Search results for: teacher centered learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8241

Search results for: teacher centered learning

2091 Web-Based Paperless Campus: An Approach to Reduce the Cost and Complexity of Education Administration

Authors: Yekini N. Asafe, Haastrup A. Victor, Lawal N. Olawale, Okikiola F. Mercy

Abstract:

Recent increase in access to personal computer and networking systems have made it feasible to perform much of cumbersome and costly paper-based administration in all organization. Desktop computers, networking systems, high capacity storage devices and telecommunications system is currently allowing the transfer of various format of data to be processed, stored and dissemination for the purpose of decision making. Going paperless is more of benefits compare to full paper-based office. This paper proposed a model for design and implementation of e-administration system (paperless campus) for an institution of learning. If this model is design and implemented it will reduced cost and complexity of educational administration also eliminate menaces and environmental hazards attributed to paper-based administration within schools and colleges.

Keywords: e-administration, educational administration, paperless campus, paper-based administration

Procedia PDF Downloads 374
2090 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 335
2089 AI-Driven Strategies for Sustainable Electronics Repair: A Case Study in Energy Efficiency

Authors: Badiy Elmabrouk, Abdelhamid Boujarif, Zhiguo Zeng, Stephane Borrel, Robert Heidsieck

Abstract:

In an era where sustainability is paramount, this paper introduces a machine learning-driven testing protocol to accurately predict diode failures, merging reliability engineering with failure physics to enhance repair operations efficiency. Our approach refines the burn-in process, significantly curtailing its duration, which not only conserves energy but also elevates productivity and mitigates component wear. A case study from GE HealthCare’s repair center vividly demonstrates the method’s effectiveness, recording a high prediction of diode failures and a substantial decrease in energy consumption that translates to an annual reduction of 6.5 Tons of CO2 emissions. This advancement sets a benchmark for environmentally conscious practices in the electronics repair sector.

Keywords: maintenance, burn-in, failure physics, reliability testing

Procedia PDF Downloads 66
2088 Towards a Model of Support in the Areas of Services of Educational Assistance and Tutoring in Middle Education in Mexico

Authors: Margarita Zavala, Julio Rolón, Gabriel Chavira, José González, Jorge Orozco, Roberto Pichardo

Abstract:

Adolescence is a neuralgic stage in the formation of every human being, generally at this stage is when the middle school level is studied. In 2006 in Mexico incorporated “mentoring" space to assist students in their integration and participation in life. In public middle schools, is sometimes difficult to be aware of situations that affect students because of the number of them and traditional records management. Whit this they lose the opportunity to provide timely support as a preventive way. In order to provide this support, it is required to know the students by detecting the relevant information that has greater impact on their learning process. This research is looking to check if it is possible to identify student’s relevant information to detect when it is at risk, and then to propose a model to manage in a proper way such information.

Keywords: adolescence, mentoring, middle school students, mentoring system support

Procedia PDF Downloads 417
2087 Athletics and Academics: A Mixed Methods Enquiry on University/College Student Athletes' Experiences

Authors: Tshepang Tshube

Abstract:

The primary purpose of this study was to examine student-athletes’ experiences, particularly an in-depth account of balancing school and sport. The secondary objective was to assess student-athletes’ susceptibility to the effects of the “dumb-jock” stereotype threat and also determine the strength of athletic and academic identity as predicated by the extent to which stereotype is perceived by student-athletes. Sub-objectives are (a) examine support structures available for student-athletes in their respective academic institutions, (b) to establish the most effective ways to address student-athletes’ learning needs, (c) to establish crucial entourage members who play a pivotal role in student-athletes’ academic pursuits, (d) and unique and effective ways lecturers and coaches can contribute to student-athletes’ learning experiences. To achieve the above stated objectives, the study used a mixed methods approach. A total of 110 student-athletes from colleges and universities in Botswana completed an online survey that was followed by semi-structured interviews with eight student-athletes, and four coaches. The online survey assessed student-athletes’ demographic variables, measured athletic (AIMS), academic (modified from AIMS) identities, and perceived stereotype threat. Student-athletes reported a slightly higher academic identity (M=5.9, SD= .85) compared to athletic identity (M=5.4, SD=1.0). Student-athletes reported a moderate mean (M=3.6, SD=.82) just above the midpoint of the 7-point scale for stereotype threat. A univariate ANOVA was conducted to determine if there was any significant difference between university and college brackets in Botswana with regard to three variables: athletic identity, student identity and stereotype threat. The only significant difference was in the academic identity (Post Hoc-Tukey Student Identity: Bracket A < Bracket B, Bracket C) with Bracket A schools being the least athletically competitive. Bracket C and B are the most athletically competitive brackets in Botswana. Follow-up interviews with student-athletes and coaches were conducted. All interviews lasted an average of 55 minutes. Following all the interviews, all recordings were transcribed which is an obvious first step in qualitative data analysis process. The researcher and an independent academic with experience in qualitative research independently listened to all recordings of the interviews and read the transcripts several times. Qualitative data results indicate that even though student-athletes reported a slightly higher student identity, there are parallels between sports and academic structures on college campuses. Results also provide evidence of lack of academic support for student-athletes. It is therefore crucial for student-athletes to have access to academic support services (e.g., tutoring, flexible study times, and reduced academic loads) to meet their academic needs. Coaches and lecturers play a fundamental role in sporting student-athletes. Coaches and professors’ academic efficacy on student-athletes enhances student-athletes’ academic confidence. Results are discussed within the stereotype threat theory.

Keywords: athletic identity, colligiate sport, sterotype threat, student athletes

Procedia PDF Downloads 462
2086 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

The paper discusses the main aspects involved in the development of a supply chain management system using the newly developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.

Keywords: demand forecasting, machine learning, risk management, supply chain design

Procedia PDF Downloads 94
2085 Language Education Policy in Arab Schools in Israel

Authors: Fatin Mansour Daas

Abstract:

Language education responds to and is reflective of emerging social and political trends. Language policies and practices are shaped by political, economic, social and cultural considerations. Following this, Israeli language education policy as implemented in Arab schools in Israel is influenced by the particular political and social situation of Arab-Palestinian citizens of Israel. This national group remained in their homeland following the war in 1948 between Israel and its Arab neighbors and became Israeli citizens following the establishment of the State of Israel. This study examines language policy in Arab schools in Israel from 1948 until the present time in light of the unique experience of the Palestinian Arab homeland minority in Israel with a particular focus on questions of politics and identity. The establishment of the State of Israel triggered far-reaching political, social and educational transformations within Arab Palestinian society in Israel, including in the area of language and language studies. Since 1948, the linguistic repertoire of Palestinian Arabs in Israel has become more complex and diverse, while the place and status of different languages have changed. Following the establishment of the State of Israel, only Hebrew and Arabic were retained as the official languages, and Israeli policy reflected this in schools as well: with the advent of the Jewish state, Hebrew language education among Palestinians in Israel has increased. Similarly, in Arab Palestinian schools in Israel, English is taught as a third language, Hebrew as a second language, and Arabic as a first language – even though it has become less important to native Arabic speakers. This research focuses on language studies and language policy in the Arab school system in Israel from 1948 onwards. It will analyze the relative focus of language education between the different languages, the rationale of various language education policies, and the pedagogic approach used to teach each language and student achievements vis-à-vis language skills. This study seeks to understand the extent to which Arab schools in Israel are multi-lingual by examining successes, challenges and difficulties in acquiring the respective languages. This qualitative study will analyze five different components of language education policy: (1) curriculum, (2) learning materials; (3) assessment; (4) interviews and (5) archives. Firstly, it consists of an analysis examining language education curricula, learning materials and assessments used in Arab schools in Israel from 1948-2018 including a selection of language textbooks for the compulsory years of study and the final matriculation (Bagrut) examinations. The findings will also be based on archival material which traces the evolution of language education policy in Arabic schools in Israel from the years 1948-2018. This archival research, furthermore, will reveal power relations and general decision-making in the field of the Arabic education system in Israel. The research will also include interviews with Ministry of Education staff who provide instructional oversight in the instruction of the three languages in the Arabic education system in Israel. These interviews will shed light on the goals of language education as understood by those who are in charge of implementing policy.

Keywords: language education policy, languages, multilingualism, language education, educational policy, identity, Palestinian-Arabs, Arabs in Israel, educational school system

Procedia PDF Downloads 89
2084 Impact of Chess Intervention on Cognitive Functioning of Children

Authors: Ebenezer Joseph

Abstract:

Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.

Keywords: chess, intelligence, creativity, children

Procedia PDF Downloads 256
2083 Nurturing Students' Creativity through Engagement in Problem Posing and Self-Assessment of Its Development

Authors: Atara Shriki, Ilana Lavy

Abstract:

In a rapidly changing technological society, creativity is considered as an engine of economic and social progress. No doubt the education system has a central role in nurturing all students’ creativity, however, it is normally not encouraged at school. The causes of this reality are related to a variety of circumstances, among them: external pressures to cover the curriculum and succeed in standardized tests that mostly require algorithmic thinking and implementation of rules; teachers’ tendency to teach similarly to the way they themselves were taught as school students; relating creativity to giftedness, and therefore avoid nurturing all students' creativity; lack of adequate learning materials and accessible tools for following and evaluating the development of students’ creativity; and more. Since success in academic studies requires, among other things, creativity, lecturers in higher education institutions should consider appropriate ways to nurture students’ creative thinking and assess its development. Obviously, creativity has a multifaceted nature, numerous definitions, various perspectives for studying its essence (e.g., process, personality, environment, and product), and several approaches aimed at evaluating and assessing creative expressions (e.g., cognitive, social-personal, and psychometric). In this framework, we suggest nurturing students’ creativity through engaging them in problem posing activities that are part of inquiry assignments. In order to assess the development of their creativity, we propose to employ a model that was designed for this purpose, based on the psychometric approach, viewing the posed problems as the “creative product”. The model considers four measurable aspects- fluency, flexibility, originality, and organization, as well as a total score of creativity that reflects the relative weights of each aspect. The scores given to learners are of two types: (1) Total scores- the absolute number of posed problems with respect to each of the four aspects, and a final score of creativity; (2) Relative scores- each absolute number is transformed into a number that relates to the relative infrequency of the posed problems in student’s reference group. Through converting the scores received over time into a graphical display, students can assess their progress both with respect to themselves and relative to their reference group. Course lecturers can get a picture of the strengths and weaknesses of each student as well as the class as a whole, and to track changes that occur over time in response to the learning environment they had generated. Such tracking may assist lecturers in making pedagogical decisions about emphases that should be put on one or more aspects of creativity, and about the students that should be given a special attention. Our experience indicates that schoolteachers and lecturers in higher education institutes find the combination of engaging learners in problem posing along with self-assessment of their progress through utilizing the graphical display of accumulating total and relative scores has the potential to realize most learners’ creative potential.

Keywords: creativity, problem posing, psychometric model, self-assessment

Procedia PDF Downloads 318
2082 Adapting to College: Exploration of Psychological Well-Being, Coping, and Identity as Markers of Readiness

Authors: Marit D. Murry, Amy K. Marks

Abstract:

The transition to college is a critical period that affords abundant opportunities for growth in conjunction with novel challenges for emerging adults. During this time, emerging adults are garnering experiences and acquiring hosts of new information that they are required to synthesize and use to inform life-shaping decisions. This stage is characterized by instability and exploration, which necessitates a diverse set of coping skills to successfully navigate and positively adapt to their evolving environment. However, important sociocultural factors result in differences that occur developmentally for minority emerging adults (i.e., emerging adults with an identity that has been or is marginalized). While the transition to college holds vast potential, not all are afforded the same chances, and many individuals enter into this stage at varying degrees of readiness. Understanding the nuance and diversity of student preparedness for college and contextualizing these factors will better equip systems to support incoming students. Emerging adulthood for ethnic, racial minority students presents itself as an opportunity for growth and resiliency in the face of systemic adversity. Ethnic, racial identity (ERI) is defined as an identity that develops as a function of one’s ethnic-racial group membership. Research continues to demonstrate ERI as a resilience factor that promotes positive adjustment in young adulthood. Adaptive coping responses (e.g., engaging in help-seeking behavior, drawing on personal and community resources) have been identified as possible mechanisms through which ERI buffers youth against stressful life events, including discrimination. Additionally, trait mindfulness has been identified as a significant predictor of general psychological health, and mindfulness practice has been shown to be a self-regulatory strategy that promotes healthy stress responses and adaptive coping strategy selection. The current study employed a person-centered approach to explore emerging patterns across ethnic identity development and psychological well-being criterion variables among college freshmen. Data from 283 incoming college freshmen at Northeastern University were analyzed. The Brief COPE Acceptance and Emotional Support scales, the Five Factor Mindfulness Questionnaire, and MIEM Exploration and Affirmation measures were used to inform the cluster profiles. The TwoStep auto-clustering algorithm revealed an optimal three-cluster solution (BIC = 848.49), which classified 92.6% (n = 262) of participants in the sample into one of the three clusters. The clusters were characterized as ‘Mixed Adjustment’, ‘Lowest Adjustment’, and ‘Moderate Adjustment.’ Cluster composition varied significantly by ethnicity X² (2, N = 262) = 7.74 (p = .021) and gender X² (2, N = 259) = 10.40 (p = .034). The ‘Lowest Adjustment’ cluster contained the highest proportion of students of color, 41% (n = 32), and male-identifying students, 44.2% (n = 34). Follow-up analyses showed higher ERI exploration in ‘Moderate Adjustment’ cluster members, also reported higher levels of psychological distress, with significantly elevated depression scores (p = .011), psychological diagnoses of depression (p = .013), anxiety (p = .005) and psychiatric disorders (p = .025). Supporting prior research, students engaging with identity exploration processes often endure more psychological distress. These results indicate that students undergoing identity development may require more socialization and different services beyond normal strategies.

Keywords: adjustment, coping, college, emerging adulthood, ethnic-racial identity, psychological well-being, resilience

Procedia PDF Downloads 109
2081 The Analogy of Visual Arts and Visual Literacy

Authors: Lindelwa Pepu

Abstract:

Visual Arts and Visual Literacy are defined with distinction from one another. Visual Arts are known for art forms such as drawing, painting, and photography, just to name a few. At the same time, Visual Literacy is known for learning through images. The Visual Literacy phenomenon may be attributed to the use of images was first established for creating memories and enjoyment. As time evolved, images became the center and essential means of making contact between people. Gradually, images became a means for interpreting and understanding words through visuals, that being Visual Arts. The purpose of this study is to present the analogy of the two terms Visual Arts and Visual Literacy, which are defined and compared through early practicing visual artists as well as relevant researchers to reveal how they interrelate with one another. This is a qualitative study that uses an interpretive approach as it seeks to understand and explain the interest of the study. The results reveal correspondence of the analogy between the two terms through various writers of early and recent years. This study recommends the significance of the two terms and the role they play in relation to other fields of study.

Keywords: visual arts, visual literacy, pictures, images

Procedia PDF Downloads 164
2080 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan

Abstract:

In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling

Procedia PDF Downloads 321
2079 Intrigues of Brand Activism versus Brand Antagonism in Rival Online Football Brand Communities: The Case of the Top Two Premier Football Clubs in Ghana

Authors: Joshua Doe, George Amoako

Abstract:

Purpose: In an increasingly digital world, the realm of sports fandom has extended its borders, creating a vibrant ecosystem of online communities centered around football clubs. This study ventures into the intricate interplay of motivations that drive football fans to respond to brand activism and its profound implications for brand antagonism and engagement among two of Ghana's most revered premier football clubs. Methods: A sample of 459 fervent fans from these two rival clubs were engaged through self-administered questionnaires expertly distributed via social media and online platforms. Data was analysed, using PLS-SEM. Findings: The tapestry of motivations that weave through these online football communities is as diverse as the fans themselves. It becomes apparent that fans are propelled by a spectrum of incentives. They seek education, yearn for information, revel in entertainment, embrace socialization, and fortify their self-esteem through their interactions within these digital spaces. Yet, it is the nuanced distinction in these motivations that shapes the trajectory of brand antagonism and engagement. Surprisingly, the study reveals a remarkable pattern. Football fans, despite their fierce rivalries, do not engage in brand antagonism based on educational pursuits, information-seeking endeavors, or socialization. Instead, it is motivations rooted in entertainment and self-esteem that serve as the fertile grounds for brand antagonism. Paradoxically, it is these very motivations coupled with the desire for socialization that nurture brand engagement, manifesting as active support and advocacy for their chosen club brand. Originality: Our research charters new waters by extending the boundaries of existing theories in the field. The Technology Acceptance Uses and Gratifications Theory, and Social Identity Theory all find new dimensions within the context of online brand community engagement. This not only deepens our understanding of the multifaceted world of online football fandom but also invites us to explore the implications these insights carry within the digital realm. Contribution to Practice: For marketers, our findings offer a treasure trove of actionable insights. They beckon the development of targeted content strategies that resonate with fan motivations. The implementation of brand advocacy programs, fostering opportunities for socialization, and the effective management of brand antagonism emerge as pivotal strategies. Furthermore, the utilization of data-driven insights is poised to refine consumer engagement strategies and strengthen brand affinity. Future Studies: For future studies, we advocate for longitudinal, cross-cultural, and qualitative studies that could shed further light on this topic. Comparative analyses across different types of online brand communities, an exploration of the role of brand community leaders, and inquiries into the factors that contribute to brand community dissolution all beckon the research community. Furthermore, understanding motivation-specific antagonistic behaviors and the intricate relationship between information-seeking and engagement present exciting avenues for further exploration. This study unfurls a vibrant tapestry of fan motivations, brand activism, and rivalry within online football communities. It extends a hand to scholars and marketers alike, inviting them to embark on a journey through this captivating digital realm, where passion, rivalry, and engagement harmonize to shape the world of sports fandom as we know it.

Keywords: online brand engagement, football fans, brand antagonism, motivations

Procedia PDF Downloads 63
2078 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 65
2077 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5(five) selected secondary school in Bauchi. It was discover that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequate qualified teachers and relevant materials including text-books. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: kindergarten, stress, phonetic and intonation, Nigeria

Procedia PDF Downloads 299
2076 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays

Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner

Abstract:

Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.

Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation

Procedia PDF Downloads 291
2075 Human Posture Estimation Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.

Keywords: multi-view, pose estimation, ST-GCN, joint fusion

Procedia PDF Downloads 68
2074 Difficulties for Implementation of Telenursing: An Experience Report

Authors: Jacqueline A. G. Sachett, Cláudia S. Nogueira, Diana C. P. Lima, Jessica T. S. Oliveira, Guilherme K. M. Salazar, Lílian K. Aguiar

Abstract:

The Polo Amazon Telehealth offers several tools for professionals working in Primary Health Care as a second formative opinion, teleconsulting and training between the different areas, whether medicine, dentistry, nursing, physiotherapy, among others. These activities have a monthly schedule of free access to the municipalities of Amazonas registered. With this premise, and in partnership with the University of the State of Amazonas (UEA), is promoting the practice of the triad; teaching-research-extension in order to collaborate with the enrichment and acquisition of knowledge through educational practices carried out through teleconferences. Therefore, nursing is to join efforts and inserts as a collaborator of this project running, contributing to the education and training of these professionals who are part of the health system in full Amazon. The aim of this study is to report the experience of academic of Amazonas State University nursing course, about the experience in the extension project underway in Polo Telemedicine Amazon. This was a descriptive study, the experience report type, about the experience of nursing academic UEA, by extension 'Telenursing: teleconsulting and second formative opinion for FHS professionals in the state of Amazonas' project, held in Polo Telemedicine Amazon, through an agreement with the UEA and funded by the Foundation of Amazonas Research from July / 2012 to July / 2016. Initially developed active search of members of the Family Health Strategy professionals, in order to provide training and training teams to use the virtual clinic, as well as the virtual environment is the focus of this tool design. The election period was an aggravating factor for the implementation of teleconsulting proposal, due to change of managers in each municipality, requiring the stoppage until they assume their positions. From this definition, we established the need for new training. The first video conference took place on 03.14.2013 for learning and training in the use of Virtual Learning Environment and Virtual Clinic, with the participation of municipalities of Novo Aripuanã, São Paulo de Olivença and Manacapuru. During the whole project was carried out literature about what is being done and produced at the national level about the subject. By the time the telenursing project has received twenty-five (25) consultancy requests. The consultants sent by nursing professionals, all have been answered to date. Faced with the lived experience, particularly in video conferencing, face to cause difficulties issues, such as the fluctuation in the number of participants in activities, difficulty of participants to reconcile the opening hours of the units with the schedule of video conferencing, transmission difficulties and changes schedule. It was concluded that the establishment of connection between the Telehealth points is one of the main factors for the implementation of Telenursing and that this feature is still new for nursing. However, effective training and updating, may provide to these professional category subsidies to quality health care in the Amazon.

Keywords: Amazon, teleconsulting, telehealth, telenursing

Procedia PDF Downloads 310
2073 Cognition Technique for Developing a World Music

Authors: Haider Javed Uppal, Javed Yunas Uppal

Abstract:

In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.

Keywords: cognition, world music, artificial intelligence, Thayer’s matrix

Procedia PDF Downloads 78
2072 Dark Heritage Tourism and Visitor Behaviour: The Case of Elmina Castle, Ghana

Authors: Girish Prayag, Wantanee Suntikul, Elizabeth Agyeiwaah

Abstract:

Current research on dark tourism largely follows residents’ perspectives with limited evaluations of tourists’ experiences. Unravelling the case of a dark heritage site in Elmina, Ghana, this paper develops a theoretical model to understand the relationships among four constructs namely, motivation, tourism impacts, place attachment, and satisfaction. Based on a sample of 414 domestic tourists, PLS-SEM confirmed several relationships and inter-relationships among the four constructs. For example, motivation had a positive relationship with perceptions of positive and negative tourism impacts suggesting that the more tourists were motivated to visit the site for cultural/learning experiences, the more positive and negative tourism impacts they perceived. Implications for dark tourism and heritage site management are offered.

Keywords: dark tourism, motivation, place attachment, tourism impacts

Procedia PDF Downloads 430
2071 Psychological Effects of Economic Recession on Educated Youth: Evidences from Pakistan

Authors: Mubashra Khalid, Saadia Amir

Abstract:

This study initiated to explore the empirical relationship between psychological effects of economic recession on the educated youth in Pakistan. The diminishing economic resources during recession can create certain psychological consequences on the physical and cognitive aspects of the individuals. It may generate symptoms like aggression, depression, anxiety, frustration, stress and physical health related problems among the young generation. The sample of the study was consisted of 300 students belonging to six public sector universities of the Punjab province of Pakistan. Two hypotheses were advanced in this study regarding the relationship between recession and its effects on educated youth. The findings of the research represent that a significant relationship exists between decrease in employment opportunities and growing rate of aggression among educated youth and a significant association was found between economic instability and its influence on the learning abilities of the students during recession.

Keywords: psychological effects, recession, educated youth

Procedia PDF Downloads 507
2070 Chronic Fatigue Syndrome/Myalgic Encephalomyelitis in Younger Children: A Qualitative Analysis of Families’ Experiences of the Condition and Perspective on Treatment

Authors: Amberly Brigden, Ali Heawood, Emma C. Anderson, Richard Morris, Esther Crawley

Abstract:

Background: Paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) is characterised by persistent, disabling fatigue. Health services see patients below the age of 12. This age group experience high levels of disability, with low levels of school attendance, high levels of fatigue, anxiety, functional disability and pain. CFS/ME interventions have been developed for adolescents, but the developmental needs of younger children suggest treatment should be tailored to this age group. Little is known about how intervention should be delivered to this age group, and further work is needed to explore this. Qualitative research aids patient-centered design of health intervention. Methods: Five to 11-year-olds and their parents were recruited from a specialist CFS/ME service. Semi-structured interviews explored the families’ experience of the condition and perspectives on treatment. Interactive and arts-based methods were used. Interviews were audio-recorded, transcribed and analysed thematically. Qualitative Results: 14 parents and 7 children were interviewed. Early analysis of the interviews revealed the importance of the social-ecological setting of the child, which led to themes being developed in the context of Systems Theory. Theme one relates to the level of the child, theme two the family system, theme three the organisational and societal systems, and theme four cuts-across all levels. Theme1: The child’s capacity to describe, understand and manage their condition. Younger children struggled to describe their internal experiences, such as physical symptoms. Parents felt younger children did not understand some concepts of CFS/ME and did not have the capabilities to monitor and self-regulate their behaviour, as required by treatment. A spectrum of abilities was described; older children (10-11-year-olds) were more involved in clinical sessions and had more responsibility for self-management. Theme2: Parents’ responsibility for managing their child’s condition. Parents took responsibility for regulating their child’s behaviour in accordance with the treatment programme. They structured their child’s environment, gave direct instructions to their child, and communicated the needs of their child to others involved in care. Parents wanted their child to experience a 'normal' childhood and took steps to shield their child from medicalization, including diagnostic labels and clinical discussions. Theme3: Parental isolation and the role of organisational and societal systems. Parents felt unsupported in their role of managing the condition and felt negative responses from primary care health services and schools were underpinned by a lack of awareness and knowledge about CFS/ME in younger children. This sometimes led to a protracted time to diagnosis. Parents felt that schools have the potential important role in managing the child’s condition. Theme4: Complexity and uncertainty. Many parents valued specialist treatment (which included activity management, physiotherapy, sleep management, dietary advice, medical management and psychological support), but felt it needed to account for the complexity of the condition in younger children. Some parents expressed uncertainty about the diagnosis and the treatment programme. Conclusions: Interventions for younger children need to consider the 'systems' (family, organisational and societal) involved in the child’s care. Future research will include interviews with clinicians and schools supporting younger children with CFS/ME.

Keywords: chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME), pediatric, qualitative, treatment

Procedia PDF Downloads 138
2069 Relationships between Motivation Factors and English Language Proficiency of the Faculty of Management Sciences Students

Authors: Kawinphat Lertpongmanee

Abstract:

The purposes of this study were (1) investigate the English language learning motivation and the attainment of their English proficiency, (2) to find out how motivation and motivational variables of the high and low proficiency subjects are related to their English proficiency. The respondents were 80 fourth-year from Faculty of Management Sciences students in Rajabhat Suansunadha University. The instruments used for data collection were questionnaires. The statistically analyzed by using the SPSS program for frequency, percentage, arithmetic mean, standard deviation (SD), t-test, one-way analysis of variance (ANOVA), and Pearson correlation coefficient. The findings of this study are summarized as there was a significant difference in overall motivation between high and low proficiency groups of subjects at .05 (p < .05), but not in overall motivational variables. Additionally, the high proficiency group had a significantly higher level of intrinsic motivation than did the low proficiency group at .05 (p < .05).

Keywords: English language proficiency, faculty of management sciences, motivation factors, proficiency subjects

Procedia PDF Downloads 259
2068 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 476
2067 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
2066 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 583
2065 Development of Student Invention Competences and Skills in Polytechnic University

Authors: D. S. Denchuk, O. M. Zamyatina, M. G. Minin, M. A. Soloviev, K. V. Bogrova

Abstract:

The article considers invention activity in Russia and worldwide, its modern state, and the impact of innovative engineering activity on the national economy of the considered countries. It also analyses the historical premises of modern engineer-ing invention. The authors explore the development of engineering invention at an engineer-ing university, the creation of particular environment for scientific and technical creativity of students on the example of Elite engineering education program at Tomsk Polytechnic University, Russia. It is revealed that for the successful de-velopment of engineering invention in a higher education institution it is neces-sary to apply a learning model that develops the creative potential of a student, which is, in its turn, inseparably connected with the ability to generate new ideas in engineering. Such academic environment can become a basis for revealing stu-dents' creativity.

Keywords: engineering invention, scientific and technical creativity, students, project-based approach

Procedia PDF Downloads 388
2064 An Investigation of Prior Educational Achievement on Engineering Student Performance

Authors: Jovanca Smith, Derek Gay

Abstract:

All universities possess a standard by which students are assessed and administered into their programs. This paper considers the effect of the educational history of students, as measured by specific subject grades in Caribbean examinations, on overall performance in introductory engineering math and mechanics courses. Results reflect a correlation between the highest grade in the Caribbean examinations with a higher probability of successful advancement in the university courses. Alternatively, lower entrance grades are commensurate with underperformance in the university courses. Results also demonstrate that students matriculating with the Caribbean examinations will not necessarily possess a significant advantage over students entering through an alternative route, and while previous educational background of students is a significant indicator of tentative performance in the University level math and mechanics courses, it is not the sole factor.

Keywords: bimodal distribution, differential learning, engineering education, entrance qualification

Procedia PDF Downloads 360
2063 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 477
2062 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 99