Search results for: distance learning education
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13565

Search results for: distance learning education

7355 Assessment of Heavy Metal Contamination in Soil and Groundwater Due to Leachate Migration from an Open Dumping Site

Authors: Kali Prasad Sarma

Abstract:

Indiscriminate disposal of municipal solid waste (MSW) in open dumping site is a common scenario in developing countries like India which poses a risk to the environment as well as human health. The objective of the present investigation was to find out the concentration of heavy metals (Pb, Cr, Ni, Mn, Zn, Cu, and Cd) and other physicochemical parameters of leachate and soil collected from an open dumping site of Tezpur town, Assam, India and its associated potential ecological risk. Tezpur is an urban agglomeration coming under the category of Class I UAs/Towns with a population of 105,377 as per data released by Government of India for Census 2011. Impact of the leachate on the groundwater was also addressed in our study. The concentrations of heavy metals were determined using ICP-OES. Energy dispersive X-Ray (SEM-EDS) microanalysis was also conducted to see the presence of the studied metals in the soil. X-Ray diffraction analysis (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were also used to identify dominant minerals present in the soil samples. The trend of measured heavy metals in the soil samples was found in the following order: Mn > Pb > Cu > Zn > Cr > Ni > Cd. The assessment of heavy metal contamination in the soil was carried out by calculating enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (Cfi), degree of contamination (Cd), pollution load index (PLI) and ecological risk factor (Eri). The study showed that the concentrations of Pb, Cu, and Cd were much higher than their respective average shale value and the EF of the soil samples depicted very severe enrichment for Pb, Cu, and Cd; moderate enrichment for Cr and Zn. Calculated Igeo values indicated that the soil is moderate to strongly contaminated with Pb and uncontaminated to moderately contaminated with Cd and Cu. The Cfi value for Pb indicates a very strong contamination level of the metal in the soil. The Cfi values for Cu and Cd were 2.37 and 1.65 respectively indicating moderate contamination level. To apportion the possible sources of heavy metal contamination in soil, principal components analysis (PCA) has been adopted. From the leachate, heavy metals are accumulated at the dumping site soil which could easily percolate through the soil and reach the groundwater. The possible relation of groundwater contamination due to leachate percolation was examined by analyzing the heavy metal concentrations in groundwater with respect to distance from the dumping site. The concentrations of Cd and Pb in groundwater (at a distance of 20m from dumping site) exceeded the permissible limit for drinking water as set by WHO. Occurrence of elevated concentration of potentially toxic heavy metals such as Pb and Cd in groundwater and soil are much environmental concern as it is detrimental to human health and ecosystem.

Keywords: groundwater, heavy metal contamination, leachate, open dumping site

Procedia PDF Downloads 109
7354 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 423
7353 Behavioral Problems Among Down Syndrome Children in the Special Education Complex Peshawar

Authors: Huma Atta, Ishrat Rehman, Muhammad Umair

Abstract:

Objective: To find out the effectiveness of Dr. Stein behavioural modification strategies among Down syndrome children’s behavioural problems. Material & Methods: We took a group of individuals (aged 8-16) having Down syndrome from national special education complex, Peshawar. They were assessed through the behavioural problem index to give us an idea on their behaviour problems, those with a behavioural problem were kept in therapy for further sessions to help them improve. Results: A treatment plan was made according to the extracted behavioural problems of Down syndrome children. Dr. Stein recommended behavioural modification treatment strategies were used for behavioural modification of Down syndrome children (Routine, reward, choice, redirection and consistency). Pre-intervention (M=69.11, SD=6.27) and post-intervention (M=61.33, SD=6.51) conditions; t (8) =2.70, p=0.027. Conclusion: After the successful completion of 9 sessions with Down syndrome children, their behavioural problems were reassessed. Results indicated that Dr. Stein behavioural modification strategy is an effective treatment plan for the modification of behavioural problems among Down syndrome children.

Keywords: behavior, down syndrome, treatment, strategies

Procedia PDF Downloads 14
7352 Analysis of Problems Faced by the Female Students in Capacity Enhancing at Intermediate Level in Girls College of Khyber Pakhtunkhwa, Pakistan

Authors: Uzma Ahmad

Abstract:

hyber Pakhtunkhwa (KPK) is the most turbulent province of Pakistan, sharing a longborder with Afghanistan. For about four decades, KPK is facing a series of international events. The peak was reached after 9/11when region was labelled as posing a major theatre of militancy and terrorism which was intensified when Tehrik Taliban Pakistan (TTP) began attempts to seize the authority of state. One of the main focus of TTP was to damage and uprooting of female education system and infrastructure in KPK which later became the site of a massacre of school children of Army Public School Peshawar on 16 December 2014.It resulted to the launching of Zarb-e-Azb against the TTP insurgency,casualty and crime rates in the KPKas a whole dropped by 40.0% as compared to 2011–13. All this has badly hampered the female education both in terms of quantity and quality. Malala Yousafzai who is now an advocate of female education has been a victim of Talibans brutality in that area. And thelanguage in which she managed to express herself to the International community is English.Keeping in view the situation, the present project was designed with a sole aim to focus on female students of the area which are few in numbers and to investigate some specific area, where they have been confronting problems in the use of grammar, vocabulary,tenses and organization of ideas in writings. The reasons might be the careless attitude, insufficient reading habits, lack of interest and poor knowledge of English language. The methodology was a descriptive one as it shows the effects of the internal efficiency(independent variables) on an intermediate college’s progress(dependent variables). It was a case study since data was collected from a focused group of 60 female students of arts and humanities at Swabi college at Intermediate level. The ultimate focus was to explore the possibilities of creating a Gender friendly environment for female students. This research has proved how the correct use of English language has given them confidence to move ahead side by side with men and to acknowledge their right of self-determination.

Keywords: capacity building, female education, gender friendly, internal efficiency

Procedia PDF Downloads 164
7351 Leading with Skill Development: A Collaborative and Community Based Approach to Ending Open Defecation in Rural India via Computerized Technical Vocational Education and Training

Authors: Srividya Sheshadri, Christopher Coley, Roa. R. Bhavani

Abstract:

India currently accounts for 60 percent of the open defecation that is practiced globally. While research in the domain of sanitation development makes it apparent that girls and women living in rural India are disproportionately affected, interventions to address this dilemma are lacking. An important but relatively unexplored connection with poor sanitation is that women living in rural India are not only the largest marginalized group without access to adequate sanitation facilities, they also represent a majority of India’s unskilled workers. By training women to build their own toilets, through an approach that has demonstrated success in empowering marginalized communities through technical and vocational education and training (TVET), a collaborative dynamic emerges that can engage entire communities in the movement towards total sanitation. Designed and implemented by Amrita University, this technology-enhanced, community-based approach to skill development, known as Amrita computerized Vocational Education and Training (or Amrita cVET), has begun to show promise in addressing the struggle to end open defecation, and raise sanitation awareness, as well as strengthen personal and community development among women living in rural India. While Amrita cVET project, known as Women Empowerment: Sanitation, is currently in implementation in seven states throughout India, this paper will discuss early stages of the intervention in rural villages within the Indian states of: Karnataka and Goa, where previous sanitation efforts have failed to take hold.

Keywords: community based development, empowerment studies, sanitation in India, computerized vocational training

Procedia PDF Downloads 388
7350 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes

Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland

Abstract:

This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.

Keywords: speech prosody, PTSD, machine learning, feature extraction

Procedia PDF Downloads 90
7349 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 386
7348 The Right of Pregnant Girls to Remain in School: Conflicting Human Rights

Authors: Ronelle Prinsloo

Abstract:

Teenage pregnancy in South African schools is a growing concern. In South Africa, many young female learners end their schooling permanently, not because they have completed their studies, but due to pregnancy. The admission policy of public schools is determined by the governing body of such a school, and this policy can determine that a pregnant leaner may not attend school during pregnancy and for a certain period after the birth of the child. This can be seen as an infringement of the rights of the teenage mother to be allowed to attend school. It can also be argued that this conflicts with the best interest of the child as well as the rights of the governing body to determine policy in accordance with the mandate as given to them by the parents and community served by the school. A pregnant learner can argue that the admission policy of a school is discriminatory if it does not allow the pregnant learner to continue her schooling. She may also argue that she is being unfairly discriminated against based on gender because in many instances, the baby’s father is still allowed to go to school. The Constitution (Constitution of the Republic of South Africa, Act 108 of 1996), provides in section 9, that everyone is equal before the law; it goes on to provide that equality includes the full and equal enjoyment of all rights and freedoms and provides those grounds on which one may not be discriminated against including, gender, sex, and pregnancy. Schools should be encouraged to re-enroll students if they have a support system available to assist with the necessary childcare when they attend school. To dramatically increase the number of young people enrolled in alternative pathways such as Further Education and Training or Adult Basic Education and Training must be provided. In addition, alternative systems must offer viable exit opportunities for participants by cohering with further education and economic opportunities.

Keywords: admission policy, Constitution of South Africa, human rights, teenage pregnancy

Procedia PDF Downloads 69
7347 Factorial Validity for the Morale Sprit Scale: The Case for Physical Education Faculty Members at Jordanian Universities

Authors: Abedalbasit M. Abedalhafiz, Aman Kasawneh, Zyad Altahynah, Ahmad Okor

Abstract:

The purpose of this study was to determine the construct validity of the morale sprit scale (MSS). Ninety faculty members from colleges of physical education at Jordanian universities were chosen to participate in this study. The design of this study was an ex-post facto. The MSS consists of (48) items that measure different dimensions of morale spirit among faculty members. Principle axis factoring with oblique rotation was utilized to uncover the underlying structure of the instrument. The findings revealed eight factor solution explaining (72.825%). Seven factors were accepted according to the conditions of accepting factors. The seven factors were named morale as reflection of faculty and department's administration, regulations and instructions, working environment and conditions, promotions and incentives and salaries, relations between the faculty member's, the trend toward the college and university, the trend toward self factors.

Keywords: Factorial validity, morale sprit, faculty members, Jordanian Universities

Procedia PDF Downloads 416
7346 Perceptions of Teachers in South Africa Regarding Retirement in Gauteng Schools in Tshwane North District

Authors: Emily Magoma-Nthite, Nonhlanhla Maseko, Mabatho Sedibe

Abstract:

In this study, the focus is on the exploration and description of the teachers’ perceptions regarding retirement in Gauteng school in Tshwane North districts. From the individual and group interviews, the findings are leading to suggestions that a more comprehensive program for preparing teachers for retirement is highly necessary. All the participants were aware of their retirement age of 60 years as stipulated in the department of education internal memorandum No: 05 of 2021, which states that the compulsory retirement age in the public service is 60 years. It further states that the age restriction is in accordance with Chapter 4 of the Public Service Act, 1994 and Chapter 4 of the Employment of Educators Act, 1998, as amended. It was found out that there are some anxieties and fears as the majority seemed not ready and maybe not prepared enough for the retirement. Recommendations for a pre-retirement programme aimed at timeous preparation, which may include psychological, financial, and ability to keep functioning post retirement, will be proposed to the department of education in Gauteng and for the Tshwane North district as the pilot site on approval.

Keywords: teachers, pre-retirement, preparedness, gauteng schools

Procedia PDF Downloads 119
7345 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
7344 Peer Group Approach: An Oral Health Intervention from Children for Children at Primary School in Klungkung, Bali, Indonesia

Authors: Regina Tedjasulaksana, Maria Martina Nahak, A. A. Gede Agung, Ni Made Widhiasti

Abstract:

Strategic effort to realize the empowerment of community in school is through the peer group approach so that it needs to choose the students who are trained as the’ little dentist’ in order to have the cognitive and skills to participate in the school dental health effort (UKGS) program, such as providing oral health education to the other students. Aim: To assessed the effectiveness of peer group approach to enhance the oral health knowledge level of schoolchildren at primary school in Klungkung, Bali. Methods: Experimental study using the pre-post test without control group design. The differences of knowledge levels, tooth brushing behavior and oral hygiene status (using PHP-M index) of 10 students before and after trained as the little dentists were analyzed using paired t-test. The correlations between knowledge level and tooth brushing behavior and correlations between tooth brushing behavior and oral hygiene before and after trained as the little dentists were analyzed using Spearman. Furthermore, the trained little dentists provide oral health education to 102 students of grade 1 to 5 at their school once a week for 3 months. The students’ knowledge level scores of each grade were taken every 21 days as many as three times The difference of it was analyzed using Repeated Measured. Result: The mean scores among all little dentists before and after training for each of knowledge level were each 63.05 + 5.62 and 85.00 + 7.81, tooth brushing behavior were each 31.00 + 14.49 and 100.00 + 0.00 and oral hygiene status using PHP-M index were each 32.80 + 10.17 and 11.40 + 8.01. The knowledge level, tooth brushing behavior and oral hygiene status of 10 students before and after trained as the little dentists were different significantly (p<0.05). Before and after trained as the little dentists it showed that significant correlations between knowledge level with tooth brushing behavior (p<0.05) and significant correlations between tooth brushing behavior and oral hygiene (p<0.05). The mean scores of knowledge level among all students before (pre-test) and after (post-test (1),(2),(3)) getting oral health education from little dentists for each, of grade 1 were 40.00 + 17.97; 67.85 + 18.88; 81.72 +26.48 and 70.00 + 22.87, grade 2 were 40.00 + 17.97; 67.85 + 18.88; 81.72 + 26.48 and 70.00 + 22.87, grade 3 were 65.83 + 23.94; 72.50 + 26.08; 80.41 + 24.93 and 83.75 + 19.74, grade 4 were 88.57 + 12.92; 90.71 + 9.97; 92.85 + 10.69 and 93.57 + 6.33 and grade 5 were 86.66 + 13.40; 93.33 + 9.16; 94.16 + 10.17 and 98.33 + 4.81. The students’ knowledge level of grade 1,2 and 3 before and after getting oral health education from little dentists showed significant different (p<0.05), meanwhile there was no significant different on grade 4 and 5 (p<0.05) although mean scores showed an increase. Conclusion: Peer group approach can be used to enhance the oral health knowledge level of schoolchildren at primary school in Klungkung, Bali.

Keywords: small dentists, oral health, peer group approach, school children

Procedia PDF Downloads 429
7343 Towards Optimising Building Information Modelling and Building Management System in Higher Education Institutions Facility Management: A Review

Authors: Zhuoqun Sun, Francisco Sierra, A. Booth

Abstract:

With BIM rapidly implemented in the design and construction stage of a project, researchers begin to focus on improving the operation and maintenance stage with the aid of BIM. Since the increasing amount of electronic equipment installed in the building, building management system becomes mainstream for controlling a building, especially in higher education institutions that can play an important role in terms of reducing carbon emission and improving energy efficiency. Currently, an approach to integrate BIM and BMS to improve HEIs facility management has not been established yet. Thus, this paper aims to analyse the benefits, issues, and trends of BIM and BMS integration and their application in HEIs. A systematic literature review was carried out on SCOPUS by applying the PRISMA methodology. 73 articles have been chosen based on keywords, abstracts, and the full content of the articles. The benefit and existed issues from the articles are analysed. The review shows the need to develop a tool to improve facility management through BIM BMS integration.

Keywords: BIM, BMS, HEIs, review

Procedia PDF Downloads 162
7342 Deposit Insurance and Financial Inclusion in the Economic Community of Central African States

Authors: Antoine F. Dedewanou, Eric N. Ekpinda

Abstract:

We investigate whether and how deposit insurance program affects savings decisions in the Economic Community of Central African States (ECCAS). Specifically, using the World Bank’s 2014 and 2011 Global Financial Inclusion (Global Findex) databases, we apply special regressor approach. We find that the deposit insurance program increases significantly, everything else equal, the probability that people save their money at a financial institution by 11 percentage points in Gabon, by 22.2 percentage points in DR Congo and by 15.1 percentage points in Chad. These effects are matched with positive effects of age and education level. But in Cameroon, the effect of deposit insurance is not significant. The policies aimed at fostering financial inclusion will be more effective if there is a deposit insurance scheme in place, along with awareness among young people, and education programs. JEL Classification: G21, O12, O16

Keywords: deposit insurance, savings, special regressor, ECCAS countries

Procedia PDF Downloads 188
7341 Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing

Authors: Beng Yew Low, Cher Liang Cha, Cheng Yong Teoh

Abstract:

Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model.

Keywords: continual assessment, predictive analytics, random forest, student psychological profile

Procedia PDF Downloads 134
7340 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96
7339 A Laboratory–Designed Activity in Ecology to Demonstrate the Allelopathic Property of the Philippine Chromolaena odorata L. (King and Robinson) Leaf Extracts

Authors: Lina T. Codilla

Abstract:

This study primarily designed a laboratory activity in ecology to demonstrate the allelopathic property of the Philippine Chromolaena odorata L. (hagonoy) leaf extracts to Lycopersicum esculentum (M), commonly known as tomatoes. Ethanol extracts of C. odorata leaves were tested on seed germination and seedling growth of L. esculentum in 7-day and 14-day observation periods. Analysis of variance and Tukey’s HSD post hoc test was utilized to determine differences among treatments while Pre–test – Post–test experimental design was utilized in the determination of the effectiveness of the designed laboratory activity. Results showed that the 0.5% concentration level of ethanol leaf extracts significantly inhibited germination and seedling growth of L. esculentum in both observation periods. These results were used as the basis in the development of instructional material in ecology. The laboratory activity underwent face validation by five (5) experts in various fields of specialization, namely, Biological Sciences, Chemistry and Science Education. The readability of the designed laboratory activity was determined using a Cloze Test. Pilot testing was conducted and showed that the laboratory activity developed is found to be a very effective tool in supplementing learning about allelopathy in ecology class. Thus, it is recommended for use among ecology classes but modification will be made in a small – scale basis to minimize time consumption.

Keywords: allelopathy, chromolaena odorata l. (hagonoy), designed-laboratory activity, organic herbicide students’ performance

Procedia PDF Downloads 294
7338 The Role of Libraries in the Context of Indian Knowledge Based Society

Authors: Sanjeev Sharma

Abstract:

We are living in the information age. Information is not only important to an individual but also to researchers, scientists, academicians and all others who are doing work in their respective fields. The 21st century which is also known as the electronic era has brought several changes in the mechanism of the libraries in their working environment. In the present scenario, acquisition of information resources and implementation of new strategies have brought a revolution in the library’s structures and their principles. In the digital era, the role of the library has become important as new information is coming at every minute. The knowledge society wants to seek information at their desk. The libraries are managing electronic services and web-based information sources constantly in a democratic way. The basic objective of every library is to save the time of user which is based on the quality and user-orientation of services. With the advancement of information communication and technology, the libraries should pay more devotion to the development trends of the information society that would help to adjust their development strategies and information needs of the knowledge society. The knowledge-based society demands to re-define the position and objectives of all the institutions which work with information, knowledge, and culture. The situation is the era of digital India is changing at a fast speed. Everyone wants information 24x7 and libraries have been recognized as one of the key elements for open access to information, which is crucial not only to individual but also to democratic knowledge-based information society. Libraries are especially important now a day the whole concept of education is focusing more and more independent e-learning and their acting. The citizens of India must be able to find and use the relevant information. Here we can see libraries enter the stage: The essential features of libraries are to acquire, organize, store and retrieve for use and preserve publicly available material irrespective of the print as well as non-print form in which it is packaged in such a way that, when it is needed, it can be found and put to use.

Keywords: knowledge, society, libraries, culture

Procedia PDF Downloads 140
7337 Intercultural Trainings for Future Global Managers: Evaluating the Effect on the Global Mind-Set

Authors: Nina Dziatzko, Christopher Stehr, Franziska Struve

Abstract:

Intercultural competence as an explicit required skill nearly never appears in job advertisements in international or even global contexts. But especially those who have to deal with different nationalities and cultures in their everyday business need to have several intercultural competencies and further a global mind-set. This way the question arises how potential future global managers can be trained to learn these competencies. In this regard, it might be helpful to see if different types of intercultural trainings have different effects on those skills. This paper outlines lessons learned based on the evaluation of two different intercultural trainings for management students. The main differences between the observed intercultural trainings are the amount of theoretical input in relation to hands-on experiences, the number of trainers as well as the used methods to teach implicit cultural rules. Both groups contain management students with the willingness and perspective to work abroad or to work in international context. The research is carried out with a pre-training-survey and a post-training-survey which consists of questions referring the international context of the students and a self-estimation of 19 identified intercultural and global mind-set skills, such as: cosmopolitanism, empathy, differentiation and adaptability. Whereas there is no clear result which training gets overall a significant higher increase of skills, there is a clear difference between the focus of competencies trained by each of the intercultural trainings. This way this research provides a guideline for both academicals institutions as well as companies for the decision between different types of intercultural trainings, if the to be trained required skills are defined. Therefore the efficiency and the accuracy of fit of the education of future global managers get optimized.

Keywords: global mind-set, intercultural competencies, intercultural training, learning experiences

Procedia PDF Downloads 277
7336 How Do L1 Teachers Assess Haitian Immigrant High School Students in Chile?

Authors: Gloria Toledo, Andrea Lizasoain, Leonardo Mena

Abstract:

Immigration has largely increased in Chile in the last 20 years. About 6.6% of our population is foreign, from which 14.3% is Haitian. Haitians are between 15 and 29 years old and have come to Chile escaping from a social crisis. They believe that education and work will help them do better in life. Therefore, rates of Haitian students in the Chilean school system have also increased: there were 3,121 Haitian students enrolled in 2017. This is a challenge for the public school, which takes in young people who must face schooling, social immersion and learning of a second language simultaneously. The linguistic barrier affects both students’ and teachers’ adaptation process, which has an impact on the students’ academic performance and consequent acquisition of Spanish. In order to explore students’ academic performance and interlanguage development, we examined how L1 teachers assess Haitian high school students’ written production in Spanish. With this purpose, teachers were asked to use a specially designed grid to assess correction, accommodation, lexical and analytical complexity, organization and fluency of both Haitian and Chilean students. Parallelly, texts were approached from an error analysis perspective. Results from grids and error analysis were then compared. On the one hand, it has been found that teachers give very little feedback to students apart from scores and grades, which does not contribute to the development of the second language. On the other hand, error analysis has yielded that Haitian students are in a dynamic process of the acquisition of Spanish, which could be enhanced if L1 teacher were aware of the process of interlanguage developmen.

Keywords: assessment, error analysis, grid, immigration, Spanish aquisition, writing

Procedia PDF Downloads 136
7335 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 123
7334 Ecological Systems Theory, the SCERTS Model, and the Autism Spectrum, Node and Nexus

Authors: C. Surmei

Abstract:

Autism Spectrum Disorder (ASD) is a complex developmental disorder that can affect an individual’s (but is not limited to) cognitive development, emotional development, language acquisition and the capability to relate to others. Ecological Systems Theory is a sociocultural theory that focuses on environmental systems with which an individual interacts. The SCERTS Model is an educational approach and multidisciplinary framework that addresses the challenges confronted by individuals on the autism spectrum and other developmental disabilities. To aid the understanding of ASD and educational philosophies for families, educators, and the global community alike, a Comparative Analysis was undertaken to examine key variables (the child, society, education, nurture/care, relationships, communication). The results indicated that the Ecological Systems Theory and the SCERTS Model were comparable in focus, motivation, and application, attaining to a viable and notable relationship between both theories. This paper unpacks two child development philosophies and their relationship to each other.

Keywords: autism spectrum disorder, ecological systems theory, education, SCERTS model

Procedia PDF Downloads 588
7333 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 24
7332 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback

Authors: Jacopo Baboni Schilingi

Abstract:

We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.

Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication

Procedia PDF Downloads 154
7331 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers

Authors: Oumaima Lahmar

Abstract:

This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.

Keywords: finance literature, textual analysis, topic modeling, perplexity

Procedia PDF Downloads 170
7330 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination

Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq

Abstract:

Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.

Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing

Procedia PDF Downloads 90
7329 Investigating Teachers’ Approaches in Teaching English and Students’ Communicative Ability in a Tertiary College

Authors: Adel Ben Mohamed

Abstract:

The widespread use of the English language around the world has pushed many countries to consider such a language as a top priority in their educational system. One of these countries is the Sultanate of Oman. In this frame, the Omani government has allocated huge budgets as well as resources in order to implement the English language in its education system. The importance of English is prevalent in Oman. This is clearly noticeable through remarkable signs. For instance, most of the official documents in Oman are in both Arabic (the mother tongue) or English. In addition to that, there is a mushroom of English language institutes all over the country. In 2020, there are over fourteen English language institutes and centers in Oman (esl base, 2020). Moreover, these days most of the Omani parents are sending their children for tuition to learn the English language. Hence, it is apparent that the Sultanate of Oman is giving a great value to the importance of English in attaining various goals. However, in the world of work, what is more, important today is fluency rather than accuracy. Therefore, many people go for communication English rather than technical English. For example, Oman Daily Observer newspaper published a job advertisement of a sale assistant on 23rd of November 2020, recommended that speaking very well English is a must to be hired for the position (Oman Observer, 2020). In line with this and because of the great importance of the English language in Oman, the ministry of higher education has placed much emphasis on this official foreign language. Therefore, in the Omani educational system, all post -secondary students must sit for one year in one of the higher education institutions as a General Foundation Programmes (GFP) prior to moving to their respective majors in diploma level. Accordingly, the implementation of any teaching approach is determined by different factors: some are directly linked to teachers while others are related to organizational variables.

Keywords: teaching approaches, communicative, ability, investigating

Procedia PDF Downloads 93
7328 Peer-Review as a Means to Improve Students' Translation Skills

Authors: Bahia Braktia, Ahlem Ghamri

Abstract:

Years ago, faculties and administrators realized that students entering college were not prepared for the academic sphere; however, as a type of collaborative learning, peer-review gave students a social context in which they could learn more efficiently. Peer-review has proven its effectiveness in higher education. Numerous studies have been conducted on peer review and its effects on the quality of students’ writing, and several publications recommended peer-review as part of the feedback process. Student writers showed a tendency towards making significant meaning-level revisions and surface-level revisions. Last but not least, studies reported that peer-review helps students develop their self-assessment skills as well as critical thinking. The use of peer-review has become well known and widely adopted to the L2 classroom environment. However, little is known about peer review on translation students. The purpose of this study was to investigate the students' perspective on peer-review, and whether this method affected the quality of their translation. A mixed method design was adopted. Students were requested to translate two texts from Arabic into English, and they gave and received structured feedback to their classmates' translations. A survey was administered, followed by semi-structured interviews, to examine the students' attitudes toward peer-review. The results of the study showed that peer-review was considered a good proofreading method for most students. The students also showed a positive attitude toward it, and they reported that they benefited from the interaction with their peers. The findings implied that the inclusion of peer-review can be an effective pedagogical practice for teaching translation and writing to foreign language learners.

Keywords: language teaching, feedback, peer-review, translation

Procedia PDF Downloads 198
7327 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification

Authors: Bharatendra Rai

Abstract:

The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.

Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences

Procedia PDF Downloads 129
7326 Effective Health Promotion Interventions Help Young Children to Maximize Their Future Well-Being by Early Childhood Development

Authors: Nadeesha Sewwandi, Dilini Shashikala, R. Kanapathy, S. Viyasan, R. M. S. Kumara, Duminda Guruge

Abstract:

Early childhood development is important to the emotional, social, and physical development of young children and it has a direct effect on their overall development and on the adult they become. Play is so important to optimal child developments including skill development, social development, imagination, creativity and it fulfills a baby’s inborn need to learn. So, health promotion approach empowers people about the development of early childhood. Play area is a new concept and this study focus how this play areas helps to the development of early childhood of children in rural villages in Sri Lanka. This study was conducted with a children society in a rural village called Welankulama in Sri Lanka. Survey was conducted with children society about emotional, social and physical development of young children (Under age eight) in this village using questionnaires. It described most children under eight years age have poor level of emotional, social and physical development in this village. Then children society wanted to find determinants for this problem and among them they prioritized determinants like parental interactions, learning environment and social interaction and address them using an innovative concept called play area. In this village there is a common place as play area under a big tamarind tree. It consists of a playhouse, innovative playing toys, mobile library, etc. Twice a week children, parents, grandparents gather to this nice place. Collective feeding takes place in this area once a week and it was conducted by several mothers groups in this village. Mostly grandparents taught about handicrafts and this is a very nice place to share their experiences with all. Healthy competitions were conducted in this place through playing to motivate the children. Happy calendar (mood of the children) was marked by children before and after coming to the play area. In terms of results qualitative changes got significant place in this study. By learning about colors and counting through playing the thinking and reasoning skills got developed among children. Children were widening their imagination by means of storytelling. We observed there were good developments of fine and gross motor skills of two differently abled children in this village. Children learn to empathize with other people, sharing, collaboration, team work and following of rules. And also children gain knowledge about fairness, through role playing, obtained insight on the right ways of displaying emotions such as stress, fear, anger, frustration, and develops knowledge of how they can manage their feelings. The reading and writing ability of the children got improved by 83% because of the mobile library. The weight of children got increased by 81% in the village. Happiness was increased by 76% among children in the society. Playing is very important for learning during early childhood period of a person. Health promotion interventions play a major role to the development of early childhood and it help children to adjust to the school setting and even to enhance children’s learning readiness, learning behaviors and problem solving skills.

Keywords: early childhood development, health promotion approach, play and learning, working with children

Procedia PDF Downloads 139