Search results for: structural heath monitoring (SHM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7253

Search results for: structural heath monitoring (SHM)

1193 Development of Risk Index and Corporate Governance Index: An Application on Indian PSUs

Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav

Abstract:

Public Sector Undertakings (PSUs), being government-owned organizations have commitments for the economic and social wellbeing of the society; this commitment needs to be reflected in their risk-taking, decision-making and governance structures. Therefore, the primary objective of the study is to suggest measures that may lead to improvement in performance of PSUs. To achieve this objective two normative frameworks (one relating to risk levels and other relating to governance structure) are being put forth. The risk index is based on nine risks, such as, solvency risk, liquidity risk, accounting risk, etc. and each of the risks have been scored on a scale of 1 to 5. The governance index is based on eleven variables, such as, board independence, diversity, risk management committee, etc. Each of them are scored on a scale of 1 to five. The sample consists of 39 PSUs that featured in Nifty 500 index and, the study covers a 10 year period from April 1, 2005 to March, 31, 2015. Return on assets (ROA) and return on equity (ROE) have been used as proxies of firm performance. The control variables used in the model include, age of firm, growth rate of firm and size of firm. A dummy variable has also been used to factor in the effects of recession. Given the panel nature of data and possibility of endogeneity, dynamic panel data- generalized method of moments (Diff-GMM) regression has been used. It is worth noting that the corporate governance index is positively related to both ROA and ROE, indicating that with the improvement in governance structure, PSUs tend to perform better. Considering the components of CGI, it may be suggested that (i). PSUs ensure adequate representation of women on Board, (ii). appoint a Chief Risk Officer, and (iii). constitute a risk management committee. The results also indicate that there is a negative association between risk index and returns. These results not only validate the framework used to develop the risk index but also provide a yardstick to PSUs benchmark their risk-taking if they want to maximize their ROA and ROE. While constructing the CGI, certain non-compliances were observed, even in terms of mandatory requirements, such as, proportion of independent directors. Such infringements call for stringent penal provisions and better monitoring of PSUs. Further, if the Securities and Exchange Board of India (SEBI) and Ministry of Corporate Affairs (MCA) bring about such reforms in the PSUs and make mandatory the adherence to the normative frameworks put forth in the study, PSUs may have more effective and efficient decision-making, lower risks and hassle free management; all these ultimately leading to better ROA and ROE.

Keywords: PSU, risk governance, diff-GMM, firm performance, the risk index

Procedia PDF Downloads 157
1192 Technico-Economical Study of a Rapeseed Based Biorefinery Using High Voltage Electrical Discharges and Ultrasounds as Pretreatment Technologies

Authors: Marwa Brahim, Nicolas Brosse, Nadia Boussetta, Nabil Grimi, Eugene Vorobiev

Abstract:

Rapeseed plant is an established product in France which is mainly dedicated to oil production. However, the economic potential of residues from this industry (rapeseed hulls, rapeseed cake, rapeseed straw etc.), has not been fully exploited. Currently, only low-grade applications are found in the market. As a consequence, it was deemed of interest to develop a technological platform aiming to convert rapeseed residues into value- added products. Specifically, a focus is given on the conversion of rapeseed straw into valuable molecules (e.g. lignin, glucose). Existing pretreatment technologies have many drawbacks mainly the production of sugar degradation products that limit the effectiveness of saccharification and fermentation steps in the overall scheme of the lignocellulosic biorefinery. In addition, the viability of fractionation strategies is a challenge in an environmental context increasingly standardized. Hence, the need to find cleaner alternatives with comparable efficiency by implementing physical phenomena that could destabilize the structural integrity of biomass without necessarily using chemical solvents. To meet environmental standards increasingly stringent, the present work aims to study the new pretreatment strategies involving lower consumption of chemicals with an attenuation of the severity of the treatment. These strategies consist on coupling physical treatments either high voltage electrical discharges or ultrasounds to conventional chemical pretreatments (soda and organosolv). Ultrasounds treatment is based on the cavitation phenomenon, and high voltage electrical discharges cause an electrical breakdown accompanied by many secondary phenomena. The choice of process was based on a technological feasibility study taking into account the economic profitability of the whole chain after products valorization. Priority was given to sugars valorization into bioethanol and lignin sale.

Keywords: high voltage electrical discharges, organosolv, pretreatment strategies, rapeseed straw, soda, ultrasounds

Procedia PDF Downloads 361
1191 Microplastics in the Seine River Catchment: Results and Lessons from a Pluriannual Research Programme

Authors: Bruno Tassin, Robin Treilles, Cleo Stratmann, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Rachid Dris, Johnny Gasperi

Abstract:

Microplastics (<5mm) in the environment and in hydro systems is one of the major present environmental issues. Over the last five years a research programme was conducted in order to assess the behavior of microplastics in the Seine river catchment, in a Man-Land-Sea continuum approach. Results show that microplastic concentration varies at the seasonal scale, but also at much smaller scales, during flood events and with tides in the estuary for instance. Moreover, microplastic sampling and characterization issues emerged throughout this work. The Seine river is a 750km long river flowing in Northwestern France. It crosses the Paris megacity (12 millions inhabitants) and reaches the English Channel after a 170 km long estuary. This site is a very relevant one to assess the effect of anthropogenic pollution as the mean river flow is low (mean flow around 350m³/s) while the human presence and activities are very intense. Monthly monitoring of the microplastic concentration took place over a 19-month period and showed significant temporal variations at all sampling stations but no significant upstream-downstream increase, indicating a possible major sink to the sediment. At the scale of a major flood event (winter and spring 2018), microplastic concentration shows an evolution similar to the well-known suspended solids concentration, with an increase during the increase of the flow and a decrease during the decrease of the flow. Assessing the position of the concentration peak in relation to the flow peak was unfortunately impossible. In the estuary, concentrations vary with time in connection with tides movements and in the water column in relation to the salinity and the turbidity. Although major gains of knowledge on the microplastic dynamics in the Seine river have been obtained over the last years, major gaps remain to deal mostly with the interaction with the dynamics of the suspended solids, the selling processes in the water column and the resuspension by navigation or shear stress increase. Moreover, the development of efficient chemical characterization techniques during the 5 year period of this pluriannual research programme led to the improvement of the sampling techniques in order to access smaller microplastics (>10µm) as well as larger but rare ones (>500µm).

Keywords: microplastics, Paris megacity, seine river, suspended solids

Procedia PDF Downloads 197
1190 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells

Authors: Victorita Radulescu

Abstract:

Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.

Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils

Procedia PDF Downloads 154
1189 Peptide-Based Platform for Differentiation of Antigenic Variations within Influenza Virus Subtypes (Flutype)

Authors: Henry Memczak, Marc Hovestaedt, Bernhard Ay, Sandra Saenger, Thorsten Wolff, Frank F. Bier

Abstract:

The influenza viruses cause flu epidemics every year and serious pandemics in larger time intervals. The only cost-effective protection against influenza is vaccination. Due to rapid mutation continuously new subtypes appear, what requires annual reimmunization. For a correct vaccination recommendation, the circulating influenza strains had to be detected promptly and exactly and characterized due to their antigenic properties. During the flu season 2016/17, a wrong vaccination recommendation has been given because of the great time interval between identification of the relevant influenza vaccine strains and outbreak of the flu epidemic during the following winter. Due to such recurring incidents of vaccine mismatches, there is a great need to speed up the process chain from identifying the right vaccine strains to their administration. The monitoring of subtypes as part of this process chain is carried out by national reference laboratories within the WHO Global Influenza Surveillance and Response System (GISRS). To this end, thousands of viruses from patient samples (e.g., throat smears) are isolated and analyzed each year. Currently, this analysis involves complex and time-intensive (several weeks) animal experiments to produce specific hyperimmune sera in ferrets, which are necessary for the determination of the antigen profiles of circulating virus strains. These tests also bear difficulties in standardization and reproducibility, which restricts the significance of the results. To replace this test a peptide-based assay for influenza virus subtyping from corresponding virus samples was developed. The differentiation of the viruses takes place by a set of specifically designed peptidic recognition molecules which interact differently with the different influenza virus subtypes. The differentiation of influenza subtypes is performed by pattern recognition guided by machine learning algorithms, without any animal experiments. Synthetic peptides are immobilized in multiplex format on various platforms (e.g., 96-well microtiter plate, microarray). Afterwards, the viruses are incubated and analyzed comparing different signaling mechanisms and a variety of assay conditions. Differentiation of a range of influenza subtypes, including H1N1, H3N2, H5N1, as well as fine differentiation of single strains within these subtypes is possible using the peptide-based subtyping platform. Thereby, the platform could be capable of replacing the current antigenic characterization of influenza strains using ferret hyperimmune sera.

Keywords: antigenic characterization, influenza-binding peptides, influenza subtyping, influenza surveillance

Procedia PDF Downloads 156
1188 Assessing Solid Waste Management Practices in Port Harcourt City, Nigeria

Authors: Perpetual Onyejelem, Kenichi Matsui

Abstract:

Solid waste management is one essential area for urban administration to achieve environmental sustainability. Proper solid waste management (SWM) improves the environment by reducing diseases and increasing public health. On the other way, improper SWM practices negatively impact public health and environmental sustainability. This article evaluates SWM in Port Harcourt, Nigeria, with the goal of determining the current solid waste management practices and their health implications. This study used secondary data, which relies on existing published literature and official documents. The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and its four-stage inclusion/exclusion criteria were utilized as part of a systematic literature review technique to locate the literature that concerns SWM practices and the implementation of solid waste management policies between 2014-2023 in PortHarcourt and its health effects from specific databases (Scopus and Google Scholar). The results found that despite the existence and implementation of the Rivers State Waste Management Policy and the formulation of the National Policy on Solid Waste Management in Port Harcourt, residents continued to dump waste in drainages. They were unaware of waste sorting and dumped waste haphazardly. This trend has persisted due to a lack of political commitment to the effective implementation and monitoring of policies and strategies and a lack of training provided to waste collectors regarding the SWM approach, which involves sorting and separating waste. In addition, inadequate remuneration for waste collectors, the absence of community participation in policy formulation, and insufficient awareness among residents regarding the 3R approach are also contributory factors. This caused the emergence of vector-borne diseases such as malaria, lassa fever, and cholera in Port Harcourt, increasing the expense of healthcare for locals, particularly low-income households. The study urges the government to prioritize protecting the health of its citizens by studying the methods other nations have taken to address the problem of solid waste management and adopting those that work best for their region. The bottom-up strategy should be used to include locals in developing solutions. However, citizens who are always the most impacted by this issue should launch initiatives to address it and put pressure on the government to assist them when they have limitations.

Keywords: health effects, solid waste management practices, environmental pollution, Port-Harcourt

Procedia PDF Downloads 59
1187 Building Care Networks for Patients with Life-Limiting Illnesses: Perspectives from Health Care and Social Service Providers

Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant

Abstract:

Comprehensive and compassionate palliative care and support requires an integrated system of care that draws on formal health and social service providers working together with community and informal networks to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the community supports, services, and informal networks that health care professionals and social service providers rely on to allow their patients to die in their homes and communities. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers that arise as health care and social service providers attempt to build networks of care for patients with life limiting illnesses and families. Three main findings emerged: First, the variability that arises due to systemic barriers in accessing and providing care; second, the exceptionally challenging workload that providers are facing as they work to address complex social care needs (housing, disability, food security), along with escalating palliative care needs; and, finally, the lack of structural support that providers and informal care networks receive. Conclusion: These findings will facilitate and build stronger person-centred/relationship-centred principles and practices between providers, patients, community, and informal care networks by highlighting the systemic barriers to accessing and providing person-centred care. Further, they will have important implications for future partnerships in integrated care delivery programs and initiatives, community policies, education programs, and provincial and national palliative care strategies.

Keywords: public health palliative care, palliative care nursing, care networks, informal care, integrated health care

Procedia PDF Downloads 96
1186 Rapid Plasmonic Colorimetric Glucose Biosensor via Biocatalytic Enlargement of Gold Nanostars

Authors: Masauso Moses Phiri

Abstract:

Frequent glucose monitoring is essential to the management of diabetes. Plasmonic enzyme-based glucose biosensors have the advantages of greater specificity, simplicity and rapidity. The aim of this study was to develop a rapid plasmonic colorimetric glucose biosensor based on biocatalytic enlargement of AuNS guided by GOx. Gold nanoparticles of 18 nm in diameter were synthesized using the citrate method. Using these as seeds, a modified seeded method for the synthesis of monodispersed gold nanostars was followed. Both the spherical and star-shaped nanoparticles were characterized using ultra-violet visible spectroscopy, agarose gel electrophoresis, dynamic light scattering, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The feasibility of a plasmonic colorimetric assay through growth of AuNS by silver coating in the presence of hydrogen peroxide was investigated by several control and optimization experiments. Conditions for excellent sensing such as the concentration of the detection solution in the presence of 20 µL AuNS, 10 mM of 2-(N-morpholino) ethanesulfonic acid (MES), ammonia and hydrogen peroxide were optimized. Using the optimized conditions, the glucose assay was developed by adding 5mM of GOx to the solution and varying concentrations of glucose to it. Kinetic readings, as well as color changes, were observed. The results showed that the absorbance values of the AuNS were blue shifting and increasing as the concentration of glucose was elevated. Control experiments indicated no growth of AuNS in the absence of GOx, glucose or molecular O₂. Increased glucose concentration led to an enhanced growth of AuNS. The detection of glucose was also done by naked-eye. The color development was near complete in ± 10 minutes. The kinetic readings which were monitored at 450 and 560 nm showed that the assay could discriminate between different concentrations of glucose by ± 50 seconds and near complete at ± 120 seconds. A calibration curve for the qualitative measurement of glucose was derived. The magnitude of wavelength shifts and absorbance values increased concomitantly with glucose concentrations until 90 µg/mL. Beyond that, it leveled off. The lowest amount of glucose that could produce a blue shift in the localized surface plasmon resonance (LSPR) absorption maxima was found to be 10 – 90 µg/mL. The limit of detection was 0.12 µg/mL. This enabled the construction of a direct sensitivity plasmonic colorimetric detection of glucose using AuNS that was rapid, sensitive and cost-effective with naked-eye detection. It has great potential for transfer of technology for point-of-care devices.

Keywords: colorimetric, gold nanostars, glucose, glucose oxidase, plasmonic

Procedia PDF Downloads 151
1185 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients

Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff

Abstract:

Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.

Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)

Procedia PDF Downloads 353
1184 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long

Abstract:

Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.

Keywords: 3D fiber, void formation, RTM, process modelling

Procedia PDF Downloads 95
1183 Media Framing of Media Regulators in Ghana: A Content Analysis of Selected News Articles on Four Ghanaian Online Newspapers

Authors: Elizabeth Owusu Asiamah

Abstract:

The Ghanaian news media play a crucial role in shaping people's thinking patterns through the nature of the coverage they give to issues, events and personalities. Since the media do not work in a vacuum but within a broader spectrum, which is society, whatever stories they cover and the nature of frames used to narrate such stories go a long way to influence how citizens perceive issues in the country. Consequently, the National Media Commission and the National Communications Authority were instituted to monitor and direct the activities of the media to ensure professionalism that prioritizes society's interest over commercial interest. As the two media regulators go about their routine task of monitoring the operations of the media, they receive coverage from various media outlets (newspapers, radio, television and online). Some people believe that the kind of approach the regulators adopt depends on the nature of coverage the media give them in their reportage. This situation demands an investigation into how the media, regulated by these regulatory bodies, are representing the regulators in the public's eye and the issues arising from such coverage. Extant literature indicates that studies on media framing have centered on politics, environmental issues, public health issues, conflict and wars, etc. However, there appear to be no studies on media framing of media regulators, especially in the Ghanaian context. Since online newspapers have assumed more mainstream positions in the Ghanaian media and have attracted more audiences in recent times, this study investigates the nature of coverage given to media regulators by four purposively sampled online newspapers in Ghana. 96 news articles are extracted from the websites of the Daily Graphic, Ghanaian Times, Daily Guide and Chronicle newspapers within a five-year period to identify the prominence given to stories about the two media regulators and the frames used to narrate stories about them. Data collected are thematically analyzed through the lens of agenda-setting and media-framing theories. The findings of the study revealed that the two regulators were not given much coverage by way of frequency; however, much prominence was given to them in terms of enhancements such as images. The study further disclosed that most of the news articles framed the regulators as weak and incompetent, which is likely to affect how the public also views the regulators. The study concludes that since frames around the supportive nature of the regulators to issues of the media were not hammered by the online newspapers, the public will not perceive the regulators as playing their roles effectively. Thus, a need for more positive frames to be used to narrate stories about the National Media Commission and the National Communication Authority to promote a cordial relationship between the two institutions and a good image to the public.

Keywords: agenda setting, media framing, media regulators, online newspapers

Procedia PDF Downloads 68
1182 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study

Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao

Abstract:

Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.

Keywords: physical activity, gestational diabetes, self-efficacy, predictors

Procedia PDF Downloads 99
1181 Synthesis and Optimization of Bio Metal-Organic Framework with Permanent Porosity

Authors: Tia Kristian Tajnšek, Matjaž Mazaj, Nataša Zabukovec Logar

Abstract:

Metal-organic frameworks (MOFs) with their specific properties and the possibility of tuning the structure represent excellent candidates for use in the biomedical field. Their advantage lies in large pore surfaces and volumes, as well as the possibility of using bio-friendly or bioactive constituents. So-called bioMOFs are representatives of MOFs, which are constructed from at least one biomolecule (metal, a small bioactive molecule in metal clusters and/or linker) and are intended for bio-application (usually in the field of medicine; most commonly drug delivery). When designing a bioMOF for biomedical applications, we should adhere to some guidelines for an improved toxicological profile of the material. Such as (i) choosing an endogenous/nontoxic metal, (ii) GRAS (generally recognized as safe) linker, and (iii) nontoxic solvents. Design and synthesis of bioNICS-1 (bioMOF of National Institute of Chemistry Slovenia – 1) consider all these guidelines. Zinc (Zn) was chosen as an endogenous metal with an agreeable recommended daily intake (RDI) and LD50 value, and ascorbic acid (Vitamin C) was chosen as a GRAS and active linker. With these building blocks, we have synthesized a bioNICS-1 material. The synthesis was done in ethanol using a solvothermal method. The synthesis protocol was further optimized in three separate ways. Optimization of (i) synthesis parameters to improve the yield of the synthesis, (ii) input reactant ratio and addition of specific modulators for production of larger crystals, and (iii) differing of the heating source (conventional, microwave and ultrasound) to produce nano-crystals. With optimization strategies, the synthesis yield was increased. Larger crystals were prepared for structural analysis with the use of a proper species and amount of modulator. Synthesis protocol was adjusted to different heating sources, resulting in the production of nano-crystals of bioNICS-1 material. BioNICS-1 was further activated in ethanol and structurally characterized, resolving the crystal structure of new material.

Keywords: ascorbic acid, bioMOF, MOF, optimization, synthesis, zinc ascorbate

Procedia PDF Downloads 138
1180 Lessons Learned from Push-Plus Implementation in Northern Nigeria

Authors: Aisha Giwa, Mohammed-Faosy Adeniran, Olufunke Femi-Ojo

Abstract:

Four decades ago, the World Health Organization (WHO) launched the Expanded Programme on Immunization (EPI). The EPI blueprint laid out the technical and managerial functions necessary to routinely vaccinate children with a limited number of vaccines, providing protection against diphtheria, tetanus, whooping cough, measles, polio, and tuberculosis, and to prevent maternal and neonatal tetanus by vaccinating women of childbearing age with tetanus toxoid. Despite global efforts, the Routine Immunization (RI) coverage in two of the World Health Organization (WHO) regions; the African Region and the South-East Asia Region, still remains short of its targets. As a result, the WHO Regional Director for Africa declared 2012 as the year for intensifying RI in these regions and this also coincided with the declaration of polio as a programmatic emergency by the WHO Executive Board. In order to intensify routine immunization, the National Routine Immunization Strategic Plan (2013-2015) stated that its core priority is to ensure 100% adequacy and availability of vaccines for safe immunization. To achieve 100% availability, the “PUSH System” and then “Push-Plus” were adopted for vaccine distribution, which replaced the inefficient “PULL” method. The NPHCDA plays the key role in coordinating activities in area advocacy, capacity building, engagement of 3PL for the state as well as monitoring and evaluation of the vaccine delivery process. eHealth Africa (eHA) is a player as a 3PL service provider engaged by State Primary Health Care Boards (SPHCDB) to ensure vaccine availability through Vaccine Direct Delivery (VDD) project which is essential to successful routine immunization services. The VDD project ensures the availability and adequate supply of high-quality vaccines and immunization-related materials to last-mile facilities. eHA’s commitment to the VDD project saw the need for an assessment of the project vis-a-vis the overall project performance, evaluation of a process for necessary improvement suggestions as well as general impact across Kano State (Where eHA had transitioned to the state), Bauchi State (currently manage delivery to all LGAs except 3 LGAs currently being managed by the state), Sokoto State (eHA currently covers all LGAs) and Zamfara State (Currently, in-sourced and managed solely by the state).

Keywords: cold chain logistics, health supply chain system strengthening, logistics management information system, vaccine delivery traceability and accountability

Procedia PDF Downloads 312
1179 A Geographical Spatial Analysis on the Benefits of Using Wind Energy in Kuwait

Authors: Obaid AlOtaibi, Salman Hussain

Abstract:

Wind energy is associated with many geographical factors including wind speed, climate change, surface topography, environmental impacts, and several economic factors, most notably the advancement of wind technology and energy prices. It is the fastest-growing and least economically expensive method for generating electricity. Wind energy generation is directly related to the characteristics of spatial wind. Therefore, the feasibility study for the wind energy conversion system is based on the value of the energy obtained relative to the initial investment and the cost of operation and maintenance. In Kuwait, wind energy is an appropriate choice as a source of energy generation. It can be used in groundwater extraction in agricultural areas such as Al-Abdali in the north and Al-Wafra in the south, or in fresh and brackish groundwater fields or remote and isolated locations such as border areas and projects away from conventional power electricity services, to take advantage of alternative energy, reduce pollutants, and reduce energy production costs. The study covers the State of Kuwait with an exception of metropolitan area. Climatic data were attained through the readings of eight distributed monitoring stations affiliated with Kuwait Institute for Scientific Research (KISR). The data were used to assess the daily, monthly, quarterly, and annual available wind energy accessible for utilization. The researchers applied the Suitability Model to analyze the study by using the ArcGIS program. It is a model of spatial analysis that compares more than one location based on grading weights to choose the most suitable one. The study criteria are: the average annual wind speed, land use, topography of land, distance from the main road networks, urban areas. According to the previous criteria, the four proposed locations to establish wind farm projects are selected based on the weights of the degree of suitability (excellent, good, average, and poor). The percentage of areas that represents the most suitable locations with an excellent rank (4) is 8% of Kuwait’s area. It is relatively distributed as follows: Al-Shqaya, Al-Dabdeba, Al-Salmi (5.22%), Al-Abdali (1.22%), Umm al-Hayman (0.70%), North Wafra and Al-Shaqeeq (0.86%). The study recommends to decision-makers to consider the proposed location (No.1), (Al-Shqaya, Al-Dabdaba, and Al-Salmi) as the most suitable location for future development of wind farms in Kuwait, this location is economically feasible.

Keywords: Kuwait, renewable energy, spatial analysis, wind energy

Procedia PDF Downloads 146
1178 A Semi-Automated GIS-Based Implementation of Slope Angle Design Reconciliation Process at Debswana Jwaneng Mine, Botswana

Authors: K. Mokatse, O. M. Barei, K. Gabanakgosi, P. Matlhabaphiri

Abstract:

The mining of pit slopes is often associated with some level of deviation from design recommendations, and this may translate to associated changes in the stability of the excavated pit slopes. Therefore slope angle design reconciliations are essential for assessing and monitoring compliance of excavated pit slopes to accepted slope designs. These associated changes in slope stability may be reflected by changes in the calculated factors of safety and/or probabilities of failure. Reconciliations of as-mined and slope design profiles are conducted periodically to assess the implications of these deviations on pit slope stability. Currently, the slope design reconciliation process being implemented in Jwaneng Mine involves the measurement of as-mined and design slope angles along vertical sections cut along the established geotechnical design section lines on the GEOVIA GEMS™ software. Bench retentions are calculated as a percentage of the available catchment area, less over-mined and under-mined areas, to that of the designed catchment area. This process has proven to be both tedious and requires a lot of manual effort and time to execute. Consequently, a new semi-automated mine-to-design reconciliation approach that utilizes laser scanning and GIS-based tools is being proposed at Jwaneng Mine. This method involves high-resolution scanning of targeted bench walls, subsequent creation of 3D surfaces from point cloud data and the derivation of slope toe lines and crest lines on the Maptek I-Site Studio software. The toe lines and crest lines are then exported to the ArcGIS software where distance offsets between the design and actual bench toe lines and crest lines are calculated. Retained bench catchment capacity is measured as distances between the toe lines and crest lines on the same bench elevations. The assessment of the performance of the inter-ramp and overall slopes entails the measurement of excavated and design slope angles along vertical sections on the ArcGIS software. Excavated and design toe-to-toe or crest-to-crest slope angles are measured for inter-ramp stack slope reconciliations. Crest-to-toe slope angles are also measured for overall slope angle design reconciliations. The proposed approach allows for a more automated, accurate, quick and easier workflow for carrying out slope angle design reconciliations. This process has proved highly effective and timeous in the assessment of slope performance in Jwaneng Mine. This paper presents a newly proposed process for assessing compliance to slope angle designs for Jwaneng Mine.

Keywords: slope angle designs, slope design recommendations, slope performance, slope stability

Procedia PDF Downloads 230
1177 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines

Authors: Soumyadip Banerjee, Tanmoy Maity

Abstract:

The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.

Keywords: waste to energy, wind power generation, exhaust air, power recovery

Procedia PDF Downloads 32
1176 Cultural and Natural Heritage Conservation by GIS Tourism Inventory System Project

Authors: Gamze Safak, Umut Arslanoglu

Abstract:

Cultural and tourism conservation and development zones and tourism centers are the boundaries declared for the purpose of protecting, using, and evaluating the sectoral development and planned development in areas where historical and cultural values are heavily involved and/or where tourism potential is high. The most rapidly changing regions in Turkey are tourism areas, especially the coastal areas. Planning these regions is not about only an economic gain but also a natural and physical environment and refers to a complex process. If the tourism sector is not well controlled, excessive use of natural resources and wrong location choices may cause damage to natural areas, historical values, and socio-cultural structure. Since the strategic decisions taken in the environmental order and zoning plans, which are the means of guiding the physical environment of the Ministry of Culture and Tourism, which have the authority to make plans in tourism centers, are transformed into plan decisions that find the spatial expression, comprehensive evaluation of all kinds of data, following the historical development and based on the correct and current data is required. In addition, the authority has a number of competences in tourism promotion as well as the authority to plan, leading to the necessity of taking part in the applications requiring complex analysis such as the management and integration of the country's economic, political, social and cultural resources. For this purpose, Tourism Inventory System (TES) project, which consists of a series of subsystems, has been developed in order to solve complex planning and method problems in the management of site-related information. The scope of the project is based on the integration of numerical and verbal data in the regions within the jurisdiction of the authority, and the monitoring of the historical development of urban planning studies, making the spatial data of the institution easily accessible, shared, questionable and traceable in international standards. A dynamic and continuous system design has been put into practice by utilizing the advantage of the use of Geographical Information Systems in the planning process to play a role in making the right decisions, revealing the tools of social, economic, cultural development, and preservation of natural and cultural values. This paper, which is prepared by the project team members in TES (Tourism Inventory System), will present a study regarding the applicability of GIS in cultural and natural heritage conservation.

Keywords: cultural conservation, GIS, geographic information system, tourism inventory system, urban planning

Procedia PDF Downloads 116
1175 Influence of Cobalt Incorporation on the Structure and Properties of SOL-Gel Derived Mesoporous Bioglass Nanoparticles

Authors: Ahmed El-Fiqi, Hae-Won Kim

Abstract:

Incorporation of therapeutic elements such as Sr, Cu and Co into bioglass structure and their release as ions is considered as one of the promising approaches to enhance cellular responses, e.g., osteogenesis and angiogenesis. Here, cobalt as angiogenesis promoter has been incorporated (at 0, 1 and 4 mol%) into sol-gel derived calcium silicate mesoporous bioglass nanoparticles. The composition and structure of cobalt-free (CFN) and cobalt-doped (CDN) mesoporous bioglass nanoparticles have been analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier-Transform Infra-red spectroscopy (FT-IR). The physicochemical properties of CFN and CDN have been investigated using high-resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), and Energy-dispersive X-ray (EDX). Furthermore, the textural properties, including specific surface area, pore-volume, and pore size, have been analyzed from N²⁻sorption analyses. Surface charges of CFN and CDN were also determined from surface zeta potential measurements. The release of ions, including Co²⁺, Ca²⁺, and SiO₄⁴⁻ has been analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Loading and release of diclofenac as an anti-inflammatory drug model were explored in vitro using Ultraviolet-visible spectroscopy (UV-Vis). XRD results ensured the amorphous state of CFN and CDN whereas, XRF further confirmed that their chemical compositions are very close to the designed compositions. HR-TEM analyses unveiled nanoparticles with spherical morphologies, highly mesoporous textures, and sizes in the range of 90 - 100 nm. Moreover, N²⁻ sorption analyses revealed that the nanoparticles have pores with sizes of 3.2 - 2.6 nm, pore volumes of 0.41 - 0.35 cc/g and highly surface areas in the range of 716 - 830 m²/g. High-resolution XPS analysis of Co 2p core level provided structural information about Co atomic environment and it confirmed the electronic state of Co in the glass matrix. ICP-AES analysis showed the release of therapeutic doses of Co²⁺ ions from 4% CDN up to 100 ppm within 14 days. Finally, diclofenac loading and release have ensured the drug/ion co-delivery capability of 4% CDN.

Keywords: mesoporous bioactive glass, nanoparticles, cobalt ions, release

Procedia PDF Downloads 105
1174 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 385
1173 The Good Form of a Sustainable Creative Learning City Based on “The Theory of a Good City Form“ by Kevin Lynch

Authors: Fatemeh Moosavi, Tumelo Franck Nkoshwane

Abstract:

Peter Drucker the renowned management guru once said, “The best way to predict the future is to create it.” Mr. Drucker is also the man who placed human capital as the most vital resource of any institution. As such any institution bent on creating a better future, requires a competent human capital, one that is able to execute with efficiency and effectiveness the objective a society aspires to. Technology today is accelerating the rate at which many societies transition to knowledge based societies. In this accelerated paradigm, it is imperative that those in leadership establish a platform capable of sustaining the planned future; intellectual capital. The capitalist economy going into the future will not just be sustained by dollars and cents, but by individuals who possess the creativity to enterprise, innovate and create wealth from ideas. This calls for cities of the future, to have this premise at the heart of their future plan, if the objective of designing sustainable and liveable future cities will be realised. The knowledge economy, now transitioning to the creative economy, requires cities of the future to be ‘gardens’ of inspiration, to be places where knowledge, creativity, and innovation can thrive as these instruments are becoming critical assets for creating wealth in the new economic system. Developing nations must accept that learning is a lifelong process that requires keeping abreast with change and should invest in teaching people how to keep learning. The need to continuously update one’s knowledge, turn these cities into vibrant societies, where new ideas create knowledge and in turn enriches the quality of life of the residents. Cities of the future must have as one of their objectives, the ability to motivate their citizens to learn, share knowledge, evaluate the knowledge and use it to create wealth for a just society. The five functional factors suggested by Kevin Lynch;-vitality, meaning/sense, adaptability, access, control, and monitoring should form the basis on which policy makers and urban designers base their plans for future cities. The authors of this paper believe that developing nations “creative economy clusters”, cities where creative industries drive the need for constant new knowledge creating sustainable learning creative cities. Obviously the form, shape and size of these districts should be cognisant of the environmental, cultural and economic characteristics of each locale. Gaborone city in the republic of Botswana is presented as the case study for this paper.

Keywords: learning city, sustainable creative city, creative industry, good city form

Procedia PDF Downloads 308
1172 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets

Authors: Ece Cigdem Mutlu, Burak Alakent

Abstract:

Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.

Keywords: average run length, M-estimators, quality control, robust estimators

Procedia PDF Downloads 189
1171 Subsidiary Entrepreneurial Orientation, Trust in Headquarters and Performance: The Mediating Role of Autonomy

Authors: Zhang Qingzhong

Abstract:

Though there exists an increasing number of research studies on the headquarters-subsidiary relationship, and within this context, there is a focus on subsidiaries' contributory role to multinational corporations (MNC), subsidiary autonomy, and the conditions under which autonomy exerts an effect on subsidiary performance still constitute a subject of debate in the literature. The objective of this research is to study the MNC subsidiary autonomy and performance relationship and the effect of subsidiary entrepreneurial orientation and trust on subsidiary autonomy in the China environment, a phenomenon that has not yet been studied. The research addresses the following three questions: (i) Is subsidiary autonomy associated with MNC subsidiary performance in the China environment? (ii) How do subsidiary entrepreneurship and its trust in headquarters affect the level of subsidiary autonomy and its relationship with subsidiary performance? (iii) Does subsidiary autonomy have a mediating effect on subsidiary performance with subsidiary’s entrepreneurship and trust in headquarters? In the present study, we have reviewed literature and conducted semi-structured interviews with multinational corporation (MNC) subsidiary senior executives in China. Building on our insights from the interviews and taking perspectives from four theories, namely the resource-based view (RBV), resource dependency theory, integration-responsiveness framework, and social exchange theory, as well as the extant articles on subsidiary autonomy, entrepreneurial orientation, trust, and subsidiary performance, we have developed a model and have explored the direct and mediating effects of subsidiary autonomy on subsidiary performance within the framework of the MNC. To test the model, we collected and analyzed data based on cross-industry two waves of an online survey from 102 subsidiaries of MNCs in China. We used structural equation modeling to test measurement, direct effect model, and conceptual framework with hypotheses. Our findings confirm that (a) subsidiary autonomy is positively related to subsidiary performance; (b) subsidiary entrepreneurial orientation is positively related to subsidiary autonomy; (c) subsidiary’s trust in headquarters has a positive effect on subsidiary autonomy; (d) subsidiary autonomy mediates the relationship between entrepreneurial orientation and subsidiary performance; (e) subsidiary autonomy mediates the relationship between trust and subsidiary performance. Our study highlights the important role of subsidiary autonomy in leveraging the resource of subsidiary entrepreneurial orientation and its trust relationship with headquarters to achieve high performance. We discuss the theoretical and managerial implications of the findings and propose directions for future research.

Keywords: subsidiary entrepreneurial orientation, trust, subsidiary autonomy, subsidiary performance

Procedia PDF Downloads 186
1170 Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings

Authors: Ali Mohammed Yimer, Ayalew Assen, Youssef Belmabkhout

Abstract:

Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management.

Keywords: functional porous materials, phosphorite residue tailings, adsorption, environmental remediation, sustainable solutions

Procedia PDF Downloads 57
1169 Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour

Authors: Saurabh B. Ganorkar, Atul A. Shirkhedkar

Abstract:

The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets.

Keywords: UFLC, LC-MS-TOF, NMR, Zileuton, impurities, toxicity, bio-activity

Procedia PDF Downloads 192
1168 Brachypodium: A Model Genus to Study Grass Genome Organisation at the Cytomolecular Level

Authors: R. Hasterok, A. Betekhtin, N. Borowska, A. Braszewska-Zalewska, E. Breda, K. Chwialkowska, R. Gorkiewicz, D. Idziak, J. Kwasniewska, M. Kwasniewski, D. Siwinska, A. Wiszynska, E. Wolny

Abstract:

In contrast to animals, the organisation of plant genomes at the cytomolecular level is still relatively poorly studied and understood. However, the Brachypodium genus in general and B. distachyon in particular represent exceptionally good model systems for such study. This is due not only to their highly desirable ‘model’ biological features, such as small nuclear genome, low chromosome number and complex phylogenetic relations, but also to the rapidly and continuously growing repertoire of experimental tools, such as large collections of accessions, WGS information, large insert (BAC) libraries of genomic DNA, etc. Advanced cytomolecular techniques, such as fluorescence in situ hybridisation (FISH) with evermore sophisticated probes, empowered by cutting-edge microscope and digital image acquisition and processing systems, offer unprecedented insight into chromatin organisation at various phases of the cell cycle. A good example is chromosome painting which uses pools of chromosome-specific BAC clones, and enables the tracking of individual chromosomes not only during cell division but also during interphase. This presentation outlines the present status of molecular cytogenetic analyses of plant genome structure, dynamics and evolution using B. distachyon and some of its relatives. The current projects focus on important scientific questions, such as: What mechanisms shape the karyotypes? Is the distribution of individual chromosomes within an interphase nucleus determined? Are there hot spots of structural rearrangement in Brachypodium chromosomes? Which epigenetic processes play a crucial role in B. distachyon embryo development and selective silencing of rRNA genes in Brachypodium allopolyploids? The authors acknowledge financial support from the Polish National Science Centre (grants no. 2012/04/A/NZ3/00572 and 2011/01/B/NZ3/00177)

Keywords: Brachypodium, B. distachyon, chromosome, FISH, molecular cytogenetics, nucleus, plant genome organisation

Procedia PDF Downloads 349
1167 Detecting Natural Fractures and Modeling Them to Optimize Field Development Plan in Libyan Deep Sandstone Reservoir (Case Study)

Authors: Tarek Duzan

Abstract:

Fractures are a fundamental property of most reservoirs. Despite their abundance, they remain difficult to detect and quantify. The most effective characterization of fractured reservoirs is accomplished by integrating geological, geophysical, and engineering data. Detection of fractures and defines their relative contribution is crucial in the early stages of exploration and later in the production of any field. Because fractures could completely change our thoughts, efforts, and planning to produce a specific field properly. From the structural point of view, all reservoirs are fractured to some point of extent. North Gialo field is thought to be a naturally fractured reservoir to some extent. Historically, natural fractured reservoirs are more complicated in terms of their exploration and production efforts, and most geologists tend to deny the presence of fractures as an effective variable. Our aim in this paper is to determine the degree of fracturing, and consequently, our evaluation and planning can be done properly and efficiently from day one. The challenging part in this field is that there is no enough data and straightforward well testing that can let us completely comfortable with the idea of fracturing; however, we cannot ignore the fractures completely. Logging images, available well testing, and limited core studies are our tools in this stage to evaluate, model, and predict possible fracture effects in this reservoir. The aims of this study are both fundamental and practical—to improve the prediction and diagnosis of natural-fracture attributes in N. Gialo hydrocarbon reservoirs and accurately simulate their influence on production. Moreover, the production of this field comes from 2-phase plan; a self depletion of oil and then gas injection period for pressure maintenance and increasing ultimate recovery factor. Therefore, well understanding of fracturing network is essential before proceeding with the targeted plan. New analytical methods will lead to more realistic characterization of fractured and faulted reservoir rocks. These methods will produce data that can enhance well test and seismic interpretations, and that can readily be used in reservoir simulators.

Keywords: natural fracture, sandstone reservoir, geological, geophysical, and engineering data

Procedia PDF Downloads 92
1166 Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements

Authors: Peter Pomlenyi, Orsolya Semperger, Gergely Hegedus

Abstract:

The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts.

Keywords: T-RTM technology, composite, automotive, class A surface

Procedia PDF Downloads 138
1165 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 135
1164 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 275