Search results for: online learning activities
8135 Improving Patient Outcomes for Aspiration Pneumonia
Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu
Abstract:
Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions
Procedia PDF Downloads 678134 Tritium Activities in Romania, Potential Support for Development of ITER Project
Authors: Gheorghe Ionita, Sebastian Brad, Ioan Stefanescu
Abstract:
In any fusion device, tritium plays a key role both as a fuel component and, due to its radioactivity and easy incorporation, as tritiated water (HTO). As for the ITER project, to reduce the constant potential of tritium emission, there will be implemented a Water Detritiation System (WDS) and an Isotopic Separation System (ISS). In the same time, during operation of fission CANDU reactors, the tritium content increases in the heavy water used as moderator and cooling agent (due to neutron activation) and it has to be reduced, too. In Romania, at the National Institute for Cryogenics and Isotopic Technologies (ICIT Rm-Valcea), there is an Experimental Pilot Plant for Tritium Removal (Exp. TRF), with the aim of providing technical data on the design and operation of an industrial plant for heavy water depreciation of CANDU reactors from Cernavoda NPP. The selected technology is based on the catalyzed isotopic exchange process between deuterium and liquid water (LPCE) combined with the cryogenic distillation process (CD). This paper presents an updated review of activities in the field carried out in Romania after the year 2000 and in particular those related to the development and operation of Tritium Removal Experimental Pilot Plant. It is also presented a comparison between the experimental pilot plant and industrial plant to be implemented at Cernavoda NPP. The similarities between the experimental pilot plant from ICIT Rm-Valcea and water depreciation and isotopic separation systems from ITER are also presented and discussed. Many aspects or 'opened issues' relating to WDS and ISS could be checked and clarified by a special research program, developed within ExpTRF. By these achievements and results, ICIT Rm - Valcea has proved its expertise and capability concerning tritium management therefore its competence may be used within ITER project.Keywords: ITER project, heavy water detritiation, tritium removal, isotopic exchange
Procedia PDF Downloads 4148133 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm
Abstract:
Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension
Procedia PDF Downloads 1038132 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: situation-awareness, smart home, IoT, machine learning, classifier
Procedia PDF Downloads 4248131 Parents’ Experiences in Using Mobile Tablets with Their Child with Autism to Encourage the Development of Social Communication Skills: The Development of a Parents’ Guide
Authors: Chrysoula Mangafa
Abstract:
Autism is a lifelong condition that affects how individuals interact with others and make sense of the world around them. The two core difficulties associated with autism are difficulties in social communication and interaction, and the manifestation of restricted, repetitive patterns of behaviour. However, children with autism may also have many talents and special interests among which is their affinity with digital technologies. Despite the increasing use of mobile tablets in schools and homes and the children’s motivation in using them, there is limited guidance on how to use the tablets to teach children with autism-specific skills. This study aims to fill this gap in knowledge by providing guidelines about the ways in which iPads and other tablets can be used by parents/carers and their child at home to support the development of social communication skills. Semi-structured interviews with 10 parents of primary school aged children with autism were conducted with the aim to explore their experiences in using mobile devices, such as iPads and Android tablets, and social activities with their children to create opportunities for social communication development. The interview involved questions about the parents’ knowledge and experience in autism, their understanding of social communication skills, the use of technology at home, and their links with the child’s school. Qualitative analysis of the interviews showed that parents used a variety of strategies to boost their child’s social communication skills. Among these strategies were a) the use of communication symbols, b) the use of the child’s special interest as motivator to gain their attention, and c) allowing time to their child to respond. It was also found that parents engaged their child in joint activities such as cooking, role play and creating social stories together on the device. Seven out of ten parents mentioned that the tablet is a motivating tool that can be used to teach social communication skills, nonetheless all parents raised concerns over screen time and their child’s sharing difficulties. The need for training and advice as well as building stronger links with their child’s school was highlighted. In particular, it was mentioned that recommendations would be welcomed about how parents can address their child’s difficulties in initiating or sustaining a conversation, taking turns and sharing, understanding other people’s feelings and facial expressions, and showing interest to other people. The findings of this study resulted in the development of a parents’ guide based on evidence-based practice and the participants’ experiences and concerns. The proposed guidelines aim to urge parents to feel more confident in using the tablet with their child in more collaborative ways. In particular, the guide offers recommendations about how to develop verbal and non-verbal communication, gives examples of tablet-based activities to interact and create things together, as well as it offers suggestions on how to provide a worry-free tablet experience and how to connect with the school.Keywords: families, perception and cognition in early development, school-age intervention, social development
Procedia PDF Downloads 1638130 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1138129 Optimal Driving Strategies for a Hybrid Street Type Motorcycle: Modelling and Control
Authors: Jhon Vargas, Gilberto Osorio-Gomez, Tatiana Manrique
Abstract:
This work presents an optimal driving strategy proposal for a 125 c.c. street-type hybrid electric motorcycle with a parallel configuration. The results presented in this article are complementary regarding the control proposal of a hybrid motorcycle. In order to carry out such developments, a representative dynamic model of the motorcycle is used, in which also are described different optimization functionalities for predetermined driving modes. The purpose is to implement an off-line optimal driving strategy which distributes energy to both engines by minimizing an objective torque requirement function. An optimal dynamic contribution is found from the optimization routine, and the optimal percentage contribution for vehicle cruise speed is implemented in the proposed online PID controller.Keywords: dynamic model, driving strategies, parallel hybrid motorcycle, PID controller, optimization
Procedia PDF Downloads 1968128 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis
Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin
Abstract:
In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry
Procedia PDF Downloads 5498127 Andragogical Approach in Learning Animation to Promote Social, Cultural and Ethical Awareness While Enhancing Aesthetic Values
Authors: Juhanita Jiman
Abstract:
This paper aims to demonstrate how androgogical approach can help educators to facilitate animation students with better understanding of their acquired technical knowledge and skills while introducing them to crucial content and ethical values. In this borderless world, it is important for the educators to know that they are dealing with young adults who are heavily influenced by their surroundings. Naturally, educators are not only handling academic issues, they are also burdened with social obligations. Appropriate androgogical approach can be beneficial for both educators and students to tackle these problems. We used to think that teaching pedagogy is important at all level of age. Unfortunately, pedagogical approach is not entirely applicable to university students because they are no longer children. Pedagogy is a teaching approach focusing on children, whereas andragogy is specifically focussing on teaching adults and helping them to learn better. As adults mature, they become increasingly independent and responsible for their own actions. In many ways, the pedagogical model is not really suitable for such developmental changes, and therefore, produces tension, dissatisfaction, and resistance in individual student. The ever-changing technology has resulted in animation students to be very competitive in acquiring their technical skills, making them forget and neglecting the importance of the core values of a story. As educators, we have to guide them not only to excel in achieving knowledge, skills and technical expertise but at the same time, show them what is right or wrong and encourage them to inculcate moral values in their work.Keywords: andragogy, animation, artistic contents, productive learning environment
Procedia PDF Downloads 2838126 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition
Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun
Abstract:
Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained
Procedia PDF Downloads 858125 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 1438124 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin
Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi
Abstract:
The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.Keywords: rainfall, neural networks, climatic indices, Mediterranean
Procedia PDF Downloads 3178123 Religious Capital and Entrepreneurial Behavior in Small Businesses: The Importance of Entrepreneurial Creativity
Authors: Waleed Omri
Abstract:
With the growth of the small business sector in emerging markets, developing a better understanding of what drives 'day-to-day' entrepreneurial activities has become an important issue for academicians and practitioners. Innovation, as an entrepreneurial behavior, revolves around individuals who creatively engage in new organizational efforts. In a similar vein, the innovation behaviors and processes at the organizational member level are central to any corporate entrepreneurship strategy. Despite the broadly acknowledged importance of entrepreneurship and innovation at the individual level in the establishment of successful ventures, the literature lacks evidence on how entrepreneurs can effectively harness their skills and knowledge in the workplace. The existing literature illustrates that religion can impact the day-to-day work behavior of entrepreneurs, managers, and employees. Religious beliefs and practices could affect daily entrepreneurial activities by fostering mental abilities and traits such as creativity, intelligence, and self-efficacy. In the present study, we define religious capital as a set of personal and intangible resources, skills, and competencies that emanate from an individual’s religious values, beliefs, practices, and experiences and may be used to increase the quality of economic activities. Religious beliefs and practices give individuals a religious satisfaction, which can lead them to perform better in the workplace. In addition, religious ethics and practices have been linked to various positive employee outcomes in terms of organizational change, job satisfaction, and entrepreneurial intensity. As investigations of their consequences beyond direct task performance are still scarce, we explore if religious capital plays a role in entrepreneurs’ innovative behavior. In sum, this study explores the determinants of individual entrepreneurial behavior by investigating the relationship between religious capital and entrepreneurs’ innovative behavior in the context of small businesses. To further explain and clarify the religious capital-innovative behavior link, the present study proposes a model to examine the mediating role of entrepreneurial creativity. We use both Islamic work ethics (IWE) and Islamic religious practices (IRP) to measure Islamic religious capital. We use structural equation modeling with a robust maximum likelihood estimation to analyze data gathered from 289 Tunisian small businesses and to explore the relationships among the above-described variables. In line with the theory of planned behavior, only religious work ethics are found to increase the innovative behavior of small businesses’ owner-managers. Our findings also clearly demonstrate that the connection between religious capital-related variables and innovative behavior is better understood if the influence of entrepreneurial creativity, as a mediating variable of the aforementioned relationship, is taken into account. By incorporating both religious capital and entrepreneurial creativity into the innovative behavior analysis, this study provides several important practical implications for promoting innovation process in small businesses.Keywords: entrepreneurial behavior, small business, religion, creativity
Procedia PDF Downloads 2488122 Improving the Quality of Higher Education for Students with Disability in Universities of Pakistan
Authors: Nasir Sulman
Abstract:
In Pakistan, the inclusion of persons with disabilities in higher education institutions has significantly been increased with every passing year and anyone can observe a sizeable number of these students in each faculty. The study executes to conduct a baseline survey for measuring faculty understanding about the special needs, experiences of students with disabilities and support provided by university administration in order to teach these students effectively. The researcher has used mixed methods and the University of Karachi was selected through non-probability-based sampling method. This university is one of the largest universities in Pakistan where more than 40,000 students have been enrolled. Data was gathered through a questionnaire and focused group discussion from three stakeholders including students with disabilities, faculty members and members of the university administration. The key findings show that students with disabilities experience a number of problems related to accommodating their special needs. However, the most encouraging factors identified are the attitude, support, and motivation they received from various faculty members and university administration. On the basis of the findings of the study the researcher has prepared a faculty guidebook and established a ‘Model Learning Assistance Centre for Students with Disabilities’ in the Department of Special Education, University of Karachi. Both these efforts will be helpful for improving the support services for students with disabilities to strengthen the existing laws, policies, and practices in institutions of higher education.Keywords: persons with disabilities, higher education, learning assistance center, faculty guidebook
Procedia PDF Downloads 1538121 Symbolic Play and Language: A Developmental Relationship
Authors: Sherri Franklin-Guy
Abstract:
Play activities have long been utilized to support the development of expressive language in young children. More specifically, stages of symbolic play, or pretend play, have served as indicators of levels of cognitive development, the foundation of language. This presentation will examine the relationship between symbolic play and language development in toddlers and preschoolers. Implications for clinicians and educators will be discussed.Keywords: cognition, language development, pretend play, symbolic play
Procedia PDF Downloads 2528120 Discrimination of Artificial Intelligence
Authors: Iman Abu-Rub
Abstract:
This research paper examines if Artificial Intelligence is, in fact, racist or not. Different studies from all around the world, and covering different communities were analyzed to further understand AI’s true implications over different communities. The black community, Asian community, and Muslim community were all analyzed and discussed in the paper to figure out if AI is biased or unbiased towards these specific communities. It was found that the biggest problem AI faces is the biased distribution of data collection. Most of the data inserted and coded into AI are of a white male, which significantly affects the other communities in terms of reliable cultural, political, or medical research. Nonetheless, there are various research was done that help increase awareness of this issue, but also solve it completely if done correctly. Governments and big corporations are able to implement different strategies into their AI inventions to avoid any racist results, which could cause hatred culturally but also unreliable data, medically, for example. Overall, Artificial Intelligence is not racist per se, but the data implementation and current racist culture online manipulate AI to become racist.Keywords: social media, artificial intelligence, racism, discrimination
Procedia PDF Downloads 1208119 Artificial Intelligence and the Next Generation Journalistic Practice: Prospects, Issues and Challenges
Authors: Shola Abidemi Olabode
Abstract:
The technological revolution over the years has impacted journalistic practice. As a matter of fact, journalistic practice has evolved alongside technologies of every generation transforming news and reporting, entertainment, and politics. Alongside these developments, the emergence of new kinds of risks and harms associated with generative AI has become rife with implications for media and journalism. Despite their numerous benefits for research and development, generative AI technologies like ChatGPT introduce new practical, ethical, and regulatory complexities in the practice of media and journalism. This paper presents a preliminary overview of the new kinds of challenges and issues for journalism and media practice in the era of generative AI, the implications for Nigeria, and invites a consideration of methods to mitigate the evolving complexity. It draws mainly on desk-based research underscoring the literature in both developed and developing non-western contexts as a contribution to knowledge.Keywords: AI, journalism, media, online harms
Procedia PDF Downloads 888118 Three Decades of the Fourth Estate in Ghana: Issues, Challenges and the Way Forward
Authors: Samuel Pimpong
Abstract:
In most liberal and constitutional democracies, the media serves as a dominant power in the construction of the fundamental building blocks for the consolidation of democratic governance. However, the extent to which the media can enhance democratic consolidation in a country depends to a large extent on the independence of the media, the robustness of legislative frameworks and the safety of journalists in discharging their duties without fear or favor. This study sought to examine pertinent issues, practices and challenges facing the media in Ghana’s Fourth Republic and attempts to make recommendations regarding the way forward. The work adopted a qualitative study approach. A total of sixteen (16) participants were purposively selected for face-to-face interviews. The study hinges on the democratic participant media theory and the development media theory. Primary data was analyzed via thematic analysis procedure. The study revealed that although Ghana has repealed its criminal libel laws, nonetheless other statutory Acts, such as the Electronic Communications Act 2008 (ACT 775) and the Criminal and other offences Act 1960 (Act 29), among others continue to stifle freedom of expression. On the other hand, press freedom is being abused by the use of fake content publication. Further, the study revealed that the absence of a comprehensive regulatory structure impedes the activities carried out by the media. Consequently, the study recommends a regulatory structure to oversee media activities and content, as the National Media Commission (NMC) lacks the authority to do so. In this direction, the study recommends a limitation on the role of the National Communications Authority (NCA) to administer broadcasting signals and transfer its licensing and sanctioning powers to the NMC in order to create one sole and completely independent media regulatory authority that deals with all media related issues.Keywords: media, constitutional democracy, democratic consolidation, fourth republic
Procedia PDF Downloads 768117 talk2all: A Revolutionary Tool for International Medical Tourism
Authors: Madhukar Kasarla, Sumit Fogla, Kiran Panuganti, Gaurav Jain, Abhijit Ramanujam, Astha Jain, Shashank Kraleti, Sharat Musham, Arun Chaudhury
Abstract:
Patients have often chosen to travel for care — making pilgrimages to academic meccas and state-of-the-art hospitals for sophisticated surgery. This culture is still persistent in the landscape of US healthcare, with hundred thousand of visitors coming to the shores of United States to seek the high quality of medical care. One of the major challenges in this form of medical tourism has been the language barrier. Thus, an Iraqi patient, with immediate needs of communicating the healthcare needs to the treating team in the hospital, may face huge barrier in effective patient-doctor communication, delaying care and even at times reducing the quality. To circumvent these challenges, we are proposing the use of a state-of-the-art tool, Talk2All, which can translate nearly one hundred international languages (and even sign language) in real time. The tool is an easy to download app and highly user friendly. It builds on machine learning principles to decode different languages in real time. We suggest that the use of Talk2All will tremendously enhance communication in the hospital setting, effectively breaking the language barrier. We propose that vigorous incorporation of Talk2All shall overcome practical challenges in international medical and surgical tourism.Keywords: language translation, communication, machine learning, medical tourism
Procedia PDF Downloads 2158116 Analysis of Engagement Methods in the College Classroom Post Pandemic
Authors: Marsha D. Loda
Abstract:
College enrollment is declining and generation Z, today’s college students, are struggling. Before the pandemic, researchers characterized this generational cohort as unique. Gen Z has been called the most achievement-oriented generation, as they enjoy greater economic status, are more racially and ethnically diverse, and better educated than any other generation. However, they are also the most likely generation to suffer from depression and anxiety. Gen Z has grown up largely with usually well-intentioned but overprotective parents who inadvertently kept them from learning life skills, likely impacting their ability to cope with and to effectively manage challenges. The unprecedented challenges resulting from the pandemic up ended their world and left them emotionally reeling. One of the ramifications of this for higher education is how to reengage current Gen Z students in the classroom. This research presents qualitative findings from 24 single-spaced pages of verbatim comments from college students. Research questions concerned what helps them learn and what they abhor, as well as how to engage them with the university outside of the classroom to aid in retention. Students leave little doubt about what they want to experience in the classroom. In order of mention, students want discussion, to engage with questions, to hear how a topic relates to real life and the real world, to feel connections with the professor and fellow students, and to have an opportunity to give their opinions. They prefer a classroom that involves conversation, with interesting topics and active learning. “professor talks instead of lecturing” “professor builds a connection with the classroom” “I am engaged because it feels like a respectful conversation” Similarly, students are direct about what they dislike in a classroom. In order of frequency, students dislike teachers unenthusiastically reading word or word from notes or presentations, repeating the text without adding examples, or addressing how to apply the information. “All lecture. I can read the book myself” “Not taught how to apply the skill or lesson” “Lectures the entire time. Lesson goes in one ear and out the other.” Pertaining to engagement outside the classroom, Gen Z challenges higher education to step outside the box. They don’t want to just hear from professionals in their field, they want to meet and interact with them. Perhaps because of their dependence on technology and pandemic isolation, they seem to reach out for assistance in forming social bonds. “I believe fun and social events are the best way to connect with students and get them involved. Cookouts, raffles, socials, or networking events would all most likely appeal to many students”. “Events… even if they aren’t directly related to learning. Maybe like movie nights… doing meet ups at restaurants”. Qualitative research suggests strategy. This research is rife with strategic implications to improve learning, increase engagement and reduce drop-out rates among Generation Z higher education students. It also compliments existing research on student engagement. With college enrollment declining by some 1.3 million students over the last two years, this research is both timely and important.Keywords: college enrollment, generation Z, higher education, pandemic, student engagement
Procedia PDF Downloads 1088115 Contextual Toxicity Detection with Data Augmentation
Authors: Julia Ive, Lucia Specia
Abstract:
Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing
Procedia PDF Downloads 1768114 Learning Recomposition after the Remote Period with Finalist Students of the Technical Course in the Environment of the Ifpa, Paragominas Campus, Pará State, Brazilian Amazon
Authors: Liz Carmem Silva-Pereira, Raffael Alencar Mesquita Rodrigues, Francisco Helton Mendes Barbosa, Emerson de Freitas Ferreira
Abstract:
Due to the Covid-19 pandemic declared in March 2020 by the World Health Organization, the way of social coexistence across the planet was affected, especially in educational processes, from the implementation of the remote modality as a teaching strategy. This teaching-learning modality caused a change in the routine and learning of basic education students, which resulted in serious consequences for the return to face-to-face teaching in 2021. 2022, at the Federal Institute of Education, Science and Technology of Pará (IFPA) – Campus Paragominas had their training process severely affected, having studied the initial half of their training in the remote modality, which compromised the carrying out of practical classes, technical visits and field classes, essential for the student formation on the environmental technician. With the objective of promoting the recomposition of these students' learning after returning to the face-to-face modality, an educational strategy was developed in the last period of the course. As teaching methodologies were used for research as an educational principle, the integrative project and the parallel recovery action applied jointly, aiming at recomposing the basic knowledge of the natural sciences, together with the technical knowledge of the environmental area applied to the course. The project assisted 58 finalist students of the environmental technical course. A research instrument was elaborated with parameters of evaluation of the environmental quality for study in 19 collection points, in the Uraim River urban hydrographic basin, in the Paragominas City – Pará – Brazilian Amazon. Students were separated into groups under the professors' and laboratory assistants’ orientation, and in the field, they observed and evaluated the places' environmental conditions and collected physical data and water samples, which were taken to the chemistry and biology laboratories at Campus Paragominas for further analysis. With the results obtained, each group prepared a technical report on the environmental conditions of each evaluated point. This work methodology enabled the practical application of theoretical knowledge received in various disciplines during the remote teaching modality, contemplating the integration of knowledge, people, skills, and abilities for the best technical training of finalist students. At the activity end, the satisfaction of the involved students in the project was evaluated, through a form, with the signing of the informed consent term, using the Likert scale as an evaluation parameter. The results obtained in the satisfaction survey were: on the use of research projects within the disciplines attended, 82% of satisfaction was obtained; regarding the revision of contents in the execution of the project, 84% of satisfaction was obtained; regarding the acquired field experience, 76.9% of satisfaction was obtained, regarding the laboratory experience, 86.2% of satisfaction was obtained, and regarding the use of this methodology as parallel recovery, 71.8% was obtained of satisfaction. In addition to the excellent performance of students in acquiring knowledge, it was possible to remedy the deficiencies caused by the absence of practical classes, technical visits, and field classes, which occurred during the execution of the remote teaching modality, fulfilling the desired educational recomposition.Keywords: integrative project, parallel recovery, research as an educational principle, teaching-learning
Procedia PDF Downloads 688113 Educational Experience and the Investigation Results: Creation of New Healthy Products
Authors: G. Espinosa Garza, I. Loera, N. Antonyan
Abstract:
In the last decades, teaching in particular engineering subjects is going through a significative problem. A quick evaluation of the entrepreneurial surroundings makes it more difficult for students to identify the course contents with real situations related with their future professions. Proposing teaching through challenges or problem-based projects, and real-life situations is turning into an important challenge for any university-level educator. The objective of this work is to present the educational experience and the investigation results taken through the Project Viability course, done by a group of professors and students from the Technologic of Monterrey. Currently, in Mexico, the orange peels are considered a dispose and they are not being utilized as an alternative to create subproducts. However, there is a great opportunity in its use as a raw material with the goal to originate the waste from the local citric firms or business. The project challenge consisted in the development of edible products from the orange peel with the intention to generate new healthy products. With this project, apart from the obtainment of the original results, the accomplishment consisted in creating a learning atmosphere, where students together with the professors were able to plan, evaluate, and implement the project related with the creative, innovative, and sustainable processes with the goal to apply it in the development of local solutions. In the present article, the pedagogic methodologies that allowed to carry out this project will be discussed.Keywords: engineering subjects, learning project, orange peel, sustainable process
Procedia PDF Downloads 2908112 A Comparison Study: Infant and Children’s Clothing Size Charts in South Korea and UK
Authors: Hye-Won Lim, Tom Cassidy, Tracy Cassidy
Abstract:
Infant and children’s body shapes are changing constantly while they are growing up into adults and are also distinctive physically between countries. For this reason, optimum size charts which can represent body sizes and shapes of infants and children are required. In this study, investigations of current size charts in South Korea and UK (n=50 each) were conducted for understanding and figuring out the sizing perspectives of the clothing manufacturers. The size charts of the two countries were collected randomly from online shopping websites and those size charts’ average measurements were compared with both national sizing surveys (SizeKorea and Shape GB). The size charts were also classified by age, gender, clothing type, fitting, and other factors. In addition, the key measurement body parts of size charts of each country were determined and those will be suggested for new size charts and sizing system development.Keywords: infant clothing, children’s clothing, body shapes, size charts
Procedia PDF Downloads 3208111 Effectiveness of Gamified Simulators in the Health Sector
Authors: Nuno Biga
Abstract:
The integration of serious games with gamification in management education and training has gained significant importance in recent years as innovative strategies are sought to improve target audience engagement and learning outcomes. This research builds on the author's previous work in this field and presents a case study that evaluates the ex-post impact of a sample of applications of the BIGAMES management simulator in the training of top managers from various hospital institutions. The methodology includes evaluating the reaction of participants after each edition of BIGAMES Accident & Emergency (A&E) carried out over the last 3 years, as well as monitoring the career path of a significant sample of participants and their feedback more than a year after their experience with this simulator. Control groups will be set up, according to the type of role their members held when they took part in the BIGAMES A&E simulator: Administrators, Clinical Directors and Nursing Directors. Former participants are invited to answer a questionnaire structured for this purpose, where they are asked, among other questions, about the importance and impact that the BIGAMES A&E simulator has had on their professional activity. The research methodology also includes an exhaustive literature review, focusing on empirical studies in the field of education and training in management and business that investigate the effectiveness of gamification and serious games in improving learning, team collaboration, critical thinking, problem-solving skills and overall performance, with a focus on training contexts in the health sector. The results of the research carried out show that gamification and serious games that simulate real scenarios, such as Business Interactive Games - BIGAMES©, can significantly increase the motivation and commitment of participants, stimulating the development of transversal skills, the mobilization of group synergies and the acquisition and retention of knowledge through interactive user-centred scenarios. Individuals who participate in game-based learning series show a higher level of commitment to learning because they find these teaching methods more enjoyable and interactive. This research study aims to demonstrate that, as executive education and training programs develop to meet the current needs of managers, gamification and serious games stand out as effective means of bridging the gap between traditional teaching methods and modern educational and training requirements. To this end, this research evaluates the medium/long-term effects of gamified learning on the professional performance of participants in the BIGAMES simulator applied to healthcare. Based on the conclusions of the evaluation of the effectiveness of training using gamification and taking into account the results of the opinion poll of former A&E participants, this research study proposes an integrated approach for the transversal application of the A&E Serious Game in various educational contexts, covering top management (traditionally the target audience of BIGAMES A&E), middle and operational management in healthcare institutions (functional area heads and professionals with career development potential), as well as higher education in medicine and nursing courses. The integrated solution called “BIGAMES A&E plus”, developed as part of this research, includes the digitalization of key processes and the incorporation of AI.Keywords: artificial intelligence (AI), executive training, gamification, higher education, management simulators, serious games (SG), training effectiveness
Procedia PDF Downloads 208110 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3928109 Habitat Studies of Etheria elliptica in Some Water Bodies (River Ogbese and Owena Reservoir) in Ondo State, Nigeria
Authors: O. O. Olawusi-Peters, M. O. Adediran, O. A. Ajibare
Abstract:
Etheria elliptica population is declining due to various human activities on the freshwater habitat. This necessitate the habitat study of the mussel in river Ogbese and Owena reservoir in Ondo state, Nigeria in order to know the status of the organism within the ecosystem. Thirty (30) specimens each from River Ogbese and Owena reservoir were sampled between May and August 2012. The meristic variables such as length, breadth, shell thickness and weight of the mussel were measured. Also, some physico-chemical parameters, flow rate and soil profile of the two rivers were studied. In River Ogbese, the weight, length, breadth and thickness variables obtained were; 49.73g, 8.42cm, 3.78cm and 0.53cm respectively. In Owena reservoir, the values were; 111.17g, 8.80cm, 6.64cm, 0.22cm respectively. The condition factor showed that the samples from Owena reservoir (K = 16.33) were healthier than River Ogbese (K = 8.34). Also, the length-weight relationship indicated isometric growth in both water bodies (Ogbese r2 = 0.68; Owena r2 = 0.66). In River Ogbese, the physico-chemical parameters obtained were; temperature (24.3oC), pH (7.12), TDS (72ppm), DO (3.2mg/l), conductivity (145µ), BOD (0.7mg/l). The mean temperature (24.1oC), pH (7.69), TDS (102ppm), DO (3.1mg/l), conductivity (183µ), BOD (0.8mg/l) were obtained from Owena reservoir. The soil samples values obtained from both water bodies are; River Ogbese –phosphorus; 78.78, calcium; 3.60, magnesium; 1.90 and organic matter; 0.17. Owena reservoir - Phosphorus; 3.34, calcium; 4.40, magnesium; 1.20 and organic matter; 0.66. The river flow rate was 0.22m/s for Owena reservoir and 0.26m/s for river Ogbese. The study revealed that Etheria elliptica in Owena reservoir and Ogbese were in good and healthy conditions despite the various human activities on the water bodies. The water quality parameters obtained were within the preferred requirements of the mussels.Keywords: Etheria elliptica, mussels, Owena reservoir, River Ogbese
Procedia PDF Downloads 5138108 Effect of Perioperative Protocol of Care on Clinical Outcomes among Patients Undergoing Coronary Artery Bypass Graft
Authors: Manal Ahmed, Amal Shehata, Shereen Deeb
Abstract:
The study's purpose was to determine the effect of the perioperative protocol of care on clinical outcomes among patients undergoing coronary artery bypass graft. Subjects: A sample of 100 adult patients who were planned for coronary artery bypass graft, were selected and divided alternatively and randomly into two equal groups (50 study -50 control).The study was carried out at National heart Institute in Cairo and open heart surgical intensive care unit in Shebin El-Kom Teaching Hospital. Instruments: Four instruments were used for data collection: Interviewing questionnaire, dyspnea analogue scale, Biophysiological measurement instrument, and Compliance assessment sheet. Results: There were statistically significant differences between both groups regarding most respiratory system assessment findings at discharge. More than two-thirds of the study group of the current study had a continuous and regular commitment to diet regimen, which ranked first followed by the compliance of daily living activities then quitting smoking. Conclusions: The perioperative protocol of care has a significant improving effect on respiratory findings, dyspnea degree, duration of mechanical ventilation, length of hospital stay, compliance to diet, therapeutic regimen, daily living activities, and quit smoking among study group undergoing CABG. Recommendations: Perioperative protocol of care should be carried out for CABG patients at open-heart surgical units as well as an illustrative colored booklet about CAD, CABG and perioperative care should be available and distributed to all CABG patients.Keywords: perioperative, effect, clinical outcomes, coronary artery, bypass graft, protocol of care
Procedia PDF Downloads 1418107 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 1728106 The Cultural Shift in Pre-owned Fashion as Sustainable Consumerism in Vietnam
Authors: Lam Hong Lan
Abstract:
The textile industry is said to be the second-largest polluter, responsible for 92 million tonnes of waste annually. There is an urgent need to practice the circular economy to increase the use and reuse around the world. By its nature, the pre-owned fashion business is considered part of the circular economy as it helps to eliminate waste and circulate products. Second-hand clothes and accessories used to be associated with a ‘cheap image’ that carried ‘old energy’ in Vietnam. This perception has been shifted, especially amongst the younger generation. Vietnamese consumer is spending more on products and services that increase self-esteem. The same consumer is moving away from a collectivist social identity towards a ‘me, not we’ outlook as they look for a way to express their individual identity. And pre-owned fashion is one of their solutions as it values money, can create a unique personal style for the wearer and links with sustainability. The design of this study is based on the second-hand shopping motivation theory. A semi-structured online survey with 100 consumers from one pre-owned clothing community and one pre-owned e-commerce site in Vietnam. The findings show that in contrast with Vietnamese older consumers (55+yo) who, in the previous study, generally associated pre-owned fashion with ‘low-cost’, ‘cheap image’ that carried ‘old energy’, young customers (20-30 yo) were actively promoted their pre-owned fashion items to the public via outlet’s social platforms and their social media. This cultural shift comes from the impact of global and local discourse around sustainable fashion and the growth of digital platforms in the pre-owned fashion business in the last five years, which has generally supported wider interest in pre-owned fashion in Vietnam. It can be summarised in three areas: (1) global and local celebrity influencers. A number of celebrities have been photographed wearing vintage items in music videos, photoshoots or at red carpet events. (2) E-commerce and intermediaries. International e-commerce sites – e.g., Vinted, TheRealReal – and/or local apps – e.g., Re.Loved – can influence attitudes and behaviors towards pre-owned consumption. (3) Eco-awareness. The increased online coverage of climate change and environmental pollution has encouraged customers to adopt a more eco-friendly approach to their wardrobes. While sustainable biomaterials and designs are still navigating their way into sustainability, sustainable consumerism via pre-owned fashion seems to be an immediate solution to lengthen the clothes lifecycle. This study has found that young consumers are primarily seeking value for money and/or a unique personal style from pre-owned/vintage fashion while using these purchases to promote their own “eco-awareness” via their social media networks. This is a good indication for fashion designers to keep in mind in their design process and for fashion enterprises in their business model’s choice to not overproduce fashion items.Keywords: cultural shift, pre-owned fashion, sustainable consumption, sustainable fashion.
Procedia PDF Downloads 88