Search results for: Random Forest
2209 Evaluation of Reliability Indices Using Monte Carlo Simulation Accounting Time to Switch
Authors: Sajjad Asefi, Hossein Afrakhte
Abstract:
This paper presents the evaluation of reliability indices of an electrical distribution system using Monte Carlo simulation technique accounting Time To Switch (TTS) for each section. In this paper, the distribution system has been assumed by accounting random repair time omission. For simplicity, we have assumed the reliability analysis to be based on exponential law. Each segment has a specified rate of failure (λ) and repair time (r) which will give us the mean up time and mean down time of each section in distribution system. After calculating the modified mean up time (MUT) in years, mean down time (MDT) in hours and unavailability (U) in h/year, TTS have been added to the time which the system is not available, i.e. MDT. In this paper, we have assumed the TTS to be a random variable with Log-Normal distribution.Keywords: distribution system, Monte Carlo simulation, reliability, repair time, time to switch (TTS)
Procedia PDF Downloads 4282208 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 1582207 Analysis of Cross-Correlations in Emerging Markets Using Random Matrix Theory
Authors: Thomas Chinwe Urama, Patrick Oseloka Ezepue, Peters Chimezie Nnanwa
Abstract:
This paper investigates the universal financial dynamics in two dominant stock markets in Sub-Saharan Africa, through an in-depth analysis of the cross-correlation matrix of price returns in Nigerian Stock Market (NSM) and Johannesburg Stock Exchange (JSE), for the period 2009 to 2013. The strength of correlations between stocks is known to be higher in JSE than that of the NSM. Particularly important for modelling Nigerian derivatives in the future, the interactions of other stocks with the oil sector are weak, whereas the banking sector has strong positive interactions with the other sectors in the stock exchange. For the JSE, it is the oil sector and beverages that have greater sectorial correlations, instead of the banks which have the weaker correlation with other sectors in the stock exchange.Keywords: random matrix theory, cross-correlations, emerging markets, option pricing, eigenvalues eigenvectors, inverse participation ratios and implied volatility
Procedia PDF Downloads 3022206 Assessment of Land Use and Land Cover Change in Lake Ol Bolossat Catchment, Nyandarua County, Kenya
Authors: John Wangui, Charles Gachene, Stephen Mureithi, Boniface Kiteme
Abstract:
Land use changes caused by demographic, natural variability, economic, technological and policy factors affect the goods and services derived from an ecosystem. In the past few decades, Lake Ol Bolossat catchment in Nyandarua County Kenya has been facing challenges of land cover changes threatening its capacity to perform ecosystems functions and adversely affecting communities and ecosystems downstream. This study assessed land cover changes in the catchment for a period of twenty eight years (from 1986 to 2014). Analysis of three Landsat images i.e. L5 TM 1986, L5 TM 1995 and L8 OLI/TIRS 2014 was done using ERDAS 9.2 software. The results show that dense forest, cropland and area under water increased by 27%, 29% and 3% respectively. On the other hand, open forest, dense grassland, open grassland, bushland and shrubland decreased by 3%, 3%, 11%, 26% and 1% respectively during the period under assessment. The lake was noted to have increased due to siltation caused by soil erosion causing a reduction in Lake’s depth and consequently causing temporary flooding of the wetland. The study concludes that the catchment is under high demographic pressure which would lead to resource use conflicts and therefore formulation of mitigation measures is highly recommended.Keywords: land cover, land use change, land degradation, Nyandarua, Remote sensing
Procedia PDF Downloads 3702205 Racial Bias by Prosecutors: Evidence from Random Assignment
Authors: CarlyWill Sloan
Abstract:
Racial disparities in criminal justice outcomes are well-documented. However, there is little evidence on the extent to which racial bias by prosecutors is responsible for these disparities. This paper tests for racial bias in conviction by prosecutors. To identify effects, this paper leverages as good as random variation in prosecutor race using detailed administrative data on the case assignment process and case outcomes in New York County, New York. This paper shows that the assignment of an opposite-race prosecutor leads to a 5 percentage point (~ 8 percent) increase in the likelihood of conviction for property crimes. There is no evidence of effects for other types of crimes. Additional results indicate decreased dismissals by opposite-race prosecutors likely drive my property crime estimates.Keywords: criminal justice, discrimination, prosecutors, racial disparities
Procedia PDF Downloads 1912204 Narrative Point of View in Nature Documentary Films: A Study of The Cove (2009), Tale of a Forest (2012), and Before the Flood (2016)
Authors: Sakshi Yadav, Sushila Shekhawat
Abstract:
This study addresses different types of points of view as seen in nature documentary films with the help of three eco documentaries, and it would be significant in understanding the role of the narrative point of view as a tool for showing and telling in documentaries. Narrative analysis of a film forms an essential aspect of the discourse of scholarship in film studies. Narration is the chain of events occurring in time and space. The notion of narrative provides the idea of coherence and wholeness to the story. There are various components that the narration carries, one of which is the perspective or point of view. The narrator plays the role of a mediator between the film and the audience; thus, his perspective influences the way the audience interprets the film. Feature films have been analyzed through narrative points of view; however, this research intends to conduct it from the angle of a nature documentary film. The study will examine narrative viewpoints unique to nature documentary films using three ecological documentary films-The Cove (2009), Tale of a forest (2012), and Before the flood (2016). This research will apply the framework of narrative theory and will investigate the impact of the different types of narrative points of view, as each portrays the human-nature relationship from a different standpoint, and it will also study the effect that the narrative point of view has on the mode of these eco documentaries.Keywords: ecodocumentary, narrative, human-nature relationship, point of view
Procedia PDF Downloads 912203 Biologic Materials- Ecological Living Network
Authors: Ina Dajci
Abstract:
Biologic Materials presents groundbreaking transdisciplinary research aimed at fostering new collaborative models across the Built Environment, Forestry, and Agriculture sectors. This initiative seeks to establish innovative paradigms for local and global material flows by developing a biocompatible, regenerative material economy. The project focuses on creating materials derived from biowaste and silvicultural practices, ensuring the preservation of endangered indigenous and vernacular techniques through the integration of emerging biosciences. By utilizing biomaterials sourced from agricultural waste and forest byproducts, the initiative incorporates fabrication methods recognized by UNESCO as ‘intangible cultural heritage of humanity,’ which are currently at risk. The structural, mechanical, and environmental properties of these materials are enhanced through advanced CAD-CAM fabrication, along with energy-efficient biochemical and bacterial processes that promote healthy indigo coloration. Furthermore, the integration of AI technologies in species selection facilitates a novel partnership model, enabling designers to collaborate effectively with forest managers and silviculture practitioners. This collaborative approach not only optimizes the use of plant-based materials but also enhances biodiversity and climate resilience in regional ecosystems. Overall, this project embodies a holistic strategy for addressing environmental challenges while revitalizing traditional practices and fostering sustainable innovation.Keywords: material, architecture, culture, heritage, ecology, environment
Procedia PDF Downloads 162202 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode
Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan
Abstract:
Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk
Procedia PDF Downloads 4342201 Study of Changes in the Pulsation Period of Six Cepheid Variables
Authors: Mohamed Abdel Sabour, Mohamed Nouh, Ian Stevans, Essam Elkholy
Abstract:
We study the period change of six Cepheids using 19376 accurate flux observations of the Solar Mass Ejection Imager (SMEI) onboard the Coriolis spacecraft. All observations for the six Cepheids have been derived as templates for each star, independent of the specific sites utilized to establish and update the O-C values. Sometimes, sinusoidal patterns are superimposed on the star's O-C changes, which cannot be regarded as random fluctuations in the pulsation period. Random period changes were detected and computed using Eddington's and Plakidis's approaches. A comparison of the observed and predicted period change reveals a good agreement with some published models and a very substantial divergence with others. Between the reported period change and that estimated by the current technique, a linear fit with a correlation coefficient of 90.08 percent was obtained. The temporal rate of period change in Cepheid stars might be connected to how well these stars' mass losses are known today.Keywords: cepheids, period change, mass loss, O-C changes, period change, mass loss, O-C
Procedia PDF Downloads 452200 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang
Abstract:
The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking
Procedia PDF Downloads 932199 Influence of Settlements and Human Activities on Beetle Diversity and Assemblage Structure at Small Islands of the Kepulauan Seribu Marine National Park and Nearby Java
Authors: Shinta Holdsworth, Jan Axmacher, Darren J. Mann
Abstract:
Beetles represent the most diverse insect taxon, and they contribute significantly to a wide range of vital ecological functions. Examples include decomposition by bark beetles, nitrogen recycling and dung processing by dung beetles or pest control by predatory ground beetles. Nonetheless, research into the distribution patterns, species richness and functional diversity of beetles particularly from tropical regions remains extremely limited. In our research, we aim to investigate the distribution and diversity patterns of beetles and the roles they play in small tropical island ecosystems in the Kepulauan Seribu Marine National Park and on Java. Our research furthermore provides insights into the effects anthropogenic activities have on the assemblage composition and diversity of beetles on the small islands. We recorded a substantial number of highly abundant small island species, including a substantial number of unique small island species across the study area, highlighting these islands’ potential importance for the regional conservation of genetic resources. The highly varied patterns observed in relation to the use of different trapping types - pitfall traps and flight interception traps (FITs) - underscores the need for complementary trapping strategies that combine multiple methods for beetle community surveys in tropical islands. The significant impacts of human activities have on the small island beetle faunas were also highlighted in our research. More island beetle species encountered in settlement than forest areas shows clear trend of positive links between anthropogenic activities and the overall beetle species richness. However, undisturbed forests harboured a high number of unique species, also in comparison to disturbed forests. Finally, our study suggests that, with regards to different feeding guilds, the diversity of herbivorous beetles on islands is strongly affected by the different levels of forest cover encountered.Keywords: beetle diversity, forest disturbance, island biogeography, island settlement
Procedia PDF Downloads 2232198 Metabolic Cost and Perceived Exertion during Progressive and Randomized Walking Protocols
Authors: Simeon E. H. Davies
Abstract:
This study investigated whether selected metabolic responses and the perception of effort varied during four different walk protocols where speed increased progressively 3, 4, 5, 6, and 7 km/hr (progressive treadmill walk (PTW); and progressive land walk (PLW); or where the participant adjusted to random changes of speed e.g. 6, 3, 7, 4, and 5 km/hr during a randomized treadmill walk (RTW); and a randomized land walk (RLW). Mean stature and mass of the seven participants was 1.75m and 70kg respectively, with a mean body fat of 15%. Metabolic measures including heart rate, relative oxygen uptake, ventilation, increased in a linear fashion up to 6 km/hr, however at 7 km/hr there was a significant increase in metabolic response notably during the PLW, and to a similar, although lesser extent in RLW, probably as a consequence of the loss of kinetic energy when turning at each cone in order to maintain the speed during each shuttle. Respiration frequency appeared to be a more sensitive indicator of physical exertion, exhibiting a rapid elevation at 5 km/hr. The perception of effort during each mode and at each speed was largely congruent during each walk protocol.Keywords: exertion, metabolic, progressive, random, walking
Procedia PDF Downloads 4642197 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 302196 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 1132195 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 1222194 An Efficient Acquisition Algorithm for Long Pseudo-Random Sequence
Authors: Wan-Hsin Hsieh, Chieh-Fu Chang, Ming-Seng Kao
Abstract:
In this paper, a novel method termed the Phase Coherence Acquisition (PCA) is proposed for pseudo-random (PN) sequence acquisition. By employing complex phasors, the PCA requires only complex additions in the order of N, the length of the sequence, whereas the conventional method utilizing fast Fourier transform (FFT) requires complex multiplications and additions both in the order of Nlog2N . In order to combat noise, the input and local sequences are partitioned and mapped into complex phasors in PCA. The phase differences between pairs of input and local phasors are utilized for acquisition, and thus complex multiplications are avoided. For more noise-robustness capability, the multi-layer PCA is developed to extract the code phase step by step. The significant reduction of computational loads makes the PCA an attractive method, especially when the sequence length of is extremely large which becomes intractable for the FFT-based acquisition.Keywords: FFT, PCA, PN sequence, convolution theory
Procedia PDF Downloads 4782193 Challenges, Responses and Governance in the Conservation of Forest and Wildlife: The Case of the Aravali Ranges, Delhi NCR
Authors: Shashi Mehta, Krishan Kumar Yadav
Abstract:
This paper presents an overview of issues pertaining to the conservation of the natural environment and factors affecting the coexistence of the forest, wildlife and people. As forests and wildlife together create the basis for economic, cultural and recreational spaces for overall well-being and life-support systems, the adverse impacts of increasing consumerism are only too evident. The IUCN predicts extinction of 41% of all amphibians and 26% of mammals. The major causes behind this threatened extinction are Deforestation, Dysfunctional governance, Climate Change, Pollution and Cataclysmic phenomena. Thus the intrinsic relationship between natural resources and wildlife needs to be understood in totality, not only for the eco-system but for humanity at large. To demonstrate this, forest areas in the Aravalis- the oldest mountain ranges of Asia—falling in the States of Haryana and Rajasthan, have been taken up for study. The Aravalis are characterized by extreme climatic conditions and dry deciduous forest cover on intermittent scattered hills. Extending across the districts of Gurgaon, Faridabad, Mewat, Mahendergarh, Rewari and Bhiwani, these ranges - with village common land on which the entire economy of the rural settlements depends - fall in the state of Haryana. Aravali ranges with diverse fauna and flora near Alwar town of state of Rajasthan also form part of NCR. Once, rich in biodiversity, the Aravalis played an important role in the sustainable co-existence of forest and people. However, with the advent of industrialization and unregulated urbanization, these ranges are facing deforestation, degradation and denudation. The causes are twofold, i.e. the need of the poor and the greed of the rich. People living in and around the Aravalis are mainly poor and eke out a living by rearing live-stock. With shrinking commons, they depend entirely upon these hills for grazing, fuel, NTFP, medicinal plants and even drinking water. But at the same time, the pressure of indiscriminate urbanization and industrialization in these hills fulfils the demands of the rich and powerful in collusion with Government agencies. The functionaries of federal and State Governments play largely a negative role supporting commercial interests. Additionally, planting of a non- indigenous species like prosopis juliflora across the ranges has resulted in the extinction of almost all the indigenous species. The wildlife in the area is also threatened because of the lack of safe corridors and suitable habitat. In this scenario, the participatory role of different stakeholders such as NGOs, civil society and local community in the management of forests becomes crucial not only for conservation but also for the economic wellbeing of the local people. Exclusion of villagers from protection and conservation efforts - be it designing, implementing or monitoring and evaluating could prove counterproductive. A strategy needs to be evolved, wherein Government agencies be made responsible by putting relevant legislation in place along with nurturing and promoting the traditional wisdom and ethics of local communities in the protection and conservation of forests and wild life in the Aravali ranges of States of Haryana and Rajasthan of the National Capital Region, Delhi.Keywords: deforestation, ecosystem, governance, urbanization
Procedia PDF Downloads 3272192 Spatio-Temporal Analysis of Land Use Land Cover Change Using Remote Sensing and Multispectral Satellite Imagery of Islamabad Pakistan
Authors: Basit Aftab, Feng Zhongke
Abstract:
The land use/land cover change (LULCC) is a significant indicator sensitive to an area's environmental changes. As a rapidly developing capital city near the Himalayas Mountains, the city area of Islamabad, Pakistan, has expanded dramatically over the past 20 years. In order to precisely measure the impact of urbanization on the forest and agricultural lands, the Spatio-temporal analysis of LULCC was utilized, which helped us to know the impacts of urbanization, especially on ecosystem processes, biological cycles, and biodiversity. The Islamabad region's Multispectral Satellite Images (MSI) for 2000, 2010, and 2020 were employed as the remote sensing data source. Local documents of city planning, forest inventory and archives in the agriculture management departments were included to verify the image-derived result. The results showed that from 2000 to 2020, the built-up area increased to 48.3% (505.02 Km2). Meanwhile, the forest, agricultural, and barre land decreased to 28.9% (305.64 Km2), 10.04% (104.87 Km2), and 11.61% (121.30 Km2). The overall percentage change in land area between 2000 – 2020 was recorded maximum for the built-up (227.04%). Results revealed that the increase in the built-up area decreased forestland, barren, and agricultural lands (-0.36, -1.00 & -0.34). The association of built-up with respective years was positively linear (R2 = 0.96), whereas forestland, agricultural, and barren lands association with years were recorded as negatively linear (R2 = -0.29, R2 = -0.02, and R2 = -0.96). Large-scale deforestation leads to multiple negative impacts on the local environment, e.g., water degradation and climate change. It would finally affect the environment of the greater Himalayan region in some way. We further analyzed the driving forces of urbanization. It was determined by economic expansion, climate change, and population growth. We hope our study could be utilized to develop efforts to mitigate the consequences of deforestation and agricultural land damage, reducing greenhouse gas emissions while preserving the area's biodiversity.Keywords: urbanization, Himalaya mountains, landuse landcover change (LULCC), remote sensing., multi-spectral satellite imagery
Procedia PDF Downloads 482191 Spatial Rank-Based High-Dimensional Monitoring through Random Projection
Authors: Chen Zhang, Nan Chen
Abstract:
High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection
Procedia PDF Downloads 2992190 Developing Allometric Equations for More Accurate Aboveground Biomass and Carbon Estimation in Secondary Evergreen Forests, Thailand
Authors: Titinan Pothong, Prasit Wangpakapattanawong, Stephen Elliott
Abstract:
Shifting cultivation is an indigenous agricultural practice among upland people and has long been one of the major land-use systems in Southeast Asia. As a result, fallows and secondary forests have come to cover a large part of the region. However, they are increasingly being replaced by monocultures, such as corn cultivation. This is believed to be a main driver of deforestation and forest degradation, and one of the reasons behind the recurring winter smog crisis in Thailand and around Southeast Asia. Accurate biomass estimation of trees is important to quantify valuable carbon stocks and changes to these stocks in case of land use change. However, presently, Thailand lacks proper tools and optimal equations to quantify its carbon stocks, especially for secondary evergreen forests, including fallow areas after shifting cultivation and smaller trees with a diameter at breast height (DBH) of less than 5 cm. Developing new allometric equations to estimate biomass is urgently needed to accurately estimate and manage carbon storage in tropical secondary forests. This study established new equations using a destructive method at three study sites: approximately 50-year-old secondary forest, 4-year-old fallow, and 7-year-old fallow. Tree biomass was collected by harvesting 136 individual trees (including coppiced trees) from 23 species, with a DBH ranging from 1 to 31 cm. Oven-dried samples were sent for carbon analysis. Wood density was calculated from disk samples and samples collected with an increment borer from 79 species, including 35 species currently missing from the Global Wood Densities database. Several models were developed, showing that aboveground biomass (AGB) was strongly related to DBH, height (H), and wood density (WD). Including WD in the model was found to improve the accuracy of the AGB estimation. This study provides insights for reforestation management, and can be used to prepare baseline data for Thailand’s carbon stocks for the REDD+ and other carbon trading schemes. These may provide monetary incentives to stop illegal logging and deforestation for monoculture.Keywords: aboveground biomass, allometric equation, carbon stock, secondary forest
Procedia PDF Downloads 2852189 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks
Authors: Yen-Luan Chen
Abstract:
Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability
Procedia PDF Downloads 2782188 Nonlinear Vibration of FGM Plates Subjected to Acoustic Load in Thermal Environment Using Finite Element Modal Reduction Method
Authors: Hassan Parandvar, Mehrdad Farid
Abstract:
In this paper, a finite element modeling is presented for large amplitude vibration of functionally graded material (FGM) plates subjected to combined random pressure and thermal load. The material properties of the plates are assumed to vary continuously in the thickness direction by a simple power law distribution in terms of the volume fractions of the constituents. The material properties depend on the temperature whose distribution along the thickness can be expressed explicitly. The von Karman large deflection strain displacement and extended Hamilton's principle are used to obtain the governing system of equations of motion in structural node degrees of freedom (DOF) using finite element method. Three-node triangular Mindlin plate element with shear correction factor is used. The nonlinear equations of motion in structural degrees of freedom are reduced by using modal reduction method. The reduced equations of motion are solved numerically by 4th order Runge-Kutta scheme. In this study, the random pressure is generated using Monte Carlo method. The modeling is verified and the nonlinear dynamic response of FGM plates is studied for various values of volume fraction and sound pressure level under different thermal loads. Snap-through type behavior of FGM plates is studied too.Keywords: nonlinear vibration, finite element method, functionally graded material (FGM) plates, snap-through, random vibration, thermal effect
Procedia PDF Downloads 2632187 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.Keywords: correlation filter, long-term tracking, random fern, real-time tracking
Procedia PDF Downloads 1392186 The Effect of Spatial Variability on Axial Pile Design of Closed Ended Piles in Sand
Authors: Cormac Reale, Luke J. Prendergast, Kenneth Gavin
Abstract:
While significant improvements have been made in axial pile design methods over recent years, the influence of soils natural variability has not been adequately accounted for within them. Soil variability is a crucial parameter to consider as it can account for large variations in pile capacity across the same site. This paper seeks to address this knowledge deficit, by demonstrating how soil spatial variability can be accommodated into existing cone penetration test (CPT) based pile design methods, in the form of layered non-homogeneous random fields. These random fields model the scope of a given property’s variance and define how it varies spatially. A Monte Carlo analysis of the pile will be performed taking into account parameter uncertainty and spatial variability, described using the measured scales of fluctuation. The results will be discussed in light of Eurocode 7 and the effect of spatial averaging on design capacities will be analysed.Keywords: pile axial design, reliability, spatial variability, CPT
Procedia PDF Downloads 2462185 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites
Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov
Abstract:
A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.Keywords: analysis, modelling, thermal, voxel
Procedia PDF Downloads 2872184 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 882183 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 3682182 Reduced Power Consumption by Randomization for DSI3
Authors: David Levy
Abstract:
The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines 3 modulation levels from which 16 valid symbols are coded. This structure creates power consumption variations depending on the transmitted data of a factor of more than 2 between minimum and maximum. The power generation unit has to consider therefore the worst case maximum consumption all the time and be built accordingly. This paper proposes a method to reduce both the average current consumption and worst case current consumption. The transmitter randomizes the data using several pseudo-random sequences. It then estimates the energy consumption of the generated frames and selects to transmit the one which consumes the least. The transmitter also prepends the index of the pseudo-random sequence, which is not randomized, to allow the receiver to recover the original data using the correct sequence. We show that in the case that the frame occupies most of the DSI3 synchronization period, we achieve average power consumption reduction by up to 13% and the worst case power consumption is reduced by 17.7%.Keywords: DSI3, energy, power consumption, randomization
Procedia PDF Downloads 5382181 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images
Procedia PDF Downloads 2192180 Rating Agreement: Machine Learning for Environmental, Social, and Governance Disclosure
Authors: Nico Rosamilia
Abstract:
The study evaluates the importance of non-financial disclosure practices for regulators, investors, businesses, and markets. It aims to create a sector-specific set of indicators for environmental, social, and governance (ESG) performances alternative to the ratings of the agencies. The existing literature extensively studies the implementation of ESG rating systems. Conversely, this study has a twofold outcome. Firstly, it should generalize incentive systems and governance policies for ESG and sustainable principles. Therefore, it should contribute to the EU Sustainable Finance Disclosure Regulation. Secondly, it concerns the market and the investors by highlighting successful sustainable investing. Indeed, the study contemplates the effect of ESG adoption practices on corporate value. The research explores the asset pricing angle in order to shed light on the fragmented argument on the finance of ESG. Investors may be misguided about the positive or negative effects of ESG on performances. The paper proposes a different method to evaluate ESG performances. By comparing the results of a traditional econometric approach (Lasso) with a machine learning algorithm (Random Forest), the study establishes a set of indicators for ESG performance. Therefore, the research also empirically contributes to the theoretical strands of literature regarding model selection and variable importance in a finance framework. The algorithms will spit out sector-specific indicators. This set of indicators defines an alternative to the compounded scores of ESG rating agencies and avoids the possible offsetting effect of scores. With this approach, the paper defines a sector-specific set of indicators to standardize ESG disclosure. Additionally, it tries to shed light on the absence of a clear understanding of the direction of the ESG effect on corporate value (the problem of endogeneity).Keywords: ESG ratings, non-financial information, value of firms, sustainable finance
Procedia PDF Downloads 85