sima, Shanaz Ghandhi, Sally A. Amundson, Michael L. Bittner, David J. Brenner

Abstract:

In a large-scale radiologic emergency, potentially affected population need to be triaged efficiently using various biomarkers where personal dosimeters are not likely worn by the individuals. It has long been established that radiation injury can be estimated effectively using panels of genetic biomarkers. Furthermore, the rate of radiation, in addition to dose of radiation, plays a major role in determining biological responses. Therefore, a better and more accurate triage involves estimating both the dose level of the exposure and the length of time of that exposure. To that end, a large in vivo study was carried out on mice with internal emitter caesium-137 (¹³⁷Cs). Four different injection doses of ¹³⁷Cs were used: 157.5 μCi, 191 μCi, 214.5μCi, and 259 μCi. Cohorts of 6~7 mice from the control arm and each of the dose levels were sacrificed, and blood was collected 2, 3, 5, 7 and 14 days after injection for microarray RNA gene expression analysis. Using a generalized linear model with penalized maximum likelihood, a panel of 244 genes was established and both the doses of injection and the number of days after injection were accurately predicted for all 155 subjects using this panel. This has proven that microarray gene expression can be used effectively in radiation biodosimetry in predicting both the dose levels and the length of exposure time, which provides a more holistic view on radiation exposure and helps improving radiation damage assessment and treatment.

Keywords: caesium-137, gene expression microarray, multivariate responses prediction, radiation biodosimetry

Procedia PDF Downloads 199
34016 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 729
34015 Challenges & Barriers for Neuro Rehabilitation in Developing Countries

Authors: Muhammad Naveed Babur, Maria Liaqat

Abstract:

Background & Objective: People with disabilities especially neurological disabilities have many unmet health and rehabilitation needs, face barriers in accessing mainstream health-care services, and consequently have poor health. There are not sufficient epidemiological studies from Pakistan which assess barriers to neurorehabilitation and ways to counter it. Objectives: The objective of the study was to determine the challenges and to evaluate the barriers for neuro-rehabilitation services in developing countries. Methods: This is Exploratory sequential qualitative study based on the Panel discussion forum in International rehabilitation sciences congress and national rehabilitation conference 2017. Panel group discussion has been conducted in February 2017 with a sample size of eight professionals including Rehabilitation medicine Physician, Physical Therapist, Speech Language therapist, Occupational Therapist, Clinical Psychologist and rehabilitation nurse working in multidisciplinary/Interdisciplinary team. A comprehensive audio-videography have been developed, recorded, transcripted and documented. Data was transcribed and thematic analysis along with characteristics was drawn manually. Data verification was done with the help of two separate coders. Results: After extraction of two separate coders following results are emerged. General category themes are disease profile, demographic profile, training and education, research, barriers, governance, global funding, informal care, resources and cultural beliefs and public awareness. Barriers identified at the level are high cost, stigma, lengthy course of recovery. Hospital related barriers are lack of social support and individually tailored goal setting processes. Organizational barriers identified are lack of basic diagnostic facilities, lack of funding and human resources. Recommendations given by panelists were investment in education, capacity building, infrastructure, governance support, strategies to promote communication and realistic goals. Conclusion: It is concluded that neurorehabilitation in developing countries need attention in following categories i.e. disease profile, demographic profile, training and education, research, barriers, governance, global funding, informal care, resources and cultural beliefs and public awareness. This study also revealed barriers at the level of patient, hospital, organization. Recommendations were also given by panelists.

Keywords: disability, neurorehabilitation, telerehabilitation, disability

Procedia PDF Downloads 194
34014 Assessment of the Relationship between Energy Price Dynamics and Green Growth in the Sub-Sharan Africa

Authors: Christopher I. Ifeacho, Adeleke Omolade

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve green growth that can engender sustainability and stability has received more attention from researchers in recent times. This study uses a panel autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rates have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Saharan Africa, relationship

Procedia PDF Downloads 100
34013 Foundation Settlement Determination: A Simplified Approach

Authors: Adewoyin O. Olusegun, Emmanuel O. Joshua, Marvel L. Akinyemi

Abstract:

The heterogeneous nature of the subsurface requires the use of factual information to deal with rather than assumptions or generalized equations. Therefore, there is need to determine the actual rate of settlement possible in the soil before structures are built on it. This information will help in determining the type of foundation design and the kind of reinforcement that will be necessary in constructions. This paper presents a simplified and a faster approach for determining foundation settlement in any type of soil using real field data acquired from seismic refraction techniques and cone penetration tests. This approach was also able to determine the depth of settlement of each strata of soil. The results obtained revealed the different settlement time and depth of settlement possible.

Keywords: heterogeneous, settlement, foundation, seismic, technique

Procedia PDF Downloads 445
34012 Care: A Cluster Based Approach for Reliable and Efficient Routing Protocol in Wireless Sensor Networks

Authors: K. Prasanth, S. Hafeezullah Khan, B. Haribalakrishnan, D. Arun, S. Jayapriya, S. Dhivya, N. Vijayarangan

Abstract:

The main goal of our approach is to find the optimum positions for the sensor nodes, reinforcing the communications in points where certain lack of connectivity is found. Routing is the major problem in sensor network’s data transfer between nodes. We are going to provide an efficient routing technique to make data signal transfer to reach the base station soon without any interruption. Clustering and routing are the two important key factors to be considered in case of WSN. To carry out the communication from the nodes to their cluster head, we propose a parameterizable protocol so that the developer can indicate if the routing has to be sensitive to either the link quality of the nodes or the their battery levels.

Keywords: clusters, routing, wireless sensor networks, three phases, sensor networks

Procedia PDF Downloads 506
34011 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 168
34010 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.

Keywords: wind fragility, glass window, high rise building, wind disaster

Procedia PDF Downloads 259
34009 Impact of Foreign Debt on Economic Growth of Nigeria

Authors: Gylych Jelilov

Abstract:

This paper investigates the effect of foreign debt on economic growth. Example has been chosen from Africa, Nigeria. By conducting cointegration test we have tested for a long-run relationship between. GDP = Real gross domestic product, EXTDEBT = External debt, INT = Interest rate, CAB = Current account balance, and EXCHR = Real exchange rate over the period 1990 to 2012. It was found out by the study that there is a negative but insignificant relationship between external debt and real gross domestic product. While a positive relationship exists between external debt and economic growth. Also, showed a negative and significant relationship between interest rate and real gross domestic product and there was a positive but insignificant relationship between current account balance and real gross domestic product.

Keywords: economic growth, foreign debt, Nigeria, sustainable development, economic stability

Procedia PDF Downloads 476
34008 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 76
34007 A Qualitative Study Examining the Process of EFL Course Design from the Perspectives of Teachers

Authors: Iman Al Khalidi

Abstract:

Recently, English has become the language of globalization and technology. In turn, this has resulted in a seemingly bewildering array of influences and trends in the domain of TESOL curriculum. In light of these changes, higher education has to provide a new and more powerful kind of education. It should prepare students to be more engaged citizens, more capable to solve complex problems at work, and well prepared to lead meaningful life. In response to this, universities, colleges, schools, and departments have to work out in light of the requirements and challenges of the global and technological era. Consequently they have to focus on the adoption of contemporary curriculum which goes in line with the pedagogical shifts from teaching –centered approach to learning centered approach. Ideally, there has been noticeable emphasis on the crucial importance of developing and professionalizing teachers in order to engage them in the process of curriculum development and action research. This is a qualitative study that aims at understanding and exploring the process of designing EFL courses by teachers at the tertiary level from the perspectives of the participants in a professional context in TESOL, Department of English, a private college in Oman. It is a case study that stands on the philosophy of the qualitative approach. It employs multi methods for collecting qualitative data: semi-structured interviews with teachers, focus group discussions with students, and document analysis. The collected data have been analyzed qualitatively by adopting Miles and Huberman's Approach using procedures of reduction, coding, displaying and conclusion drawing and verification.

Keywords: course design, components of course design, case study, data analysis

Procedia PDF Downloads 546
34006 A Qualitative Study Examining the Process of Course Design from the Perspectives of Teachers

Authors: Iman Al Khalidi

Abstract:

Recently, English has become the language of globalization and technology. In turn, this has resulted in a seemingly bewildering array of influences and trends in the domain of TESOL curriculum. In light of these changes, higher education has to provide a new and more powerful kind of education. It should prepare students to be more engaged citizens, more capable to solve complex problems at work, and well prepared to lead a meaningful life. In response to this, universities, colleges, schools, and departments have to work out in light of the requirements and challenges of the global and technological era. Consequently, they have to focus on the adoption of contemporary curriculum which goes in line with the pedagogical shifts from teaching –centered approach to learning centered approach. Ideally, there has been noticeable emphasis on the crucial importance of developing and professionalizing teachers in order to engage them in the process of curriculum development and action research. This is a qualitative study that aims at understanding and exploring the process of designing EFL courses by teachers at the tertiary level from the perspectives of the participants in a professional context in TESOL, Department of English, a private college in Oman. It is a case study that stands on the philosophy of the qualitative approach. It employs multi-methods for collecting qualitative data: semi-structured interviews with teachers, focus group discussions with students, and document analysis. The collected data have been analyzed qualitatively by adopting Miles and Huberman's Approach using procedures of reduction, coding, displaying, and conclusion drawing and verification.

Keywords: course design, components of course design, case study, data analysis

Procedia PDF Downloads 442
34005 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R

Authors: Pavel H. Llamocca, Victoria Lopez

Abstract:

The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.

Keywords: open data, R language, data integration, environmental data

Procedia PDF Downloads 315
34004 Groundwater Monitoring Using a Community: Science Approach

Authors: Shobha Kumari Yadav, Yubaraj Satyal, Ajaya Dixit

Abstract:

In addressing groundwater depletion, it is important to develop evidence base so to be used in assessing the state of its degradation. Groundwater data is limited compared to meteorological data, which impedes the groundwater use and management plan. Monitoring of groundwater levels provides information base to assess the condition of aquifers, their responses to water extraction, land-use change, and climatic variability. It is important to maintain a network of spatially distributed, long-term monitoring wells to support groundwater management plan. Monitoring involving local community is a cost effective approach that generates real time data to effectively manage groundwater use. This paper presents the relationship between rainfall and spring flow, which are the main source of freshwater for drinking, household consumptions and agriculture in hills of Nepal. The supply and withdrawal of water from springs depends upon local hydrology and the meteorological characteristics- such as rainfall, evapotranspiration and interflow. The study offers evidence of the use of scientific method and community based initiative for managing groundwater and springshed. The approach presents a method to replicate similar initiative in other parts of the country for maintaining integrity of springs.

Keywords: citizen science, groundwater, water resource management, Nepal

Procedia PDF Downloads 203
34003 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 358
34002 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa

Authors: Christopher Ikechukwu Ifeacho

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability

Procedia PDF Downloads 25
34001 Industrial Practical Training for Mechanical Engineering Students: A Multidisciplinary Approach

Authors: Bashiru Olayinka Adisa, Najeem Lateef

Abstract:

The integrated knowledge in the application of mechanical engineering, microprocessor and electronic sensor technologies is becoming the basic skill of a modern engineer in machinery based processes. To meet this objective, we have developed a cross-disciplinary industrial training to teach essential hard technical and soft project skills to the mechanical engineering students in mid-curriculum. Ten groups of students were selected to participate in a 150 hour program. The students were required to design and build a robot with ability to follow tracks and pick/place target blocks in specific locations. The students were trained to integrate the knowledge of computer aid design, electronics, sensor theories and motor technology to fabricate a workable robot as a major outcome of this course. On completion of the project, students competed for top robot honors by demonstrating their robots' movements and performance in pick/place to a panel of judges.

Keywords: electronics, sensor theories and motor, robot, technology

Procedia PDF Downloads 281
34000 Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition

Authors: D. Kaczorek

Abstract:

Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface.

Keywords: concrete large panel wall, hygrothermal simulation, internal insulation, moisture related issues

Procedia PDF Downloads 166
33999 An Approach for the Assessment of Semi-Elliptical Surface Crack

Authors: Muhammad Naweed, Usman Tariq Murtaza, Waseem Siddique

Abstract:

A pallet body approach is a finite element-based computational approach used for the modeling and assessment of a three-dimensional surface crack. The approach is capable of inserting the crack in an engineering structure and generating high-quality hexahedral mesh in the cracked region of the structure. The approach is capable of computing the stress intensity factors along a semi-elliptical surface crack numerically. The objective of this work is to present that the stress intensity factors produced by the approach can be used with confidence for capturing the parameters during the fatigue crack growth.

Keywords: pallet body approach, semi-elliptical surface crack, stress intensity factors, fatigue crack growth

Procedia PDF Downloads 102
33998 Novel GPU Approach in Predicting the Directional Trend of the S&P500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: financial algorithm, GPU, S&P 500, stock market prediction

Procedia PDF Downloads 350
33997 Development of Generally Applicable Intravenous to Oral Antibiotic Switch Therapy Criteria

Authors: H. Akhloufi, M. Hulscher, J. M. Prins, I. H. Van Der Sijs, D. Melles, A. Verbon

Abstract:

Background: A timely switch from intravenous to oral antibiotic therapy has many advantages, such as reduced incidence of IV-line related infections, a decreased hospital length of stay and less workload for healthcare professionals with equivalent patient safety. Additionally, numerous studies have demonstrated significant decreases in costs of a timely intravenous to oral antibiotic therapy switch, while maintaining efficacy and safety. However, a considerable variation in iv to oral antibiotic switch therapy criteria has been described in literature. Here, we report the development of a set of iv to oral switch criteria that are generally applicable in all hospitals. Material/methods: A RAND-modified Delphi procedure, which was composed of 3 rounds, was used. This Delphi procedure is a widely used structured process to develop consensus using multiple rounds of questionnaires within a qualified panel of selected experts. The international expert panel was multidisciplinary and composed out of clinical microbiologists, infectious disease consultants and clinical pharmacists. This panel of 19 experts appraised 6 major intravenous to oral antibiotic switch therapy criteria and operationalized these criteria using 41 measurable conditions extracted from the literature. The procedure to select a concise set of iv to oral switch criteria included 2 questionnaire rounds and a face-to-face meeting. Results: The procedure resulted in the selection of 16 measurable conditions, which operationalize 6 major intravenous to oral antibiotic switch therapy criteria. The following 6 major switch therapy criteria were selected: (1) Vital signs should be good or improving when bad. (2) Signs and symptoms related to the infection have to be resolved or improved. (3) The gastrointestinal tract has to be intact and functioning. (4) The oral route should not be compromised. (5) Absence of contra-indicated infections. (6) An oral variant of the antibiotic with good bioavailability has to exist. Conclusions: This systematic stepwise method which combined evidence and expert opinion resulted in a feasible set of 6 major intravenous to oral antibiotic switch therapy criteria operationalized by 16 measurable conditions. This set of early antibiotic iv to oral switch criteria can be used in daily practice in all adult hospital patients. Future use in audits and as rules in computer assisted decision support systems will lead to improvement of antimicrobial steward ship programs.

Keywords: antibiotic resistance, antibiotic stewardship, intravenous to oral, switch therapy

Procedia PDF Downloads 357
33996 Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things

Authors: Benny Sand, Yotam Lurie, Shlomo Mark

Abstract:

Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions.

Keywords: MIoT, data privacy, stakeholders, home healthcare, information privacy, AI

Procedia PDF Downloads 102
33995 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 174
33994 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform

Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu

Abstract:

Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.

Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks

Procedia PDF Downloads 232
33993 Prosperous Digital Image Watermarking Approach by Using DCT-DWT

Authors: Prabhakar C. Dhavale, Meenakshi M. Pawar

Abstract:

In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks

Keywords: watermarking, digital, DCT-DWT, security

Procedia PDF Downloads 423
33992 Procyclicality of Leverage: An Empirical Analysis from Turkish Banks

Authors: Emin Avcı, Çiydem Çatak

Abstract:

The recent economic crisis have shown that procyclicality, which could threaten the stability and growth of the economy, is a major problem of financial and real sector. The term procyclicality refers here the cyclical behavior of banks that lead them to follow the same patterns as the real economy. In this study, leverage which demonstrate how a bank manage its debt, is chosen as bank specific variable to see the effect of changes in it over the economic cycle. The procyclical behavior of Turkish banking sector (commercial, participation, development-investment banks) is tried to explain with analyzing the relationship between leverage and asset growth. On the basis of theoretical explanations, eight different leverage ratios are utilized in eight different panel data models to demonstrate the procyclicality effect of Turkish banks leverage using monthly data covering the 2005-2014 period. It is tested whether there is an increasing (decreasing) trend in the leverage ratio of Turkish banks when there is an enlargement (contraction) in their balance sheet. The major finding of the study indicates that asset growth has a significant effect on all eight leverage ratios. In other words, the leverage of Turkish banks follow a cyclical pattern, which is in line with those of earlier literature.

Keywords: banking, economic cycles, leverage, procyclicality

Procedia PDF Downloads 266
33991 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method

Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari

Abstract:

The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.

Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization

Procedia PDF Downloads 368
33990 Political Regimes, Political Stability and Debt Dependence in African Countries of Franc Zone: A Logistic Modeling

Authors: Nounamo Nguedie Yann Harold

Abstract:

The factors behind the debt have been the subject of several studies in the literature. Pioneering studies based on the 'double deficit' approach linked indebtedness to the imbalance between savings and investment, the budget deficit and the current account deficit. Most studies on identifying factors that may stimulate or reduce the level of external public debt agree that the following variables are important explanatory variables in leveraging debt: the budget deficit, trade opening, current account and exchange rate, import, export, interest rate, term variation exchange rate, economic growth rate and debt service, capital flight, and over-indebtedness. Few studies addressed the impact of political factors on the level of external debt. In general, however, the IMF's stabilization programs in developing countries following the debt crisis have resulted in economic recession and the advent of political crises that have resulted in changes in governments. In this sense, political institutions are recognised as factors of accumulation of external debt in most developing countries. This paper assesses the role of political factors on the external debt level of African countries in the Franc Zone over the period 1985-2016. Data used come from World Bank and ICRG. Using a logit in panel, the results show that the more a country is politically stable, the lower the external debt compared to the gross domestic product. Political stability multiplies 1.18% the chances of being in the sustainable debt zone. For example, countries with good political institutions experience less severe external debt burdens than countries with bad political institutions.

Keywords: African countries, external debt, Franc Zone, political factors

Procedia PDF Downloads 221