Search results for: automobile manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2126

Search results for: automobile manufacturing

1526 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 81
1525 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting

Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan

Abstract:

Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.

Keywords: electron beam melting, additive manufacturing, Ti6Al4V, surface morphology

Procedia PDF Downloads 106
1524 Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review

Authors: Prashant Dhiman, Viranshu Kumar, Pradeep Joshi

Abstract:

Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages.

Keywords: cyrogenic treatment, EDM (Electrical Discharge Machining), CNC (Computer Numeric Control), Mechanical and Metallurgical Properties

Procedia PDF Downloads 423
1523 Models, Resources and Activities of Project Scheduling Problems

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, José J. Hernández-Flores, Edith Olaco Garcia

Abstract:

The Project Scheduling Problem (PSP) is a generic name given to a whole class of problems in which the best form, time, resources and costs for project scheduling are necessary. The PSP is an application area related to the project management. This paper aims at being a guide to understand PSP by presenting a survey of the general parameters of PSP: the Resources (those elements that realize the activities of a project), and the Activities (set of operations or own tasks of a person or organization); the mathematical models of the main variants of PSP and the algorithms used to solve the variants of the PSP. The project scheduling is an important task in project management. This paper contains mathematical models, resources, activities, and algorithms of project scheduling problems. The project scheduling problem has attracted researchers of the automotive industry, steel manufacturer, medical research, pharmaceutical research, telecommunication, industry, aviation industry, development of the software, manufacturing management, innovation and technology management, construction industry, government project management, financial services, machine scheduling, transportation management, and others. The project managers need to finish a project with the minimum cost and the maximum quality.

Keywords: PSP, Combinatorial Optimization Problems, Project Management; Manufacturing Management, Technology Management.

Procedia PDF Downloads 407
1522 Exploring the Application of Additive Manufacturing in the Production of Aerogels for the Purpose of Creating Environmentally Friendly Agricultural Formulations with Controlled Release Properties

Authors: Pram Abhayawardhana, Ali Reza Nazmi, Hossein Najaf Zadeh

Abstract:

This study examines the use of additive manufacturing (AM) to develop sustainable and intelligent agricultural formulations that can gradually release fertilisers. AM offers the ability to design customised formulations with precise geometries and controlled release properties while taking into account their mechanical, chemical, and environmental properties. The study specifically investigates the use of an aerogel matrix mixed with a potential fertiliser in agriculture. Highly porous 3D printed aerogel structures were designed to enable the slow release of fertilisers. The performance of the formulated mixture is evaluated against other commonly used materials for slow-release applications. The findings suggest that the 3D printed gel made has great potential for slow-release fertilisers, providing an environmentally friendly solution for agricultural practices. The combination of AM technology and sustainable materials can play a vital role in mitigating the negative environmental impact of traditional fertilisers, as well as improving the efficiency and sustainability of agricultural production.

Keywords: 3D printing, hydrogel, aerogel, fertiliser, agriculture

Procedia PDF Downloads 75
1521 Identification of Electric Energy Storage Acceptance Types: Empirical Findings from the German Manufacturing Industry

Authors: Dominik Halstrup, Marlene Schriever

Abstract:

The industry, as one of the main energy consumer, is of critical importance along the way of transforming the energy system to Renewable Energies. The distributed character of the Energy Transition demands for further flexibility being introduced to the grid. In order to shed further light on the acceptance of Electric Energy Storage (ESS) from an industrial point of view, this study therefore examines the German manufacturing industry. The analysis in this paper uses data composed of a survey amongst 101 manufacturing companies in Germany. Being part of a two-stage research design, both qualitative and quantitative data was collected. Based on a literature review an acceptance concept was developed in the paper and four user-types identified: (Dedicated) User, Impeded User, Forced User and (Dedicated) Non-User and incorporated in the questionnaire. Both descriptive and bivariate analysis is deployed to identify the level of acceptance in the different organizations. After a factor analysis has been conducted, variables were grouped to form independent acceptance factors. Out of the 22 organizations that do show a positive attitude towards ESS, 5 have already implemented ESS and show a positive attitude towards ESS. They can be therefore considered ‘Dedicated Users’. The remaining 17 organizations have a positive attitude but have not implemented ESS yet. The results suggest that profitability plays an important role as well as load-management systems that are already in place. Surprisingly, 2 organizations have implemented ESS even though they have a negative attitude towards it. This is an example for a ‘Forced User’ where reasons of overriding importance or supporters with overriding authority might have forced the company to implement ESS. By far the biggest subset of the sample shows (critical) distance and can therefore be considered ‘(Dedicated) Non-Users’. The results indicate that the majority of the respondents have not thought ESS in their own organization through yet. For the majority of the sample one can therefore not speak of critical distance but rather a distance due to insufficient information and the perceived unprofitability. This paper identifies the relative state of acceptance of ESS in the manufacturing industry as well as current reasons for hindrance and perspectives for future growth of ESS in an industrial setting from a policy level. The interest that is currently generated by the media could be channeled and taken into a more substantial and individual discussion about ESS in an industrial setting. If the current perception of profitability could be addressed and communicated accordingly, ESS and their use in for instance cooperative business models could become a topic for more organizations in Germany and other parts of the world. As price mechanisms tend to favor existing technologies, policy makers need to further access the use of ESS and acknowledge the positive effects when integrated in an energy system. The subfields of generation, transmission and distribution become increasingly intertwined. New technologies and business models, such as ESS or cooperative arrangements entering the market, increase the number of stakeholders. Organizations need to find their place within this array of stakeholders.

Keywords: acceptance, energy storage solutions, German energy transition, manufacturing industry

Procedia PDF Downloads 210
1520 Construction of Wind Tunnel for Aerodynamic

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, José Ubiragi de Lima Mendes

Abstract:

The study of the aerodynamics is related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. In that way, being tried the new demands with relationship to the aerodynamic study in the most several areas of the engineering, this work presents the stages of the project and construction of a wind tunnel for application in aerodynamic rehearsals. Among the several configurations of existent wind tunnels, opted to build open circuit, due to smaller construction complexity and installation; operational simplicity and cost reduced. Belonging to the type blower, to take advantage of a larger efficiency of the motor; and with diffusion so that flowed him of air it wins speed before reaching the section of rehearsals. The guidelines for project were: didactic practices: study of the layer it limits and analyze of the drainages on proof bodies with different geometries. For the pressure variation in the test section a connected manometer used a pitot tube. Quantitative and qualitative results showed to be satisfactory.

Keywords: wind tunnel, aerodynamics, air, airplane

Procedia PDF Downloads 477
1519 The Relationship of Lean Management Principles with Lean Maturity Levels: Multiple Case Study in Manufacturing Companies

Authors: Alexandre D. Ferraz, Dario H. Alliprandini, Mauro Sampaio

Abstract:

Companies and other institutions are constantly seeking better organizational performance and greater competitiveness. In order to fulfill this purpose, there are many tools, methodologies and models for increasing performance. However, the Lean Management approach seems to be the most effective in terms of achieving a significant improvement in productivity relatively quickly. Although Lean tools are relatively easy to understand and implement in different contexts, many organizations are not able to transform themselves into 'Lean companies'. Most of the efforts in its implementation have shown single benefits, failing to achieve the desired impact on the performance of the overall enterprise system. There is also a growing perception of the importance of management in Lean transformation, but few studies have empirically investigated and described the 'Lean Management'. In order to understand more clearly the ideas that guide Lean Management and its influence on the maturity level of the production system, the objective of this research is analyze the relationship between the Lean Management principles and the Lean maturity level in the organizations. The research also analyzes the principles of Lean Management and its relationship with the 'Lean culture' and the results obtained. The research was developed using the case study methodology. Three manufacturing units of a German multinational company from industrial automation segment, located in different countries were studied, in order to have a better comparison between the practices and the level of maturity in the implementation. The primary source of information was the application of a research questionnaire based on the theoretical review. The research showed that higher the level of Lean Management principles, higher are the Lean maturity level, the Lean culture level, and the level of Lean results obtained in the organization. The research also showed that factors such as time for application of Lean concepts and company size were not determinant for the level of Lean Management principles and, consequently, for the level of Lean maturity in the organization. The characteristics of the production system showed much more influence in different evaluated aspects. The present research also left recommendations for the managers of the plants analyzed and suggestions for future research.

Keywords: lean management, lean principles, lean maturity level, lean manufacturing

Procedia PDF Downloads 133
1518 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP

Authors: Yannick Willemin

Abstract:

Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.

Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing

Procedia PDF Downloads 86
1517 Enhancing Dents through Lean Six Sigma

Authors: Prateek Guleria, Shubham Sharma, Rakesh Kumar Shukla, Harshit Sharma

Abstract:

Performance measurement of small and medium-sized businesses is the primary need for all companies to survive and thrive in a dynamic global company. A structured and systematic, integrated organization increases employee reliability, sustainability, and loyalty. This paper is a case study of a gear manufacturing industry that was facing the problem of rejection due to dents and damages in gear. The DMAIC cycle, along with different tools used in the research work includes SIPOC (Supply, Input, Process, Output, Control) Pareto analysis, Root & Cause analysis, and FMEA (Failure Mode and Effect Analysis). The six-sigma level was improved from 4.06 to 3.46, and the rejection rate was reduced from 7.44% to 1.56%. These findings highlighted the influence of a Lean Six Sigma module in the gear manufacturing unit, which has already increased operational quality and continuity to increase market success and meet customer expectations. According to the findings, applying lean six sigma tools will result in increased productivity. The results could assist businesses in deciding the quality tools that were likely to improve efficiency, competitiveness, and expense.

Keywords: six sigma, DMAIC, SIPOC, failure mode, effect analysis

Procedia PDF Downloads 103
1516 Method for Selecting and Prioritising Smart Services in Manufacturing Companies

Authors: Till Gramberg, Max Kellner, Erwin Gross

Abstract:

This paper presents a comprehensive investigation into the topic of smart services and IIoT-Platforms, focusing on their selection and prioritization in manufacturing organizations. First, a literature review is conducted to provide a basic understanding of the current state of research in the area of smart services. Based on discussed and established definitions, a definition approach for this paper is developed. In addition, value propositions for smart services are identified based on the literature and expert interviews. Furthermore, the general requirements for the provision of smart services are presented. Subsequently, existing approaches for the selection and development of smart services are identified and described. In order to determine the requirements for the selection of smart services, expert opinions from successful companies that have already implemented smart services are collected through semi-structured interviews. Based on the results, criteria for the evaluation of existing methods are derived. The existing methods are then evaluated according to the identified criteria. Furthermore, a novel method for the selection of smart services in manufacturing companies is developed, taking into account the identified criteria and the existing approaches. The developed concept for the method is verified in expert interviews. The method includes a collection of relevant smart services identified in the literature. The actual relevance of the use cases in the industrial environment was validated in an online survey. The required data and sensors are assigned to the smart service use cases. The value proposition of the use cases is evaluated in an expert workshop using different indicators. Based on this, a comparison is made between the identified value proposition and the required data, leading to a prioritization process. The prioritization process follows an established procedure for evaluating technical decision-making processes. In addition to the technical requirements, the prioritization process includes other evaluation criteria such as the economic benefit, the conformity of the new service offering with the company strategy, or the customer retention enabled by the smart service. Finally, the method is applied and validated in an industrial environment. The results of these experiments are critically reflected upon and an outlook on future developments in the area of smart services is given. This research contributes to a deeper understanding of the selection and prioritization process as well as the technical considerations associated with smart service implementation in manufacturing organizations. The proposed method serves as a valuable guide for decision makers, helping them to effectively select the most appropriate smart services for their specific organizational needs.

Keywords: smart services, IIoT, industrie 4.0, IIoT-platform, big data

Procedia PDF Downloads 70
1515 Investigation of Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Aluminium Alloys

Authors: Gurpreet Singh, Hazoor Singh, Kulbir Singh Sandhu

Abstract:

Friction Stir Welding Process emerged as promising solid-state welding and eliminates various welding defects like cracks and porosity in joining of dissimilar aluminum alloys. In the present research, Friction Stir Welding (FSW) is carried out on dissimilar aluminum alloys 2000 series and 6000 series this combination of alloys are highly used in automobile and aerospace industry due to their good strength to weight ratio, mechanical, and corrosion properties. The joints characterized by applying various destructive and non-destructive tests. Three critical welding parameters were considered i.e. Tool Rotation speed, Transverse speed, and Tool Geometry. The effective range of tool rotation speed from 1200-1800 rpm and transverse speed from 60-240 mm/min and tool geometry was studied. The two-different difficult to weld alloys were successfully welded. All the samples showed different microstructure with different set of welding parameters. It has been revealed with microstructure scans that grain refinement plays a crucial role in mechanical properties.

Keywords: aluminum alloys, friction stir welding, mechanical properties, microstructure

Procedia PDF Downloads 265
1514 Application of Rapid Prototyping to Create Additive Prototype Using Computer System

Authors: Meftah O. Bashir, Fatma A. Karkory

Abstract:

Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.

Keywords: rapid prototyping, wax, manufacturing processes, shape

Procedia PDF Downloads 451
1513 Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives

Authors: Oiane Ruiz de Azua, Salvador Borros, Nuria Agullo, Jordi Arbusa

Abstract:

Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces.

Keywords: epoxy adhesive, manufacturing process of pieces, sulfanilamide, tackifiers

Procedia PDF Downloads 168
1512 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior

Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj

Abstract:

New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.

Keywords: CS pedagogy, student research, cluster computing, machine learning

Procedia PDF Downloads 86
1511 Pharmaceutical Scale up for Solid Dosage Forms

Authors: A. Shashank Tiwari, S. P. Mahapatra

Abstract:

Scale-up is defined as the process of increasing batch size. Scale-up of a process viewed as a procedure for applying the same process to different output volumes. There is a subtle difference between these two definitions: batch size enlargement does not always translate into a size increase of the processing volume. In mixing applications, scale-up is indeed concerned with increasing the linear dimensions from the laboratory to the plant size. On the other hand, processes exist (e.g., tableting) where the term ‘scale-up’ simply means enlarging the output by increasing the speed. To complete the picture, one should point out special procedures where an increase of the scale is counterproductive and ‘scale-down’ is required to improve the quality of the product. In moving from Research and Development (R&D) to production scale, it is sometimes essential to have an intermediate batch scale. This is achieved at the so-called pilot scale, which is defined as the manufacturing of drug product by a procedure fully representative of and simulating that used for full manufacturing scale. This scale also makes it possible to produce enough products for clinical testing and to manufacture samples for marketing. However, inserting an intermediate step between R&D and production scales does not, in itself, guarantee a smooth transition. A well-defined process may generate a perfect product both in the laboratory and the pilot plant and then fail quality assurance tests in production.

Keywords: scale up, research, size, batch

Procedia PDF Downloads 399
1510 Corporate Social Responsibility (CSR) and Energy Efficiency: Empirical Evidence from the Manufacturing Sector of India

Authors: Baikunthanath Sahoo, Santosh Kumar Sahu, Krishna Malakar

Abstract:

With the essence of global environmental sustainability and green business management, the wind of business research moved towards Corporate Social Responsibility. In addition to international and national treaties, businesses have also started realising environmental protection and energy efficiency through CSR as part of business strategy in response to climate change. Considering the ambitious emission reduction target and rapid economic development of India, this study is an attempt to explore the effect of CSR on the energy efficiency management of manufacturing firms in India. By using firm-level data, the panel fixed effect model shows that the CSR dummy variable is negatively influencing the energy intensity or technically, they are energy efficient. The result demonstrates that in the presence of CSR, all the production economic variables are significant. The result also shows that doing environmental expenditure does not improve energy efficiency might be because very few firms are motivated to do such expenditure and also not common to all sectors. The interactive effect model result conforms that without considering CSR dummy as an intervening variable only Manufacturers of Chemical and Chemical products, Manufacturers of Pharmaceutical, medical chemical, and botanical products firms energy intensity low but after considering CSR in their business practices all six sub-sector firms become energy efficient. The empirical result also validate that firms are continuously engaged in CSR activities they are highly energy efficient. It is an important motivational factor for firms to become economically and environmentally sustainable in the corporate world. This analysis would help business practitioners to know how to manage today’s profitability and tomorrow’s sustainability to achieve a comparative advantage in the emerging market economy. The paper concludes that reducing energy consumption as part of their social responsibility to care for the environment, will need collaborative efforts of business society and policy bodies.

Keywords: CSR, Energy Efficiency, Indian manufacturing Sector, Business strategy

Procedia PDF Downloads 73
1509 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage

Procedia PDF Downloads 198
1508 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine

Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade

Abstract:

The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.

Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft

Procedia PDF Downloads 461
1507 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry

Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş

Abstract:

Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).

Keywords: composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.

Procedia PDF Downloads 261
1506 Industrial Production of the Saudi Future Dwelling: A Saudi Volumetric Solution for Single Family Homes, Leveraging Industry 4.0 with Scalable Automation, Hybrid Structural Insulated Panels Technology and Local Materials

Authors: Bandar Alkahlan

Abstract:

The King Abdulaziz City for Science and Technology (KACST) created the Saudi Future Dwelling (SFD) initiative to identify, localize and commercialize a scalable home manufacturing technology suited to deployment across the Kingdom of Saudi Arabia (KSA). This paper outlines the journey, the creation of the international project delivery team, the product design, the selection of the process technologies, and the outcomes. A target was set to remove 85% of the construction and finishing processes from the building site as these activities could be more efficiently completed in a factory environment. Therefore, integral to the SFD initiative is the successful industrialization of the home building process using appropriate technologies, automation, robotics, and manufacturing logistics. The technologies proposed for the SFD housing system are designed to be energy efficient, economical, fit for purpose from a Saudi cultural perspective, and will minimize the use of concrete, relying mainly on locally available Saudi natural materials derived from the local resource industries. To this end, the building structure is comprised of a hybrid system of structural insulated panels (SIP), combined with a light gauge steel framework manufactured in a large format panel system. The paper traces the investigative process and steps completed by the project team during the selection process. As part of the SFD Project, a pathway was mapped out to include a proof-of-concept prototype housing module and the set-up and commissioning of a lab-factory complete with all production machinery and equipment necessary to simulate a full-scale production environment. The prototype housing module was used to validate and inform current and future product design as well as manufacturing process decisions. A description of the prototype design and manufacture is outlined along with valuable learning derived from the build and how these results were used to enhance the SFD project. The industrial engineering concepts and lab-factory detailed design and layout are described in the paper, along with the shop floor I.T. management strategy. Special attention was paid to showcase all technologies within the lab-factory as part of the engagement strategy with private investors to leverage the SFD project with large scale factories throughout the Kingdom. A detailed analysis is included in the process surrounding the design, specification, and procurement of the manufacturing machinery, equipment, and logistical manipulators required to produce the SFD housing modules. The manufacturing machinery was comprised of a combination of standardized and bespoke equipment from a wide range of international suppliers. The paper describes the selection process, pre-ordering trials and studies, and, in some cases, the requirement for additional research and development by the equipment suppliers in order to achieve the SFD objectives. A set of conclusions is drawn describing the results achieved thus far, along with a list of recommended ongoing operational tests, enhancements, research, and development aimed at achieving full-scale engagement with private sector investment and roll-out of the SFD project across the Kingdom.

Keywords: automation, dwelling, manufacturing, product design

Procedia PDF Downloads 111
1505 Exploration and Exploitation within Operations

Authors: D. Gåsvaer, L. Stålberg, A. Fundin, M. Jackson, P. Johansson

Abstract:

Exploration and exploitation capabilities are both important within Operations as means for improvement when managed separately, and for establishing dynamic improvement capabilities when combined in balance. However, it is unclear what exploration and exploitation capabilities imply in improvement and development work within an operations context. So in order to better understand how to develop exploration and exploitation capabilities within operations, the main characteristics of these constructs needs to be identified and further understood. Thus, the objective of this research is to increase the understanding about exploitation and exploration characteristics, to concretize what they translates to within the context of improvement and development work in an operations unit, and to identify practical challenges. A literature review and a case study are presented. In the literature review, different interpretations of exploration and exploitation are portrayed, key characteristics have been identified, and a deepened understanding of exploration and exploitation characteristics is described. The case in the study is an operations unit, and the aim is to explore to what extent and in what ways exploration and exploitation activities are part of the improvement structures and processes. The contribution includes an identification of key characteristics of exploitation and exploration, as well as an interpretation of the constructs. Further, some practical challenges are identified. For instance, exploration activities tend to be given low priority, both in daily work as in the manufacturing strategy. Also, the overall understanding about the concepts of exploitation and exploration (or any similar aspect of dynamic improvement capabilities) is very low.

Keywords: exploitation, exploration, improvement, lean production, manufacturing

Procedia PDF Downloads 473
1504 Comparison Analysis on the Safety Culture between the Executives and the Operators: Case Study in the Aircraft Manufacturer in Taiwan

Authors: Wen-Chen Hwang, Yu-Hsi Yuan

Abstract:

According to the estimation made by researchers of safety and hygiene, 80% to 90% of workplace accidents in enterprises could be attributed to human factors. Nevertheless, human factors are not the only cause for accidents; instead, happening of accidents is also closely associated with the safety culture of the organization. Therefore, the most effective way of reducing accident rate would be to improve the social and the organizational factors that influence organization’s safety performance. Overview the present study is to understand the current level of safety culture in manufacturing enterprises. A tool for evaluating safety culture matching the needs and characteristics of manufacturing enterprises was developed by reviewing literature of safety culture, and taking the special backgrounds of the case enterprises into consideration. Expert validity was also implied for developing the questionnaire. Moreover, safety culture assessment was conducted through the practical investigation of the case enterprises. Total 505 samples were involved, 53 were executives and 452 were operators. The result of this study in comparison of the safety culture level between the executives and the operators was reached the significant level in 8 dimensions: Safety Commitment, Safety System, Safety Training, Safety Involvement, Reward and Motivation, Communication and Reporting, Leadership and Supervision, Learning and Changing. In general, the overall safety culture were executive level higher than operators level (M: 74.98 > 69.08; t=2.87; p < 0.01).

Keywords: questionnaire survey, safety culture, t-test, media studies

Procedia PDF Downloads 302
1503 The Role of Supply Chain Agility in Improving Manufacturing Resilience

Authors: Maryam Ziaee

Abstract:

This research proposes a new approach and provides an opportunity for manufacturing companies to produce large amounts of products that meet their prospective customers’ tastes, needs, and expectations and simultaneously enable manufacturers to increase their profit. Mass customization is the production of products or services to meet each individual customer’s desires to the greatest possible extent in high quantities and at reasonable prices. This process takes place at different levels such as the customization of goods’ design, assembly, sale, and delivery status, and classifies in several categories. The main focus of this study is on one class of mass customization, called optional customization, in which companies try to provide their customers with as many options as possible to customize their products. These options could range from the design phase to the manufacturing phase, or even methods of delivery. Mass customization values customers’ tastes, but it is only one side of clients’ satisfaction; on the other side is companies’ fast responsiveness delivery. It brings the concept of agility, which is the ability of a company to respond rapidly to changes in volatile markets in terms of volume and variety. Indeed, mass customization is not effectively feasible without integrating the concept of agility. To gain the customers’ satisfaction, the companies need to be quick in responding to their customers’ demands, thus highlighting the significance of agility. This research offers a different method that successfully integrates mass customization and fast production in manufacturing industries. This research is built upon the hypothesis that the success key to being agile in mass customization is to forecast demand, cooperate with suppliers, and control inventory. Therefore, the significance of the supply chain (SC) is more pertinent when it comes to this stage. Since SC behavior is dynamic and its behavior changes constantly, companies have to apply one of the predicting techniques to identify the changes associated with SC behavior to be able to respond properly to any unwelcome events. System dynamics utilized in this research is a simulation approach to provide a mathematical model among different variables to understand, control, and forecast SC behavior. The final stage is delayed differentiation, the production strategy considered in this research. In this approach, the main platform of products is produced and stocked and when the company receives an order from a customer, a specific customized feature is assigned to this platform and the customized products will be created. The main research question is to what extent applying system dynamics for the prediction of SC behavior improves the agility of mass customization. This research is built upon a qualitative approach to bring about richer, deeper, and more revealing results. The data is collected through interviews and is analyzed through NVivo software. This proposed model offers numerous benefits such as reduction in the number of product inventories and their storage costs, improvement in the resilience of companies’ responses to their clients’ needs and tastes, the increase of profits, and the optimization of productivity with the minimum level of lost sales.

Keywords: agility, manufacturing, resilience, supply chain

Procedia PDF Downloads 81
1502 Growing Architecture, Technical Product Harvesting of Near Net Shape Building Components

Authors: Franziska Moser, Martin Trautz, Anna-Lena Beger, Manuel Löwer, Jörg Feldhusen, Jürgen Prell, Alexandra Wormit, Björn Usadel, Christoph Kämpfer, Thomas-Benjamin Seiler, Henner Hollert

Abstract:

The demand for bio-based materials and components in architecture has increased in recent years due to society’s heightened environmental awareness. Nowadays, most components are being developed via a substitution approach, which aims at replacing conventional components with natural alternatives who are then being processed, shaped and manufactured to fit the desired application. This contribution introduces a novel approach to the development of bio-based products that decreases resource consumption and increases recyclability. In this approach, natural organisms like plants or trees are not being used in a processed form, but grow into a near net shape before then being harvested and utilized as building components. By minimizing the conventional production steps, the amount of resources used in manufacturing decreases whereas the recyclability increases. This paper presents the approach of technical product harvesting, explains the theoretical basis as well as the matching process of product requirements and biological properties, and shows first results of the growth manipulation studies.

Keywords: design with nature, eco manufacturing, sustainable construction materials, technical product harvesting

Procedia PDF Downloads 490
1501 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling

Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani

Abstract:

The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.

Keywords: material point method, woven fabric composites, forming, material handling

Procedia PDF Downloads 173
1500 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L

Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng

Abstract:

Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.

Keywords: degradation process, additive manufacturing, stainless steel, surface features

Procedia PDF Downloads 57
1499 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements

Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang

Abstract:

Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.

Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation

Procedia PDF Downloads 132
1498 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 406
1497 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement

Authors: Rhadinia Tayag-Relanes, Felina C. Young

Abstract:

This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.

Keywords: production, continuous improvement, process, operations, PDCA

Procedia PDF Downloads 50