Search results for: band-pass filter
241 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends
Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez
Abstract:
This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis
Procedia PDF Downloads 84240 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique
Authors: S. Anuradha, V. Sandeep Kumar
Abstract:
The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension
Procedia PDF Downloads 447239 Effect Analysis of an Improved Adaptive Speech Noise Reduction Algorithm in Online Communication Scenarios
Authors: Xingxing Peng
Abstract:
With the development of society, there are more and more online communication scenarios such as teleconference and online education. In the process of conference communication, the quality of voice communication is a very important part, and noise may cause the communication effect of participants to be greatly reduced. Therefore, voice noise reduction has an important impact on scenarios such as voice calls. This research focuses on the key technologies of the sound transmission process. The purpose is to maintain the audio quality to the maximum so that the listener can hear clearer and smoother sound. Firstly, to solve the problem that the traditional speech enhancement algorithm is not ideal when dealing with non-stationary noise, an adaptive speech noise reduction algorithm is studied in this paper. Traditional noise estimation methods are mainly used to deal with stationary noise. In this chapter, we study the spectral characteristics of different noise types, especially the characteristics of non-stationary Burst noise, and design a noise estimator module to deal with non-stationary noise. Noise features are extracted from non-speech segments, and the noise estimation module is adjusted in real time according to different noise characteristics. This adaptive algorithm can enhance speech according to different noise characteristics, improve the performance of traditional algorithms to deal with non-stationary noise, so as to achieve better enhancement effect. The experimental results show that the algorithm proposed in this chapter is effective and can better adapt to different types of noise, so as to obtain better speech enhancement effect.Keywords: speech noise reduction, speech enhancement, self-adaptation, Wiener filter algorithm
Procedia PDF Downloads 59238 Assessment of Escherichia coli along Nakibiso Stream in Mbale Municipality, Uganda
Authors: Abdul Walusansa
Abstract:
The aim of this study was to assess the level of microbial pollution along Nakibiso stream. The study was carried out in polluted waters of Nakibiso stream, originating from Mbale municipality and running through ADRA Estates to Namatala Wetlands in Eastern Uganda. Four sites along the stream were selected basing on the activities of their vicinity. A total of 120 samples were collected in sterile bottles from the four sampling locations of the stream during the wet and dry seasons of the year 2011. The samples were taken to the National water and Sewerage Cooperation Laboratory for Analysis. Membrane filter technique was used to test for Erischerichia coli. Nitrogen, Phosphorus, pH, dissolved oxygen, electrical conductivity, total suspended solids, turbidity and temperature were also measured. Results for Nitrogen and Phosphorus for sites; 1, 2, 3 and 4 were 1.8, 8.8, 7.7 and 13.8 NH4-N mg/L; and 1.8, 2.1, 1.8 and 2.3 PO4-P mg/L respectively. Basing on these results, it was estimated that farmers use 115 and 24 Kg/acre of Nitrogen and Phosphorus respectively per month. Taking results for Nitrogen, the same amount of Nutrients in artificial fertilizers would cost $ 88. This shows that reuse of wastewater has a potential in terms of nutrients. The results for E. coli for sites 1, 2, 3 and 4 were 1.1 X 107, 9.1 X 105, 7.4 X 105, and 3.4 X 105 respectively. E. coli hence decreased downstream with statistically significant variations between sites 1 and 4. Site 1 had the highest mean E.coli counts. The bacterial contamination was significantly higher during the dry season when more water was needed for irrigation. Although the water had the potential for reuse in farming, bacterial contamination during both seasons was higher than 103 FC/100ml recommended by WHO for unrestricted Agriculture.Keywords: E. coli, nitrogen, phosphorus, water reuse, waste water
Procedia PDF Downloads 247237 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm
Authors: Anuradha Chug, Sunali Gandhi
Abstract:
Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm
Procedia PDF Downloads 382236 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing
Procedia PDF Downloads 148235 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems
Procedia PDF Downloads 251234 A Gradient Orientation Based Efficient Linear Interpolation Method
Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar
Abstract:
This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing
Procedia PDF Downloads 261233 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection
Authors: P. Bhavya, P. R. Jayasree
Abstract:
This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink
Procedia PDF Downloads 341232 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image
Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa
Abstract:
A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever
Procedia PDF Downloads 120231 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.Keywords: algorithm, LiDAR, object recognition, OBIA
Procedia PDF Downloads 246230 Feasibility Study of Constructed Wetlands for Wastewater Treatment and Reuse in Asmara, Eritrea
Authors: Hagos Gebrehiwet Bahta
Abstract:
Asmara, the capital city of Eritrea, is facing a sanitation challenge because the city discharges its wastewater to the environment without any kind of treatment. The aim of this research is to conduct a pre-feasibility study of using constructed wetlands in the peri-urban areas of Asmara for wastewater treatment and reuse. It was found that around 15,000 m³ of wastewater is used daily for agricultural activities, and products are sold in the city's markets, which are claimed to cause some health effects. In this study, three potential sites were investigated around Mai-Bela and an optimum location was selected on the basis of land availability, topography, and geotechnical information. Some types of local microphytes that can be used in constructed wetlands have been identified and documented for further studies. It was found that subsurface constructed wetlands can provide a sufficient pollutant removal with careful planning and design. Following the feasibility study, a preliminary design of screening, grit chamber and subsurface constructed wetland was prepared and cost estimation was done. In the cost estimation part, the filter media was found to be the most expensive part and consists of around 30% percent of the overall cost. The city wastewater drainage runs in two directions and the selected site is located in the southern sub-system, which only carries sewage (separate system). The wastewater analysis conducted particularly around this area (Sembel) indicates high heavy metal levels and organic concentrations, which reveals that there is a high level of industrial pollution in addition to the domestic sewage.Keywords: agriculture, constructed wetland, Mai-Bela, wastewater reuse
Procedia PDF Downloads 221229 Automatic Reporting System for Transcriptome Indel Identification and Annotation Based on Snapshot of Next-Generation Sequencing Reads Alignment
Authors: Shuo Mu, Guangzhi Jiang, Jinsa Chen
Abstract:
The analysis of Indel for RNA sequencing of clinical samples is easily affected by sequencing experiment errors and software selection. In order to improve the efficiency and accuracy of analysis, we developed an automatic reporting system for Indel recognition and annotation based on image snapshot of transcriptome reads alignment. This system includes sequence local-assembly and realignment, target point snapshot, and image-based recognition processes. We integrated high-confidence Indel dataset from several known databases as a training set to improve the accuracy of image processing and added a bioinformatical processing module to annotate and filter Indel artifacts. Subsequently, the system will automatically generate data, including data quality levels and images results report. Sanger sequencing verification of the reference Indel mutation of cell line NA12878 showed that the process can achieve 83% sensitivity and 96% specificity. Analysis of the collected clinical samples showed that the interpretation accuracy of the process was equivalent to that of manual inspection, and the processing efficiency showed a significant improvement. This work shows the feasibility of accurate Indel analysis of clinical next-generation sequencing (NGS) transcriptome. This result may be useful for RNA study for clinical samples with microsatellite instability in immunotherapy in the future.Keywords: automatic reporting, indel, next-generation sequencing, NGS, transcriptome
Procedia PDF Downloads 193228 The Research on Diesel Bus Emissions in Ulaanbaatar City: Mongolia
Authors: Tsetsegmaa A., Bayarsuren B., Altantsetseg Ts.
Abstract:
To make the best decision on reducing harmful emissions from buses, we need to have a clear understanding of the current state of their actual emissions. The emissions from city buses running on high sulfur fuel, particularly particulate matter (PM) and nitrogen oxides (NOx) from the exhaust gases of conventional diesel engines, have been studied and measured with and without diesel particulate filter (DPF) in Ulaanbaatar city. The study was conducted by using the PEMS (Portable Emissions Measurement System) and gravimetric method in real traffic conditions. The obtained data were used to determine the actual emission rates and to evaluate the effectiveness of the selected particulate filters. Actual road and daily PM emissions from city buses were determined during the warm and cold seasons. A bus with an average daily mileage of 242 km was found to emit 166.155 g of PM into the city's atmosphere on average per day, with 141.3 g in summer and 175.8 g in winter. The actual PM of the city bus is 0.6866 g/km. The concentration of NOx in the exhaust gas averages 1410.94 ppm. The use of DPF reduced the exhaust gas opacity of 24 buses by an average of 97% and filtered a total of 340.4 kg of soot from these buses over a period of six months. Retrofitting an old conventional diesel engine with cassette-type silicon carbide (SiC) DPF, despite the laboriousness of cleaning, can significantly reduce particulate matter emissions. Innovation: First comprehensive road PM and NOx emission dataset and actual road emissions from public buses have been identified. PM and NOx mathematical model equations have been estimated as a function of the bus technical speed and engine revolution with and without DPF.Keywords: conventional diesel, silicon carbide, real-time onboard measurements, particulate matter, diesel retrofit, fuel sulphur
Procedia PDF Downloads 166227 The Evaluation of Antioxidant Activity of Aloe Vera (Aloe barbadensis miller)
Authors: R. A. Akande, M. L. Mnisi
Abstract:
Introduction: Aloe vera (Aloe barbadensis miller) flowers are carried in a large candelabra-like flower-head. Aloe barbadensis miller has been known as a traditional herbal medicine for the treatment of many diseases and sicknesses mainly for skin conditions such as sunburns, cold sores and frostbite. It is also used as a fresh food preservative. The main objective of this study is to determine the antioxidant activity of Aloe barbadensis miller. Methodology: The plant material (3g) was separately extracted with 30 mL of solvent with varying polarities (methanol and ethyl acetate)(technical grade, Merck) in 50ml polyester centrifuge tubes. The tubes was be shaken for 30 minutes on a linear shaker and left over night. The supernatant was filtered using a Whitman No. 1 filter paper before being transferred into pre-weighed glass containers. The solvent was allowed to evaporate under a fan in a room to quantify extraction efficacy. The, tin layer chromatography(TLC) plates were prepared and Pasteur pipette was used for spotting each extractant (methanol and ethyl acetate) on the TLC plates and the plate was developed in saturated TLC tank .and dipped in vanillin sulphuric acid mixture and heated at 110 to detect separate compound .and dipped in DDPH in methanol to detect antioxidant. Expected contribution to knowledge: It was observed that different compounds which interact differently with different solvent such as methanol, ethyl acetate having difference polarities were observed. The yellow spots also observed from the plate dipped in DDPH indicate that Aloe barbadensis miller has antioxidant.Keywords: antioxidant activity, Aloe barbadensis miller, tin layer chromatography, DDPH
Procedia PDF Downloads 448226 Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions
Authors: Jean-Philippe Gagnon, Benjamin Saute, Stéphane Boubanga-Tombet
Abstract:
Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution.Keywords: infrared, multispectral, fire, broadband, gas temperature, IR camera
Procedia PDF Downloads 144225 Suspended Sediment Sources Fingerprinting in Ashebeka River Catchment, Assela, Central Ethiopia
Authors: Getachew Mekaa, Bezatu Mengisteb, Tena Alamirewc
Abstract:
Ashebeka River is the main source of drinking water supply for Assela City and its surrounding inhabitants. Apart from seasonal water reliability disruption, the cost of treating water downstream of the river has been increasing over time due to increased pollutants and suspended sediments. Therefore, this research aimed to identify geo-location and prioritize suspended sediment sources in the Ashebeka River catchment using sediment fingerprinting. We collected 58 composite soil samples and a river water sample for suspended sediment samples from the outlet, which were then filtered using Whatman filter paper. The samples were quantified for geochemical tracers with multi-element capability, and inductively coupled plasma-optical emission spectrometry (ICP-OES). Tracers with significant p-value and that passed the Kruskal-Wallis (KW) test were analyzed for stepwise discriminant function analysis (DFA). The DFA results revealed tracers with good discrimination were subsequently used for the mixed model analysis. The relative significant sediment source contributions from sub-catchments (km2): 3, 4, 1, and 2 were estimated as 49.31% (8), 26.71% (5), 23.65% (5.6), and 0.33% (28.4) respectively. The findings of this study will help the water utilities to prioritize areas of intervention, and the approach used could be followed for catchment prioritization in water safety plan development. Moreover, the findings of this research shed light on the integration of sediment fingerprinting into water safety plans to ensure the reliability of drinking water supplies.Keywords: disruption of drinking water reliability, ashebeka river catchment, sediment fingerprinting, sediment source contribution, mixed model
Procedia PDF Downloads 26224 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants
Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin
Abstract:
The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment
Procedia PDF Downloads 387223 A Robust Spatial Feature Extraction Method for Facial Expression Recognition
Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda
Abstract:
This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure
Procedia PDF Downloads 426222 Solar-Powered Water Purification Using Ozone and Sand Filtration
Authors: Kayla Youhanaie, Kenneth Dott, Greg Gillis-Smith
Abstract:
Access to clean water is a global challenge that affects nearly one-third of the world’s population. A lack of safe drinking water negatively affects a person’s health, safety, and economic status. However, many regions of the world that face this clean water challenge also have high solar energy potential. To address this worldwide issue and utilize available resources, a solar-powered water purification device was developed that could be implemented in communities around the world that lack access to potable water. The device uses ozone to destroy water-borne pathogens and sand filtration to filter out particulates from the water. To select the best method for this application, a quantitative energy efficiency comparison of three water purification methods was conducted: heat, UV light, and ozone. After constructing an initial prototype, the efficacy of the device was tested using agar petri dishes to test for bacteria growth in treated water samples at various time intervals after applying the device to contaminated water. The results demonstrated that the water purification device successfully removed all bacteria and particulates from the water within three minutes, making it safe for human consumption. These results, as well as the proposed design that utilizes widely available resources in target communities, suggest that the device is a sustainable solution to address the global water crisis and could improve the quality of life for millions of people worldwide.Keywords: clean water, solar powered water purification, ozonation, sand filtration, global water crisis
Procedia PDF Downloads 78221 The Use of Information and Communication Technologies in Electoral Procedures: Comments on Electronic Voting Security
Authors: Magdalena Musiał-Karg
Abstract:
The expansion of telecommunication and progress of electronic media constitute important elements of our times. The recent worldwide convergence of information and communication technologies (ICT) and dynamic development of the mass media is leading to noticeable changes in the functioning of contemporary states and societies. Currently, modern technologies play more and more important roles and filter down to almost every field of contemporary human life. It results in the growth of online interactions that can be observed by the inconceivable increase in the number of people with home PCs and Internet access. The proof of it is undoubtedly the emergence and use of concepts such as e-society, e-banking, e-services, e-government, e-government, e-participation and e-democracy. The newly coined word e-democracy evidences that modern technologies have also been widely used in politics. Without any doubt in most countries all actors of political market (politicians, political parties, servants in political/public sector, media) use modern forms of communication with the society. Most of these modern technologies progress the processes of getting and sending information to the citizens, communication with the electorate, and also – which seems to be the biggest advantage – electoral procedures. Thanks to implementation of ICT the interaction between politicians and electorate are improved. The main goal of this text is to analyze electronic voting (e-voting) as one of the important forms of electronic democracy in terms of security aspects. The author of this paper aimed at answering the questions of security of electronic voting as an additional form of participation in elections and referenda.Keywords: electronic democracy, electronic voting, security of e-voting, information and communication technology (ICT)
Procedia PDF Downloads 242220 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms
Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan
Abstract:
Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving k-means clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.Keywords: acute leukaemia images, clustering algorithms, image segmentation, moving k-means
Procedia PDF Downloads 292219 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement
Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini
Abstract:
Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis
Procedia PDF Downloads 138218 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel. M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)
Procedia PDF Downloads 412217 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.Keywords: airborne laser scanning, digital terrain models, filtering, forested areas
Procedia PDF Downloads 139216 The BNCT Project Using the Cf-252 Source: Monte Carlo Simulations
Authors: Marta Błażkiewicz-Mazurek, Adam Konefał
Abstract:
The project can be divided into three main parts: i. modeling the Cf-252 neutron source and conducting an experiment to verify the correctness of the obtained results, ii. design of the BNCT system infrastructure, iii. analysis of the results from the logical detector. Modeling of the Cf-252 source included designing the shape and size of the source as well as the energy and spatial distribution of emitted neutrons. Two options were considered: a point source and a cylindrical spatial source. The energy distribution corresponded to various spectra taken from specialized literature. Directionally isotropic neutron emission was simulated. The simulation results were compared with experimental values determined using the activation detector method using indium foils and cadmium shields. The relative fluence rate of thermal and resonance neutrons was compared in the chosen places in the vicinity of the source. The second part of the project related to the modeling of the BNCT infrastructure consisted of developing a simulation program taking into account all the essential components of this system. Materials with moderating, absorbing, and backscattering properties of neutrons were adopted into the project. Additionally, a gamma radiation filter was introduced into the beam output system. The analysis of the simulation results obtained using a logical detector located at the beam exit from the BNCT infrastructure included neutron energy and their spatial distribution. Optimization of the system involved changing the size and materials of the system to obtain a suitable collimated beam of thermal neutrons.Keywords: BNCT, Monte Carlo, neutrons, simulation, modeling
Procedia PDF Downloads 34215 Establishment of a Nomogram Prediction Model for Postpartum Hemorrhage during Vaginal Delivery
Authors: Yinglisong, Jingge Chen, Jingxuan Chen, Yan Wang, Hui Huang, Jing Zhnag, Qianqian Zhang, Zhenzhen Zhang, Ji Zhang
Abstract:
Purpose: The study aims to establish a nomogram prediction model for postpartum hemorrhage (PPH) in vaginal delivery. Patients and Methods: Clinical data were retrospectively collected from vaginal delivery patients admitted to a hospital in Zhengzhou, China, from June 1, 2022 - October 31, 2022. Univariate and multivariate logistic regression were used to filter out independent risk factors. A nomogram model was established for PPH in vaginal delivery based on the risk factors coefficient. Bootstrapping was used for internal validation. To assess discrimination and calibration, receiver operator characteristics (ROC) and calibration curves were generated in the derivation and validation groups. Results: A total of 1340 cases of vaginal delivery were enrolled, with 81 (6.04%) having PPH. Logistic regression indicated that history of uterine surgery, induction of labor, duration of first labor, neonatal weight, WBC value (during the first stage of labor), and cervical lacerations were all independent risk factors of hemorrhage (P <0.05). The area-under-curve (AUC) of ROC curves of the derivation group and the validation group were 0.817 and 0.821, respectively, indicating good discrimination. Two calibration curves showed that nomogram prediction and practical results were highly consistent (P = 0.105, P = 0.113). Conclusion: The developed individualized risk prediction nomogram model can assist midwives in recognizing and diagnosing high-risk groups of PPH and initiating early warning to reduce PPH incidence.Keywords: vaginal delivery, postpartum hemorrhage, risk factor, nomogram
Procedia PDF Downloads 79214 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis
Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya
Abstract:
In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis
Procedia PDF Downloads 326213 Quantification of Hydrogen Sulfide and Methyl Mercaptan in Air Samples from a Waste Management Facilities
Authors: R. F. Vieira, S. A. Figueiredo, O. M. Freitas, V. F. Domingues, C. Delerue-Matos
Abstract:
The presence of sulphur compounds like hydrogen sulphide and mercaptans is one of the reasons for waste-water treatment and waste management being associated with odour emissions. In this context having a quantifying method for these compounds helps in the optimization of treatment with the goal of their elimination, namely biofiltration processes. The aim of this study was the development of a method for quantification of odorous gases in waste treatment plants air samples. A method based on head space solid phase microextraction (HS-SPME) coupled with gas chromatography - flame photometric detector (GC-FPD) was used to analyse H2S and Metil Mercaptan (MM). The extraction was carried out with a 75-μm Carboxen-polydimethylsiloxane fiber coating at 22 ºC for 20 min, and analysed by a GC 2010 Plus A from Shimadzu with a sulphur filter detector: splitless mode (0.3 min), the column temperature program was from 60 ºC, increased by 15 ºC/min to 100 ºC (2 min). The injector temperature was held at 250 ºC, and the detector at 260 ºC. For calibration curve a gas diluter equipment (digital Hovagas G2 - Multi Component Gas Mixer) was used to do the standards. This unit had two input connections, one for a stream of the dilute gas and another for a stream of nitrogen and an output connected to a glass bulb. A 40 ppm H2S and a 50 ppm MM cylinders were used. The equipment was programmed to the selected concentration, and it automatically carried out the dilution to the glass bulb. The mixture was left flowing through the glass bulb for 5 min and then the extremities were closed. This method allowed the calibration between 1-20 ppm for H2S and 0.02-0.1 ppm and 1-3.5 ppm for MM. Several quantifications of air samples from inlet and outlet of a biofilter operating in a waste management facility in the north of Portugal allowed the evaluation the biofilters performance.Keywords: biofiltration, hydrogen sulphide, mercaptans, quantification
Procedia PDF Downloads 477212 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering
Abstract:
Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.Keywords: carbon composite, fault detection, fault identification, particle filter
Procedia PDF Downloads 196