Search results for: comprehensive model
12992 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 32712991 Study of ANFIS and ARIMA Model for Weather Forecasting
Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu
Abstract:
In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB
Procedia PDF Downloads 42312990 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel
Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler
Abstract:
Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process
Procedia PDF Downloads 13912989 Conflation Methodology Applied to Flood Recovery
Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.Keywords: community resilience, conflation, flood risk, nuisance flooding
Procedia PDF Downloads 10812988 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction
Authors: Alsaidi M. Altaher, Mohd Tahir Ismail
Abstract:
Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.Keywords: boundary correction, median filter, simulation, wavelet thresholding
Procedia PDF Downloads 43112987 Bi-objective Network Optimization in Disaster Relief Logistics
Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann
Abstract:
Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks
Procedia PDF Downloads 8512986 Processing of Input Material as a Way to Improve the Efficiency of the Glass Production Process
Authors: Joanna Rybicka-Łada, Magda Kosmal, Anna Kuśnierz
Abstract:
One of the main problems of the glass industry is the still high consumption of energy needed to produce glass mass, as well as the increase in prices, fuels, and raw materials. Therefore, comprehensive actions are taken to improve the entire production process. The key element of these activities, starting from filling the set to receiving the finished product, is the melting process, whose task is, among others, dissolving the components of the set, removing bubbles from the resulting melt, and obtaining a chemically homogeneous glass melt. This solution avoids dust formation during filling and is available on the market. This process consumes over 90% of the total energy needed in the production process. The processes occurring in the set during its conversion have a significant impact on the further stages and speed of the melting process and, thus, on its overall effectiveness. The speed of the reactions occurring and their course depend on the chemical nature of the raw materials, the degree of their fragmentation, thermal treatment as well as the form of the introduced set. An opportunity to minimize segregation and accelerate the conversion of glass sets may be the development of new technologies for preparing and dosing sets. The previously preferred traditional method of melting the set, based on mixing all glass raw materials together in loose form, can be replaced with a set in a thickened form. The aim of the project was to develop a glass set in a selectively or completely densified form and to examine the influence of set processing on the melting process and the properties of the glass.Keywords: glass, melting process, glass set, raw materials
Procedia PDF Downloads 6412985 Climate Changes in Albania and Their Effect on Cereal Yield
Authors: Lule Basha, Eralda Gjika
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest
Procedia PDF Downloads 9812984 A Model of the Adoption of Maritime Autonomous Surface Ship
Authors: Chin-Shan Lu, Yi-Pei Liu
Abstract:
This study examines the factors influencing the adoption of MASS in Taiwan's shipping industry. Digital technology and unmanned vehicle advancements have enhanced efficiency and reduced environmental impact in the shipping industry. The IMO has set regulations to promote low-carbon emissions and autonomous ship technology. Using the TOE framework and DOI theory, a research model was constructed, and data from 132 Taiwanese shipping companies were collected via a questionnaire survey. A structural equation modeling (SEM) was conducted to examine the relationships between variables. Results show that technological and environmental factors significantly influence operators' attitudes toward MASS, while organizational factors impact their willingness to adopt. Enhancing technological support, internal resource allocation, top management support, and cost management are crucial for promoting adoption. This study identifies key factors and provides recommendations for adopting autonomous ships in Taiwan's shipping industry.Keywords: MASS, technology-organization-environment, diffusion of innovations theory, shipping industry
Procedia PDF Downloads 2912983 Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance
Authors: Michel Wakim, Rodrigo Rivera Tinoco
Abstract:
Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio.Keywords: computational fluids dynamics, ejector, entrainment ratio, geometry optimization, performance
Procedia PDF Downloads 28112982 Cross Analysis of Gender Discrimination in Print Media of Subcontinent via James Paul Gee Model
Authors: Luqman Shah
Abstract:
The myopic gender discrimination is now a well-documented and recognized fact. However, gender is only one facet of an individual’s multiple identities. The aim of this work is to investigate gender discrimination highlighted in print media in the subcontinent with a specific focus on Pakistan and India. In this study, an approach is adopted by using the James Paul Gee model for the identification of gender discrimination. As a matter of fact, gender discrimination is not consistent in its nature and intensity across global societies and varies as social, geographical, and cultural background change. The World has been changed enormously in every aspect of life, and there are also obvious changes towards gender discrimination, prejudices, and biases, but still, the world has a long way to go to recognize women as equal as men in every sphere of life. The history of the world is full of gender-based incidents and violence. Now the time came that this issue must be seriously addressed and to eradicate this evil, which will lead to harmonize society and consequently heading towards peace and prosperity. The study was carried out by a mixed model research method. The data was extracted from the contents of five Pakistani English newspapers out of a total of 23 daily English newspapers, and likewise, five Indian daily English newspapers out of 52 those were published 2018-2019. Two news stories from each of these newspapers, in total, twenty news stories were taken as sampling for this research. Content and semiotic analysis techniques were used to analyze through James Paul Gee's seven building tasks of language. The resources of renowned e-papers are utilized, and the highlighted cases in Pakistani newspapers of Indian gender-based stories and vice versa are scrutinized as per the requirement of this research paper. For analysis of the written stretches of discourse taken from e-papers and processing of data for the focused problem, James Paul Gee 'Seven Building Tasks of Language' is used. Tabulation of findings is carried to pinpoint the issue with certainty. Findings after processing the data showed that there is a gross human rights violation on the basis of gender discrimination. The print media needs a more realistic representation of what is what not what seems to be. The study recommends the equality and parity of genders.Keywords: gender discrimination, print media, Paul Gee model, subcontinent
Procedia PDF Downloads 22412981 Structure of Tourists’ Shopping Behavior: From the Tyranny of Hotels to Public Markets
Authors: Asmaa M. Marzouk, Abdallah M. Elshaer
Abstract:
Despite the well-recognized value of shopping as a revenue-generating resource, little effort was made to investigate what is the structure of tourists’ shopping behavior, which in turn, affect their travel experience. The purpose of this paper is to study the structure of tourists’ shopping process to better understand their shopping behavior by investigating factors that influence this activity other than hotels tyranny. This study specifically aims to propose a model incorporating those all variables. This empirical study investigates the shopping experience of international tourists using a questionnaire aimed to examine multinational samples selected from the tourist population visiting a specific destination in Egypt. This study highlights the various stakeholders that make tourists do shop independent of hotels. The results, therefore, demonstrate the relationship between the shopping process entities involved and configure the variables within the model in a way that provides a viable solution for visitors to avoid the tyranny of hotel facilities and amenities on the public markets.Keywords: hotels’ amenities, shopping process, tourist behavior, tourist satisfaction
Procedia PDF Downloads 13512980 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 54112979 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis
Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model
Procedia PDF Downloads 37212978 On Energy Condition Violation for Shifting Negative Mass Black Holes
Authors: Manuel Urueña Palomo
Abstract:
In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.Keywords: black holes, CPT symmetry, negative mass, time transformation
Procedia PDF Downloads 15412977 Advanced Nanomaterials in Catalysis: Bridging the Gap Between Pollution Control and Renewable Energy
Authors: Abonyi Matthew Ndubuisi, Christopher Chiedozie Obi, Joseph Tagbo Nwabanne
Abstract:
This review focuses on the application of advanced nanomaterials in catalysis for pollution control and renewable energy solutions. This review provides a comprehensive examination of the latest developments in nanocatalysts, highlighting their role in addressing environmental challenges and facilitating sustainable energy solutions. The unique properties of nanomaterials, including high surface area, tunable electronic properties, and enhanced reactivity, make them ideal candidates for catalytic applications. This review explores various types of nanomaterials, such as metal nanoparticles, carbon-based nanostructures, and metal-organic frameworks, and their effectiveness in processes like photocatalysis, electrocatalysis, and hydrogen production. Additionally, the review discusses the environmental benefits of using nanocatalysts in pollution control, focusing on the degradation of pollutants in water and air. The potential of these materials to bridge the gap between environmental remediation and clean energy production is emphasized, showcasing their dual role in mitigating pollution and advancing renewable energy technologies. In conclusion, the review analyzes the current challenges and future directions in the field, highlighting the need for continued research to improve the design and application of nanocatalysts for a sustainable future.Keywords: nanomaterials, catalysis, pollution control, renewable energy, sustainable technology
Procedia PDF Downloads 3212976 Thermodynamics of Stable Micro Black Holes Production by Modeling from the LHC
Authors: Aref Yazdani, Ali Tofighi
Abstract:
We study a simulative model for production of stable micro black holes based on investigation on thermodynamics of LHC experiment. We show that how this production can be achieved through a thermodynamic process of stability. Indeed, this process can be done through a very small amount of powerful fuel. By applying the second law of black hole thermodynamics at the scale of quantum gravity and perturbation expansion of the given entropy function, a time-dependent potential function is obtained which is illustrated with exact numerical values in higher dimensions. Seeking for the conditions for stability of micro black holes is another purpose of this study. This is proven through an injection method of putting the exact amount of energy into the final phase of the production which is equivalent to the same energy injection into the center of collision at the LHC in order to stabilize the produced particles. Injection of energy into the center of collision at the LHC is a new pattern that it is worth a try for the first time.Keywords: micro black holes, LHC experiment, black holes thermodynamics, extra dimensions model
Procedia PDF Downloads 14712975 Conceptual Study on 4PL and Activities in Turkey
Authors: Berna Kalkan, Kenan Aydin
Abstract:
Companies give importance customer satisfaction to compete the developing and changing market. This is possible when customer reaches the right product, right quality, place, time and cost. In this regard, the extension of logistics services has played active role on formation and development of the different logistics services concept. The concept of logistics services has played important role involved in the healing of economic indicators today. Companies can use logistics providers, thus have competitive advantage and low cost, reducing time, tobe flexibility. In recent years, Fourth Party Logistics (4PL) has emerged as a new concept that includes relationship between suppliers and firms in outsourcing. 4PL provider is an integrator that offers comprehensive supply chain solutions with the technology, resources and capabilities that it possesses. Also, 4PL has attracted as a popular research topic attention in the recent past. In this paper, logistics outsourcing and 4PL concepts are analyzed and a literature review on 4PL activities is given. Also, the previous studies in literature and the approaches that are used in previous studies in literature is presented by analysing on 4PL activities. In this context, a field study will be applied to 4PL providers and service buyer in Turkey. If necessary, results related to this study will be shared in scientific areas.Keywords: fourth party logistics, literature review, outsourcing, supply chain management
Procedia PDF Downloads 18012974 Climate Crises: Consumers and Designers Attitude Towards Sustainability of Fast Fashion Products in Nigeria
Authors: Oluwambe Akinmoye
Abstract:
The textile industry in Nigeria has grown rapidly, fueled by rising demand for fast fashion driven by celebrity culture, fashion TV, and the Internet. However, this growth has come at a cost, with the industry contributing to environmental degradation, waste management crises, economic imbalances, and social injustices. This paper examines the attitudes of consumers and designers toward sustainability in the Nigerian textile and fast fashion industry. The study adopts a mixed-methods research design. Both qualitative and quantitative data were drawn from fast fashion consumers and designers. The sample of consumers and designers was determined using random and purposive sampling techniques. Data were elicited from the consumers and designers using questionnaires and focus group discussions, respectively, coupled with comprehensive literature reviews. The collected data were analyzed using descriptive statistics, content, and thematic analyses. Findings indicate that the strata of Nigerian society pay little attention to fast fashion sustainability. Conversely, designers have started to innovate and adopt sustainable practices by sourcing eco-friendly materials, yet they face significant barriers. The study emphasizes the need for a shift in the industry's approach to sustainability, with a greater concern on circular economy principles, sustainable materials, and fair labour practices.Keywords: Fast fashion, textiles, sustainability, Climate crises, consumers, designers
Procedia PDF Downloads 1212973 The Validation and Reliability of the Arabic Effort-Reward Imbalance Model Questionnaire: A Cross-Sectional Study among University Students in Jordan
Authors: Mahmoud M. AbuAlSamen, Tamam El-Elimat
Abstract:
Amid the economic crisis in Jordan, the Jordanian government has opted for a knowledge economy where education is promoted as a mean for economic development. University education usually comes at the expense of study-related stress that may adversely impact the health of students. Since stress is a latent variable that is difficult to measure, a valid tool should be used in doing so. The effort-reward imbalance (ERI) is a model used as a measurement tool for occupational stress. The model was built on the notion of reciprocity, which relates ‘effort’ to ‘reward’ through the mediating ‘over-commitment’. Reciprocity assumes equilibrium between both effort and reward, where ‘high’ effort is adequately compensated with ‘high’ reward. When this equilibrium is violated (i.e., high effort with low reward), this may elicit negative emotions and stress, which have been correlated to adverse health conditions. The theory of ERI was established in many different parts of the world, and associations with chronic diseases and the health of workers were explored at length. While much of the effort-reward imbalance was investigated in work conditions, there has been a growing interest in understanding the validity of the ERI model when applied to other social settings such as schools and universities. The ERI questionnaire was developed in Arabic recently to measure ERI among high school teachers. However, little information is available on the validity of the ERI questionnaire in university students. A cross-sectional study was conducted on 833 students in Jordan to measure the validity and reliability of the ERI questionnaire in Arabic among university students. Reliability, as measured by Cronbach’s alpha of the effort, reward, and overcommitment scales, was 0.73, 0.76, and 0.69, respectively, suggesting satisfactory reliability. The factorial structure was explored using principal axis factoring. The results fitted a five-solution model where both the effort and overcommitment were uni-dimensional while the reward scale was three-dimensional with its factors, namely being ‘support’, ‘esteem’, and ‘security’. The solution explained 56% of the variance in the data. The established ERI theory was replicated with excellent validity in this study. The effort-reward ratio in university students was 1.19, which suggests a slight degree of failed reciprocity. The study also investigated the association of effort, reward, overcommitment, and ERI with participants’ demographic factors and self-reported health. ERI was found to be significantly associated with absenteeism (p < 0.0001), past history of failed courses (p=0.03), and poor academic performance (p < 0.001). Moreover, ERI was found to be associated with poor self-reported health among university students (p=0.01). In conclusion, the Arabic ERI questionnaire is reliable and valid for use in measuring effort-reward imbalance in university students in Jordan. The results of this research are important in informing higher education policy in Jordan.Keywords: effort-reward imbalance, factor analysis, validity, self-reported health
Procedia PDF Downloads 12012972 Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil
Authors: Mauricio Terceros, Jann-Eike Saathoff, Martin Achmus
Abstract:
In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines.Keywords: onshore wind foundation, pier foundation, rotational stiffness of soil-foundation system, shallow foundation
Procedia PDF Downloads 15712971 Why and When to Teach Definitions: Necessary and Unnecessary Discontinuities Resulting from the Definition of Mathematical Concepts
Authors: Josephine Shamash, Stuart Smith
Abstract:
We examine reasons for introducing definitions in teaching mathematics in a number of different cases. We try to determine if, where, and when to provide a definition, and which definition to choose. We characterize different types of definitions and the different purposes we may have for formulating them, and detail examples of each type. Giving a definition at a certain stage can sometimes be detrimental to the development of the concept image. In such a case, it is advisable to delay the precise definition to a later stage. We describe two models, the 'successive approximation model', and the 'model of the extending definition' that fit such situations. Detailed examples that fit the different models are given based on material taken from a number of textbooks, and analysis of the way the concept is introduced, and where and how its definition is given. Our conclusions, based on this analysis, is that some of the definitions given may cause discontinuities in the learning sequence and constitute obstacles and unnecessary cognitive conflicts in the formation of the concept definition. However, in other cases, the discontinuity in passing from definition to definition actually serves a didactic purpose, is unavoidable for the mathematical evolution of the concept image, and is essential for students to deepen their understanding.Keywords: concept image, mathematical definitions, mathematics education, mathematics teaching
Procedia PDF Downloads 13412970 A Comprehensive Study of Accounting for Growth in China and India
Authors: Yousef Rostami Gharainy
Abstract:
We look at the late financial exhibitions of China and India utilizing a simple growth accounting framework that creates assessments of the commitment of work, capital, training, and aggregate variable profitability for the three parts of agribusiness, industry, and administrations and in addition for the total economy. Our examination consolidates late information updates in both nations and incorporates broad examination of the basic information arrangement. The development records demonstrate a generally square with division in each nation between the commitments of capital gathering and TFP to development in yield every specialist over the period 1980-2007, and an increasing speed of development when the period is separated at 1993. Be that as it may, the size of yield development in China is generally twofold that of India at the total level, and additionally higher in each of the three segments in both sub-periods. In China the post-1993 increasing speed was amassed generally in industry, which contributed about 61 percent of China’s total efficiency development. Interestingly, 48 percent of the development in India in the second sub-period came in administrations. Reallocation of specialists from farming to industry and administrations has contributed 1.3 rate focuses to efficiency development in every nation.Keywords: China, India, growth accounting framework, work, capital, training, aggregate variable profitability
Procedia PDF Downloads 29912969 Religion and Sustainable Development: A Comparative Study of Buddhist and Christian Farmers’ Contribution to the Environmental Protection in Taiwan
Authors: Jijimon Alakkalam Joseph
Abstract:
The UN 2030 Agenda for Sustainable Development claims to be a comprehensive and integrated plan of action for prosperity for people and the planet, including almost all dimensions of human existence. Nevertheless, critics have pointed out the exclusion of the religious dimension from development discussions. Care for the earth is one of the vital aspects of sustainable development. Farmers all over the world contribute much to environmental protection. Most farmers are religious believers, and religious ideologies influence their agricultural practices. This nexus between faith and agriculture has forced policymakers to include religion in development discussions. This paper delves deeper into this religion and sustainable development connection. Buddhism and Christianity have contributed much to environmental protection in Taiwan. However, interviews conducted among 40 Taiwanese farmers (10 male and female farmers from Buddhism and Christianity) show that their faith experiences make them relate to the natural environment differently. Most of the Buddhist farmers interviewed admitted that they chose their religious adherence, while most of the Christian farmers inherited their faith. The in-depth analysis of the interview data collected underlines the close relationship between religion and sustainable development. More importantly, concerning their intention to care for the earth, farmers whose religious adherence is ‘chosen’ are self-motivated and more robust compared to those whose religious adherence is ‘inherited’.Keywords: Buddhism, Christianity, environmental protection, sustainable development
Procedia PDF Downloads 8812968 Neuro-Fuzzy Based Model for Phrase Level Emotion Understanding
Authors: Vadivel Ayyasamy
Abstract:
The present approach deals with the identification of Emotions and classification of Emotional patterns at Phrase-level with respect to Positive and Negative Orientation. The proposed approach considers emotion triggered terms, its co-occurrence terms and also associated sentences for recognizing emotions. The proposed approach uses Part of Speech Tagging and Emotion Actifiers for classification. Here sentence patterns are broken into phrases and Neuro-Fuzzy model is used to classify which results in 16 patterns of emotional phrases. Suitable intensities are assigned for capturing the degree of emotion contents that exist in semantics of patterns. These emotional phrases are assigned weights which supports in deciding the Positive and Negative Orientation of emotions. The approach uses web documents for experimental purpose and the proposed classification approach performs well and achieves good F-Scores.Keywords: emotions, sentences, phrases, classification, patterns, fuzzy, positive orientation, negative orientation
Procedia PDF Downloads 38412967 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme
Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme
Procedia PDF Downloads 48812966 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes
Authors: Vincent Liu
Abstract:
Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.Keywords: diabetes, machine learning, 30-day readmission, metaheuristic
Procedia PDF Downloads 6512965 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 24412964 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data
Authors: Benjamin Leiby, Darryl Ahner
Abstract:
This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions while presenting a need for further refinement that mimics predictive mean matching.Keywords: correlation, country conflict, imputation, stochastic regression
Procedia PDF Downloads 12412963 A Simulated Evaluation of Model Predictive Control
Authors: Ahmed AlNouss, Salim Ahmed
Abstract:
Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)
Procedia PDF Downloads 410