Search results for: beta binomial posterior predictive (BBPP) distribution
6139 Sales Patterns Clustering Analysis on Seasonal Product Sales Data
Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho
Abstract:
As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.Keywords: clustering, distribution, sales pattern, seasonal product
Procedia PDF Downloads 5956138 A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery
Authors: Youngmok Yun, Bosung Kim, Sungho Lee, Kyeongsu Jeon, Hyunwook Hwangbo, Byounggun Choi
Abstract:
A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%.Keywords: betavoltaic, nuclear, battery, Ni-63, radio-isotope
Procedia PDF Downloads 2586137 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control
Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak
Abstract:
With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation
Procedia PDF Downloads 4656136 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 1156135 Determinants of House Dust, Endotoxin, and β- (1→ 3)-D-Glucan in Homes of Turkish Children
Authors: Afsoun Nikravan, Parisa Babaei, Gulen Gullu
Abstract:
We aimed to study the association between house dust endotoxin, β-(1→3)-D-glucan, and asthma in a sample representative of the Turkish population. We analyzed data from 240 participants. The house dust was collected from the homes of 110 asthmatics and 130 control (without asthma) school-aged children (6-11 years old). House dust from the living room and from bedroom floors were analyzed for endotoxin and beta-glucan contents. House dust was analyzed for endotoxin content by the kinetic limulus amoebocyte lysate assay and for β-(1→3)-D-glucan by the inhibition enzyme immunoassay. The parents answered questions regarding potential determinants. We found geometric means 187.5 mg/m² for dust. According to statistical values, the endotoxin geometric mean was 13.86×103 EU/g for the control group and 6.16×103 EU/g for the asthma group. As a result, the amount of bacterial endotoxin was measured at a higher level in the homes of children without asthma. The geometric mean for beta-glucan was 46.52 µg/g and 44.39 µg/g for asthma and control groups, respectively. No associations between asthma and microbial agents were observed in Turkish children. High correlations (r > 0.75) were found between floor dust and endotoxin loads, while endotoxin and β-(1→3)-D-glucan concentrations were not correlated. The type of flooring (hard-surface or textile) was the strongest determinant for loads of floor dust and concentrations of endotoxin. Water damage and dampness at home were determinants of β-(1→3)-D-glucan concentrations. Endotoxin and β-(1→3)-D-glucan concentrations in Turkish house dust might lower than concentrations seen in other European countries.Keywords: indoor air quality, asthma, microbial pollutants, case-control
Procedia PDF Downloads 1246134 Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network
Authors: Gunasekaran Raja, Ramkumar Jayaraman, Rajakumar Arul, Kottilingam Kottursamy
Abstract:
Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme.Keywords: encoding and decoding, buffer, network coding, degree distribution, broadband wireless networks, multicast
Procedia PDF Downloads 4106133 Velocity Distribution in Density Currents Flowing over Rough Beds
Authors: Reza Nasrollahpour, Mohamad Hidayat Bin Jamal, Zulhilmi Bin Ismail
Abstract:
Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region.Keywords: density currents, velocity profiles, Acoustic Doppler Velocimeter, bed roughness
Procedia PDF Downloads 1856132 The Modality of Multivariate Skew Normal Mixture
Authors: Bader Alruwaili, Surajit Ray
Abstract:
Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data.Keywords: mode, modality, multivariate skew normal, finite mixture, number of mode
Procedia PDF Downloads 4886131 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data
Authors: Rana Rimawi, Ayman Baklizi
Abstract:
Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation
Procedia PDF Downloads 1986130 Effects of Renin Angiotensin Pathway Inhibition on Efficacy of Anti-PD-1/PD-L1 Treatment in Metastatic Cancer
Authors: Philip Friedlander, John Rutledge, Jason Suh
Abstract:
Inhibition of programmed death-1 (PD-1) or its ligand PD-L1 confers therapeutic efficacy in a wide range of solid tumor malignancies. Primary or acquired resistance can develop through activation of immunosuppressive immune cells such as tumor-associated macrophages. The renin angiotensin system (RAS) systemically regulates fluid and sodium hemodynamics, but components are expressed on and regulate the activity of immune cells, particularly of myeloid lineage. We hypothesized that inhibition of RAS would improve the efficacy of PD-1/PD-L-1 treatment. A retrospective analysis was performed through a chart review of patients with solid metastatic malignancies treated with a PD-1/PD-L1 inhibitor between 1/2013 and 6/2019 at Valley Hospital, a community hospital in New Jersey, USA. Efficacy was determined by medical oncologist documentation of clinical benefit in visit notes and by the duration of time on immunotherapy treatment. The primary endpoint was the determination of efficacy differences in patients treated with an inhibitor of RAS ( ace inhibitor, ACEi, or angiotensin blocker, ARB) compared to patients not treated with these inhibitors. To control for broader antihypertensive effects, efficacy as a function of treatment with beta blockers was assessed. 173 patients treated with PD-1/PD-L-1 inhibitors were identified of whom 52 were also treated with an ACEi or ARB. Chi-square testing revealed a statistically significant relationship between being on an ACEi or ARB and efficacy to PD-1/PD-L-1 therapy (p=0.001). No statistically significant relationship was seen between patients taking or not taking beta blocker antihypertensives (p= 0.33). Kaplan-Meier analysis showed statistically significant improvement in the duration of therapy favoring patients concomitantly treated with ACEi or ARB compared to patients not exposed to antihypertensives and to those treated with beta blockers. Logistic regression analysis revealed that age, gender, and cancer type did not have significant effects on the odds of experiencing clinical benefit (p=0.74, p=0.75, and p=0.81, respectively). We conclude that retrospective analysis of the treatment of patients with solid metastatic tumors with anti-PD-1/PD-L1 in a community setting demonstrates greater clinical benefit in the context of concomitant ACEi or ARB inhibition, irrespective of gender or age. This data supports the development of prospective assessment through randomized clinical trials.Keywords: angiotensin, cancer, immunotherapy, PD-1, efficacy
Procedia PDF Downloads 766129 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models
Authors: C. F. Kumru, C. Kocatepe, O. Arikan
Abstract:
In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.Keywords: electric field, energy transmission line, finite element method, pylon
Procedia PDF Downloads 7286128 The Effect of Absolute and Relative Deprivation on Homicides in Brazil
Authors: Temidayo James Aransiola, Vania Ceccato, Marcelo Justus
Abstract:
This paper investigates the effect of absolute deprivation (proxy unemployment) and relative deprivation (proxy income inequality) on homicide levels in Brazil. A database from the Brazilian Information System about Mortality and Census of the year 2000 and 2010 was used to estimate negative binomial models of homicide levels controlling for socioeconomic, demographic and geographic factors. Findings show that unemployment and income inequality affect homicides levels and that the effect of the former is more pronounced compared to the latter. Moreover, the combination of income inequality and unemployment exacerbates the overall effect of deprivation on homicide levels.Keywords: deprivation, inequality, interaction, unemployment, violence
Procedia PDF Downloads 1466127 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1246126 Lateral Retroperitoneal Transpsoas Approach: A Practical Minimal Invasive Surgery Option for Treating Pyogenic Spondylitis of the Lumbar Vertebra
Authors: Sundaresan Soundararajan, Chor Ngee Tan
Abstract:
Introduction: Pyogenic spondylitis, otherwise treated conservatively with long term antibiotics, would require surgical debridement and reconstruction in about 10% to 20% of cases. The classical approach adopted many surgeons have always been anterior approach in ensuring thorough and complete debridement. This, however, comes with high rates of morbidity due to the nature of its access. Direct lateral retroperitoneal approach, which has been growing in usage in degenerative lumbar diseases, has the potential in treating pyogenic spondylitis with its ease of approach and relatively low risk of complications. Aims/Objectives: The objective of this study was to evaluate the effectiveness and clinical outcome of using lateral approach surgery in the surgical management of pyogenic spondylitis of the lumbar spine. Methods: Retrospective chart analysis was done on all patients who presented with pyogenic spondylitis (lumbar discitis/vertebral osteomyelitis) and had undergone direct lateral retroperitoneal lumbar vertebral debridement and posterior instrumentation between 2014 and 2016. Data on blood loss, surgical operating time, surgical complications, clinical outcomes and fusion rates were recorded. Results: A total of 6 patients (3 male and 3 female) underwent this procedure at a single institution by a single surgeon during the defined period. One patient presented with infected implant (PLIF) and vertebral osteomyelitis while the other five presented with single level spondylodiscitis. All patients underwent lumbar debridement, iliac strut grafting and posterior instrumentation (revision of screws for infected PLIF case). The mean operating time was 308.3 mins for all 6 cases. Mean blood loss was reported at 341cc (range from 200cc to 600cc). Presenting symptom of back pain resolved in all 6 cases while 2 cases that presented with lower limb weakness had improvement of neurological deficits. One patient had dislodged strut graft while performing posterior instrumentation and needed graft revision intraoperatively. Infective markers normalized for all patients subsequently. All subjects also showed radiological evidence of fusion on 6 months follow up. Conclusions: Lateral approach in treating pyogenic spondylitis is a viable option as it allows debridement and reconstruction without the risk that comes with other anterior approaches. It allows efficient debridement, short surgical time, moderate blood loss and low risk of vascular injuries. Clinical outcomes and fusion rates by this approach also support its use as practical MIS option surgery for such infection cases.Keywords: lateral approach, minimally invasive, pyogenic spondylitis, XLIF
Procedia PDF Downloads 1776125 Dynamic Distribution Calibration for Improved Few-Shot Image Classification
Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran
Abstract:
Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.Keywords: deep learning, computer vision, image classification, few-shot learning, threshold
Procedia PDF Downloads 666124 Predicting Machine-Down of Woodworking Industrial Machines
Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta
Abstract:
In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence
Procedia PDF Downloads 2266123 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying
Procedia PDF Downloads 5016122 Electroencephalography Activity during Sensory Organization Balance Test
Authors: Tariq Ali Gujar, Anita Hökelmann
Abstract:
Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.Keywords: balance, electroencephalography activity, somatosensory, visual, vestibular
Procedia PDF Downloads 5836121 Force Distribution and Muscles Activation for Ankle Instability Patients with Rigid and Kinesiotape while Standing
Authors: Norazlin Mohamad, Saiful Adli Bukry, Zarina Zahari, Haidzir Manaf, Hanafi Sawalludin
Abstract:
Background: Deficit in neuromuscular recruitment and decrease force distribution were the common problems among ankle instability patients due to altered joint kinematics that lead to recurrent ankle injuries. Rigid Tape and KT Tape had widely been used as therapeutic and performance enhancement tools in ankle stability. However the difference effect between this two tapes is still controversial. Objective: To investigate the different effect between Rigid Tape and KT Tape on force distribution and muscle activation among ankle instability patients while standing. Study design: Crossover trial. Participants: 27 patients, age between 18 to 30 years old participated in this study. All the subjects were applied with KT Tape & Rigid Tape on their affected ankle with 3 days of interval for each intervention. The subjects were tested with their barefoot (without tape) first to act as a baseline before proceeding with KT Tape, and then with Rigid Tape. Result: There were no significant difference on force distribution at forefoot and back-foot for both tapes while standing. However the mean data shows that Rigid Tape has the highest force distribution at back-foot rather than forefoot when compared with KT Tape that had more force distribution at forefoot while standing. Regarding muscle activation (Peroneus Longus), results showed significant difference between Rigid Tape and KT Tape (p= 0.048). However, there was no significant difference on Tibialis Anterior muscle activation between both tapes while standing. Conclusion: The results indicated that Peroneus longus muscle was more active when applied Rigid Tape rather than KT Tape in ankle instability patients while standing.Keywords: ankle instability, kinematic, muscle activation, force distribution, Rigid Tape, KT tape
Procedia PDF Downloads 4186120 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution
Authors: Tomoaki Hashimoto
Abstract:
In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution.Keywords: optimal control, stochastic systems, discrete time systems, probabilistic constraints
Procedia PDF Downloads 5816119 Atherosclerotic Plagues and Immune Microenvironment: From Lipid-Lowering to Anti-inflammatory and Immunomodulatory Drug Approaches in Cardiovascular Diseases
Authors: Husham Bayazed
Abstract:
A growing number of studies indicate that atherosclerotic coronary artery disease (CAD) has a complex pathogenesis that extends beyond cholesterol intimal infiltration. The atherosclerosis process may involve an immune micro-environmental condition driven by local activation of the adaptive and innate immunity arrays, resulting in the formation of atherosclerotic plaques. Therefore, despite the wide usage of lipid-lowering agents, these devastating coronary diseases are not averted either at primary or secondary prevention levels. Many trials have recently shown an interest in the immune targeting of the inflammatory process of atherosclerotic plaques, with the promised improvement in atherosclerotic cardiovascular disease outcomes. This recently includes the immune-modulatory drug “Canakinumab” as an anti-interleukin-1 beta monoclonal antibody in addition to "Colchicine,” which's established as a broad-effect drug in the management of other inflammatory conditions. Recent trials and studies highlight the importance of inflammation and immune reactions in the pathogenesis of atherosclerosis and plaque formation. This provides an insight to discuss and extend the therapies from old lipid-lowering drugs (statins) to anti-inflammatory drugs (colchicine) and new targeted immune-modulatory therapies like inhibitors of IL-1 beta (canakinumab) currently under investigation.Keywords: atherosclerotic plagues, immune microenvironment, lipid-lowering agents, and immunomodulatory drugs
Procedia PDF Downloads 696118 An Extended Inverse Pareto Distribution, with Applications
Authors: Abdel Hadi Ebraheim
Abstract:
This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation
Procedia PDF Downloads 826117 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures
Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman
Abstract:
Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction
Procedia PDF Downloads 486116 Effectiveness of the Lacey Assessment of Preterm Infants to Predict Neuromotor Outcomes of Premature Babies at 12 Months Corrected Age
Authors: Thanooja Naushad, Meena Natarajan, Tushar Vasant Kulkarni
Abstract:
Background: The Lacey Assessment of Preterm Infants (LAPI) is used in clinical practice to identify premature babies at risk of neuromotor impairments, especially cerebral palsy. This study attempted to find the validity of the Lacey assessment of preterm infants to predict neuromotor outcomes of premature babies at 12 months corrected age and to compare its predictive ability with the brain ultrasound. Methods: This prospective cohort study included 89 preterm infants (45 females and 44 males) born below 35 weeks gestation who were admitted to the neonatal intensive care unit of a government hospital in Dubai. Initial assessment was done using the Lacey assessment after the babies reached 33 weeks postmenstrual age. Follow up assessment on neuromotor outcomes was done at 12 months (± 1 week) corrected age using two standardized outcome measures, i.e., infant neurological international battery and Alberta infant motor scale. Brain ultrasound data were collected retrospectively. Data were statistically analyzed, and the diagnostic accuracy of the Lacey assessment of preterm infants (LAPI) was calculated -when used alone and in combination with the brain ultrasound. Results: On comparison with brain ultrasound, the Lacey assessment showed superior specificity (96% vs. 77%), higher positive predictive value (57% vs. 22%), and higher positive likelihood ratio (18 vs. 3) to predict neuromotor outcomes at one year of age. The sensitivity of Lacey assessment was lower than brain ultrasound (66% vs. 83%), whereas specificity was similar (97% vs. 98%). A combination of Lacey assessment and brain ultrasound results showed higher sensitivity (80%), positive (66%), and negative (98%) predictive values, positive likelihood ratio (24), and test accuracy (95%) than Lacey assessment alone in predicting neurological outcomes. The negative predictive value of the Lacey assessment was similar to that of its combination with brain ultrasound (96%). Conclusion: Results of this study suggest that the Lacey assessment of preterm infants can be used as a supplementary assessment tool for premature babies in the neonatal intensive care unit. Due to its high specificity, Lacey assessment can be used to identify those babies at low risk of abnormal neuromotor outcomes at a later age. When used along with the findings of the brain ultrasound, Lacey assessment has better sensitivity to identify preterm babies at particular risk. These findings have applications in identifying premature babies who may benefit from early intervention services.Keywords: brain ultrasound, lacey assessment of preterm infants, neuromotor outcomes, preterm
Procedia PDF Downloads 1386115 Psychological Testing in Industrial/Organizational Psychology: Validity and Reliability of Psychological Assessments in the Workplace
Authors: Melissa C. Monney
Abstract:
Psychological testing has been of interest to researchers for many years as useful tools in assessing and diagnosing various disorders as well as to assist in understanding human behavior. However, for over 20 years now, researchers and laypersons alike have been interested in using them for other purposes, such as determining factors in employee selection, promotion, and even termination. In recent years, psychological assessments have been useful in facilitating workplace decision processing, regarding employee circulation within organizations. This literature review explores four of the most commonly used psychological tests in workplace environments, namely cognitive ability, emotional intelligence, integrity, and personality tests, as organizations have used these tests to assess different factors of human behavior as predictive measures of future employee behaviors. The findings suggest that while there is much controversy and debate regarding the validity and reliability of these tests in workplace settings as they were not originally designed for these purposes, the use of such assessments in the workplace has been useful in decreasing costs and employee turnover as well as increase job satisfaction by ensuring the right employees are selected for their roles.Keywords: cognitive ability, personality testing, predictive validity, workplace behavior
Procedia PDF Downloads 2426114 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)
Authors: Longqing Li
Abstract:
The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting
Procedia PDF Downloads 3216113 Fatty Acid Metabolism in Hypertension
Authors: Yin Hua Zhang
Abstract:
Cardiac metabolism is essential in myocardial contraction. In addition to glucose, fatty acids (FA) are essential in producing energy in the myocardium since FA-dependent beta-oxidation accounts for > 70-90% of cellular ATP under resting conditions. However, metabolism shifts from FAs to glucose utilization during disease progression (e.g. hypertrophy and ischemic myocardium), where glucose oxidation and glycolysis become the predominant sources of cellular ATP. At advanced failing stage, both glycolysis and beta-oxidation are dysregulated, result in insufficient supply of intracellular ATP and weakened myocardial contractility. Undeniably, our understandings of myocyte function in healthy and diseased hearts are based on glucose (10 mM)-dependent metabolism because glucose is the “sole” metabolic substrate in most of the physiological experiments. In view of the importance of FAs in cardiovascular health and diseases, we aimed to elucidate the impacts of FA supplementation on myocyte contractility and evaluate cellular mechanisms those mediate the functions in normal heart and with pathological stress. In particular, we have investigated cardiac excitation-contraction (E-C) coupling in the presence and absence of FAs in normal and hypertensive rat left ventricular (LV) myocytes. Our results reveal that FAs increase mitochondrial activity, intracellular [Ca²+]i, and LV myocyte contraction in healthy LV myocytes, whereas FA-dependent cardiac inotropyis attenuated in hypertension. FA-dependent myofilament Ca²+ desensitization could be fundamental in regulating [Ca²+]i. Collectively, FAs supplementation resets cardiac E-C coupling scheme in healthy and diseased hearts.Keywords: hypertension, fatty acid, heart, calcium
Procedia PDF Downloads 1096112 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 876111 Cadaveric Study of Lung Anatomy: A Surgical Overview
Authors: Arthi Ganapathy, Rati Tandon, Saroj Kaler
Abstract:
Introduction: A thorough knowledge of variations in lung anatomy is of prime significance during surgical procedures like lobectomy, pneumonectomy, and segmentectomy of lungs. The arrangement of structures in the lung hilum act as a guide in performing such procedures. The normal pattern of arrangement of hilar structures in the right lung is eparterial bronchus, pulmonary artery, hyparterial bronchus and pulmonary veins from above downwards. In the left lung, it is pulmonary artery, principal bronchus and pulmonary vein from above downwards. The arrangement of hilar structures from anterior to posterior in both the lungs is pulmonary vein, pulmonary artery, and principal bronchus. The bronchial arteries are very small and usually the posterior most structures in the hilum of lungs. Aim: The present study aims at reporting the variations in hilar anatomy (arrangement and number) of lungs. Methodology: 75 adult formalin fixed cadaveric lungs from the department of Anatomy AIIMS New Delhi were observed for variations in the lobar anatomy. Arrangement of pulmonary hilar structures was meticulously observed, and any deviation in the pattern of presentation was recorded. Results: Among the 75 adult lung specimens observed 36 specimens were of right lung and the rest of left lung. Seven right lung specimens showed only 2 lobes with an oblique fissure dividing them and one left lung showed 3 lobes. The normal pattern of arrangement of hilar structures was seen in 22 right lungs and 23 left lungs. Rest of the lung specimens (14 right and 16 left) showed a varied pattern of arrangement of hilar structures. Some of them showed alterations in the sequence of arrangement of pulmonary artery, pulmonary veins, bronchus, and others in the number of these structures. Conclusion: Alterations in the pattern of arrangement of structures in the lung hilum are quite frequent. A compromise in knowledge of such variations will result in inadvertent complications like intraoperative bleeding during surgical procedures.Keywords: fissures, hilum, lobes, pulmonary
Procedia PDF Downloads 2246110 Collaborative Energy Optimization for Multi-Microgrid Distribution System Based on Two-Stage Game Approach
Authors: Hanmei Peng, Yiqun Wang, Mao Tan, Zhuocen Dai, Yongxin Su
Abstract:
Efficient energy management in multi-microgrid distribution systems holds significant importance for enhancing the economic benefits of regional power grids. To better balance conflicts among various stakeholders, a two-stage game-based collaborative optimization approach is proposed in this paper, effectively addressing the realistic scenario involving both competition and collaboration among stakeholders. The first stage, aimed at maximizing individual benefits, involves constructing a non-cooperative tariff game model for the distribution network and surplus microgrid. In the second stage, considering power flow and physical line capacity constraints we establish a cooperative P2P game model for the multi-microgrid distribution system, and the optimization involves employing the Lagrange method of multipliers to handle complex constraints. Simulation results demonstrate that the proposed approach can effectively improve the system economics while harmonizing individual and collective rationality.Keywords: cooperative game, collaborative optimization, multi-microgrid distribution system, non-cooperative game
Procedia PDF Downloads 70