Search results for: mass loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6592

Search results for: mass loss

532 Biodegradable Self-Supporting Nanofiber Membranes Prepared by Centrifugal Spinning

Authors: Milos Beran, Josef Drahorad, Ondrej Vltavsky, Martin Fronek, Jiri Sova

Abstract:

While most nanofibers are produced using electrospinning, this technique suffers from several drawbacks, such as the requirement for specialized equipment, high electrical potential, and electrically conductive targets. Consequently, recent years have seen the increasing emergence of novel strategies in generating nanofibers in a larger scale and higher throughput manner. The centrifugal spinning is simple, cheap and highly productive technology for nanofiber production. In principle, the drawing of solution filament into nanofibers using centrifugal spinning is achieved through the controlled manipulation of centrifugal force, viscoelasticity, and mass transfer characteristics of the spinning solutions. Engineering efforts of researches of the Food research institute Prague and the Czech Technical University in the field the centrifugal nozzleless spinning led to introduction of a pilot plant demonstrator NANOCENT. The main advantages of the demonstrator are lower investment cost - thanks to simpler construction compared to widely used electrospinning equipments, higher production speed, new application possibilities and easy maintenance. The centrifugal nozzleless spinning is especially suitable to produce submicron fibers from polymeric solutions in highly volatile solvents, such as chloroform, DCM, THF, or acetone. To date, submicron fibers have been prepared from PS, PUR and biodegradable polyesters, such as PHB, PLA, PCL, or PBS. The products are in form of 3D structures or nanofiber membranes. Unique self-supporting nanofiber membranes were prepared from the biodegradable polyesters in different mixtures. The nanofiber membranes have been tested for different applications. Filtration efficiencies for water solutions and aerosols in air were evaluated. Different active inserts were added to the solutions before the spinning process, such as inorganic nanoparticles, organic precursors of metal oxides, antimicrobial and wound healing compounds or photocatalytic phthalocyanines. Sintering can be subsequently carried out to remove the polymeric material and transfer the organic precursors to metal oxides, such as Si02, or photocatalytic Zn02 and Ti02, to obtain inorganic nanofibers. Electrospinning is more suitable technology to produce membranes for the filtration applications than the centrifugal nozzleless spinning, because of the formation of more homogenous nanofiber layers and fibers with smaller diameters. The self-supporting nanofiber membranes prepared from the biodegradable polyesters are especially suitable for medical applications, such as wound or burn healing dressings or tissue engineering scaffolds. This work was supported by the research grants TH03020466 of the Technology Agency of the Czech Republic.

Keywords: polymeric nanofibers, self-supporting nanofiber membranes, biodegradable polyesters, active inserts

Procedia PDF Downloads 156
531 The Cooperation among Insulin, Cortisol and Thyroid Hormones in Morbid Obese Children and Metabolic Syndrome

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Obesity, a disease associated with a low-grade inflammation, is a risk factor for the development of metabolic syndrome (MetS). So far, MetS risk factors such as parameters related to glucose and lipid metabolisms as well as blood pressure were considered for the evaluation of this disease. There are still some ambiguities related to the characteristic features of MetS observed particularly in pediatric population. Hormonal imbalance is also important, and quite a lot information exists about the behaviour of some hormones in adults. However, the hormonal profiles in pediatric metabolism have not been cleared yet. The aim of this study is to investigate the profiles of cortisol, insulin, and thyroid hormones in children with MetS. The study population was composed of morbid obese (MO) children without (Group 1) and with (Group 2) MetS components. WHO BMI-for age and sex percentiles were used for the classification of obesity. The values above 99 percentile were defined as morbid obesity. Components of MetS (central obesity, glucose intolerance, high blood pressure, high triacylglycerol levels, low levels of high density lipoprotein cholesterol) were determined. Anthropometric measurements were performed. Ratios as well as obesity indices were calculated. Insulin, cortisol, thyroid stimulating hormone (TSH), free T3 and free T4 analyses were performed by electrochemiluminescence immunoassay. Data were evaluated by statistical package for social sciences program. p<0.05 was accepted as the degree for statistical significance. The mean ages±SD values of Group 1 and Group 2 were 9.9±3.1 years and 10.8±3.2 years, respectively. Body mass index (BMI) values were calculated as 27.4±5.9 kg/m2 and 30.6±8.1 kg/m2, successively. There were no statistically significant differences between the ages and BMI values of the groups. Insulin levels were statistically significantly increased in MetS in comparison with the levels measured in MO children. There was not any difference between MO children and those with MetS in terms of cortisol, T3, T4 and TSH. However, T4 levels were positively correlated with cortisol and negatively correlated with insulin. None of these correlations were observed in MO children. Cortisol levels in both MO as well as MetS group were significantly correlated. Cortisol, insulin, and thyroid hormones are essential for life. Cortisol, called the control system for hormones, orchestrates the performance of other key hormones. It seems to establish a connection between hormone imbalance and inflammation. During an inflammatory state, more cortisol is produced to fight inflammation. High cortisol levels prevent the conversion of the inactive form of the thyroid hormone T4 into active form T3. Insulin is reduced due to low thyroid hormone. T3, which is essential for blood sugar control- requires cortisol levels within the normal range. Positive association of T4 with cortisol and negative association of it with insulin are the indicators of such a delicate balance among these hormones also in children with MetS.

Keywords: children, cortisol, insulin, metabolic syndrome, thyroid hormones

Procedia PDF Downloads 136
530 Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip

Authors: Renée M. Ripken, Johannes G. E. Gardeniers, Séverine Le Gac

Abstract:

Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass.

Keywords: biomass conversion, high pressure and high temperature microfluidics, multiphase, phase diagrams, superheating

Procedia PDF Downloads 208
529 Estimation of the Effect of Initial Damping Model and Hysteretic Model on Dynamic Characteristics of Structure

Authors: Shinji Ukita, Naohiro Nakamura, Yuji Miyazu

Abstract:

In considering the dynamic characteristics of structure, natural frequency and damping ratio are useful indicator. When performing dynamic design, it's necessary to select an appropriate initial damping model and hysteretic model. In the linear region, the setting of initial damping model influences the response, and in the nonlinear region, the combination of initial damping model and hysteretic model influences the response. However, the dynamic characteristics of structure in the nonlinear region remain unclear. In this paper, we studied the effect of setting of initial damping model and hysteretic model on the dynamic characteristics of structure. On initial damping model setting, Initial stiffness proportional, Tangent stiffness proportional, and Rayleigh-type were used. On hysteretic model setting, TAKEDA model and Normal-trilinear model were used. As a study method, dynamic analysis was performed using a lumped mass model of base-fixed. During analysis, the maximum acceleration of input earthquake motion was gradually increased from 1 to 600 gal. The dynamic characteristics were calculated using the ARX model. Then, the characteristics of 1st and 2nd natural frequency and 1st damping ratio were evaluated. Input earthquake motion was simulated wave that the Building Center of Japan has published. On the building model, an RC building with 30×30m planes on each floor was assumed. The story height was 3m and the maximum height was 18m. Unit weight for each floor was 1.0t/m2. The building natural period was set to 0.36sec, and the initial stiffness of each floor was calculated by assuming the 1st mode to be an inverted triangle. First, we investigated the difference of the dynamic characteristics depending on the difference of initial damping model setting. With the increase in the maximum acceleration of the input earthquake motions, the 1st and 2nd natural frequency decreased, and the 1st damping ratio increased. Then, in the natural frequency, the difference due to initial damping model setting was small, but in the damping ratio, a significant difference was observed (Initial stiffness proportional≒Rayleigh type>Tangent stiffness proportional). The acceleration and the displacement of the earthquake response were largest in the tangent stiffness proportional. In the range where the acceleration response increased, the damping ratio was constant. In the range where the acceleration response was constant, the damping ratio increased. Next, we investigated the difference of the dynamic characteristics depending on the difference of hysteretic model setting. With the increase in the maximum acceleration of the input earthquake motions, the natural frequency decreased in TAKEDA model, but in Normal-trilinear model, the natural frequency didn’t change. The damping ratio in TAKEDA model was higher than that in Normal-trilinear model, although, both in TAKEDA model and Normal-trilinear model, the damping ratio increased. In conclusion, in initial damping model setting, the tangent stiffness proportional was evaluated the most. In the hysteretic model setting, TAKEDA model was more appreciated than the Normal-trilinear model in the nonlinear region. Our results would provide useful indicator on dynamic design.

Keywords: initial damping model, damping ratio, dynamic analysis, hysteretic model, natural frequency

Procedia PDF Downloads 169
528 Fructose-Aided Cross-Linked Enzyme Aggregates of Laccase: An Insight on Its Chemical and Physical Properties

Authors: Bipasa Dey, Varsha Panwar, Tanmay Dutta

Abstract:

Laccase, a multicopper oxidase (EC 1.10.3.2) have been at the forefront as a superior industrial biocatalyst. They are versatile in terms of bestowing sustainable and ecological catalytic reactions such as polymerisation, xenobiotic degradation and bioremediation of phenolic and non-phenolic compounds. Regardless of the wide biotechnological applications, the critical limiting factors viz. reusability, retrieval, and storage stability still prevail. This can cause an impediment in their applicability. Crosslinked enzyme aggregates (CLEAs) have emerged as a promising technique that rehabilitates these essential facets, albeit at the expense of their enzymatic activity. The carrier free crosslinking method prevails over the carrier-bound immobilisation in conferring high productivity, low production cost owing to the absence of additional carrier and circumvent any non-catalytic ballast which could dilute the volumetric activity. To the best of our knowledge, the ε-amino group of lysyl residue is speculated as the best choice for forming Schiff’s base with glutaraldehyde. Despite being most preferrable, excess glutaraldehyde can bring about disproportionate and undesirable crosslinking within the catalytic site and hence could deliver undesirable catalytic losses. Moreover, the surface distribution of lysine residues in Trametes versicolor laccase is significantly less. Thus, to mitigate the adverse effect of glutaraldehyde in conjunction with scaling down the degradation or catalytic loss of the enzyme, crosslinking with inert substances like gelatine, collagen, Bovine serum albumin (BSA) or excess lysine is practiced. Analogous to these molecules, sugars have been well known as a protein stabiliser. It helps to retain the structural integrity, specifically secondary structure of the protein during aggregation by changing the solvent properties. They are comprehended to avert protein denaturation or enzyme deactivation during precipitation. We prepared crosslinked enzyme aggregates (CLEAs) of laccase from T. versicolor with the aid of sugars. The sugar CLEAs were compared with the classic BSA and glutaraldehyde laccase CLEAs concerning physico-chemical properties. The activity recovery for the fructose CLEAs were found to be ~20% higher than the non-sugar CLEA. Moreover, the 𝐾𝑐𝑎𝑡𝐾𝑚⁄ values of the CLEAs were two and three-fold higher than BSA-CLEA and GACLEA, respectively. The half-life (t1/2) deciphered by sugar-CLEA was higher than the t1/2 of GA-CLEAs and free enzyme, portraying more thermal stability. Besides, it demonstrated extraordinarily high pH stability, which was analogous to BSA-CLEA. The promising attributes of increased storage stability and recyclability (>80%) gives more edge to the sugar-CLEAs over conventional CLEAs of their corresponding free enzyme. Thus, sugar-CLEA prevails in furnishing the rudimentary properties required for a biocatalyst and holds many prospects.

Keywords: cross-linked enzyme aggregates, laccase immobilization, enzyme reusability, enzyme stability

Procedia PDF Downloads 79
527 To Access the Knowledge, Awareness and Factors Associated With Diabetes Mellitus in Buea, Cameroon

Authors: Franck Acho

Abstract:

This is a chronic metabolic disorder which is a fast-growing global problem with a huge social, health, and economic consequences. It is estimated that in 2010 there were globally 285 million people (approximately 6.4% of the adult population) suffering from this disease. This number is estimated to increase to 430 million in the absence of better control or cure. An ageing population and obesity are two main reasons for the increase. Diabetes mellitus is a chronic heterogeneous metabolic disorder with a complex pathogenesis. It is characterized by elevated blood glucose levels or hyperglycemia, which results from abnormalities in either insulin secretion or insulin action or both. Hyperglycemia manifests in various forms with a varied presentation and results in carbohydrate, fat, and protein metabolic dysfunctions. Long-term hyperglycemia often leads to various microvascular and macrovascular diabetic complications, which are mainly responsible for diabetes-associated morbidity and mortality. Hyperglycemia serves as the primary biomarker for the diagnosis of diabetes as well. Furthermore, it has been shown that almost 50% of the putative diabetics are not diagnosed until 10 years after onset of the disease, hence the real prevalence of global diabetes must be astronomically high. This study was conducted in a locality to access the level of knowledge, awareness and risk factors associated with people leaving with diabetes mellitus. A month before the screening was to be conducted, a health screening in some selected churches and on the local community radio as well as on relevant WhatsApp groups were advertised. A general health talk was delivered by the head of the screening unit to all attendees who were all educated on the procedure to be carried out with benefits and any possible discomforts after which the attendee’s consent was obtained. Evaluation of the participants for any leads to the diabetes selected for the screening was done by taking adequate history and physical examinations such as excessive thirst, increased urination, tiredness, hunger, unexplained weight loss, feeling irritable or having other mood changes, having blurry vision, having slow-healing sores, getting a lot of infections, such as gum, skin and vaginal infections. Out of the 94 participants the finding show that 78 were females and 16 were males, 70.21% of participants with diabetes were between the ages of 60-69yrs.The study found that only 10.63% of respondents declared a good level of knowledge of diabetes. Out of 3 symptoms of diabetes analyzed in this study, high blood sugar (58.5%) and chronic fatigue (36.17%) were the most recognized. Out of 4 diabetes risk factors analyzed in this study, obesity (21.27%) and unhealthy diet (60.63%) were the most recognized diabetes risk factors, while only 10.6% of respondents indicated tobacco use. The diabetic foot was the most recognized diabetes complication (50.57%), but some the participants indicated vision problems (30.8%),or cardiovascular diseases (20.21%) as diabetes complications.

Keywords: diabetes mellitus, non comunicable disease, general health talk, hyperglycemia

Procedia PDF Downloads 47
526 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 88
525 The Ephemeral Re-Use of Cultural Heritage: The Incorporation of the Festival Phenomenon Within Monuments and Archaeological Sites in Lebanon

Authors: Joe Kallas

Abstract:

It is now widely accepted that the preservation of cultural heritage must go beyond simple restoration and renovation actions. While some historic monuments have been preserved for millennia, many of them, less important or simply neglected because of lack of money, have disappeared. As a result, the adaptation of monuments and archaeological sites to new functions allow them to 'survive'. Temporary activities or 'ephemeral' re-use, are increasingly recognized as a means of vitalization of deprived areas and enhancement of historic sites that became obsolete. They have the potential to increase economic and cultural value while making the best use of existing resources. However, there are often conservation and preservation issues related to the implementation of this type of re-use, which can also threaten the integrity and authenticity of archaeological sites and monuments if they have not been properly managed. This paper aims to get a better knowledge of the ephemeral re-use of heritage, and more specifically the subject of the incorporation of the festival phenomenon within the monuments and archaeological sites in Lebanon, a topic that is not yet studied enough. This paper tried to determine the elements that compose it, in order to analyze this phenomenon and to trace its good practices, by comparing international study cases to important national cases: the International Festival of Baalbek, the International Festival of Byblos and the International Festival of Beiteddine. Various factors have been studied and analyzed in order to best respond to the main problematic of this paper: 'How can we preserve the integrity of sites and monuments after the integration of an ephemeral function? And what are the preventive conservation measures to be taken when holding festivals in archaeological sites with fragile structures?' The impacts of the technical problems were first analyzed using various data and more particularly the effects of mass tourism, the integration of temporary installations, sound vibrations, the effects of unstudied lighting, until the mystification of heritage. Unfortunately, the DGA (General Direction of Antiquities in Lebanon) does not specify any frequency limit for the sound vibrations emitted by the speakers during musical festivals. In addition, there is no requirement from its part regarding the installations of the lighting systems in the historic monuments and no monitoring is done in situ, due to the lack of awareness of the impact that could be generated by such interventions, and due to the lack of materials and tools needed for the monitoring process. The study and analysis of the various data mentioned above led us to the elaboration of the main objective of this paper, which is the establishment of a list of recommendations. This list enables to define various preventive conservation measures to be taken during the holding of the festivals within the cultural heritage sites in Lebanon. We strongly hope that this paper will be an awareness document to start taking into consideration several factors previously neglected, in order to improve the conservation practices in the archaeological sites and monuments during the incorporation of the festival phenomenon.

Keywords: archaeology, authenticity, conservation, cultural heritage, festival, historic sites, integrity, monuments, tourism

Procedia PDF Downloads 109
524 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 106
523 Managing Climate Change: Vulnerability Reduction or Resilience Building

Authors: Md Kamrul Hassan

Abstract:

Adaptation interventions are the common response to manage the vulnerabilities of climate change. The nature of adaptation intervention depends on the degree of vulnerability and the capacity of a society. The coping interventions can take the form of hard adaptation – utilising technologies and capital goods like dykes, embankments, seawalls, and/or soft adaptation – engaging knowledge and information sharing, capacity building, policy and strategy development, and innovation. Hard adaptation is quite capital intensive but provides immediate relief from climate change vulnerabilities. This type of adaptation is not real development, as the investment for the adaptation cannot improve the performance – just maintain the status quo of a social or ecological system, and often lead to maladaptation in the long-term. Maladaptation creates a two-way loss for a society – interventions bring further vulnerability on top of the existing vulnerability and investment for getting rid of the consequence of interventions. Hard adaptation is popular to the vulnerable groups, but it focuses so much on the immediate solution and often ignores the environmental issues and future risks of climate change. On the other hand, soft adaptation is education oriented where vulnerable groups learn how to live with climate change impacts. Soft adaptation interventions build the capacity of vulnerable groups through training, innovation, and support, which might enhance the resilience of a system. In consideration of long-term sustainability, soft adaptation can contribute more to resilience than hard adaptation. Taking a developing society as the study context, this study aims to investigate and understand the effectiveness of the adaptation interventions of the coastal community of Sundarbans mangrove forest in Bangladesh. Applying semi-structured interviews with a range of Sundarbans stakeholders including community residents, tourism demand-supply side stakeholders, and conservation and management agencies (e.g., Government, NGOs and international agencies) and document analysis, this paper reports several key insights regarding climate change adaptation. Firstly, while adaptation interventions may offer a short-term to medium-term solution to climate change vulnerabilities, interventions need to be revised for long-term sustainability. Secondly, soft adaptation offers advantages in terms of resilience in a rapidly changing environment, as it is flexible and dynamic. Thirdly, there is a challenge to communicate to educate vulnerable groups to understand more about the future effects of hard adaptation interventions (and the potential for maladaptation). Fourthly, hard adaptation can be used if the interventions do not degrade the environmental balance and if the investment of interventions does not exceed the economic benefit of the interventions. Overall, the goal of an adaptation intervention should be to enhance the resilience of a social or ecological system so that the system can with stand present vulnerabilities and future risks. In order to be sustainable, adaptation interventions should be designed in such way that those can address vulnerabilities and risks of climate change in a long-term timeframe.

Keywords: adaptation, climate change, maladaptation, resilience, Sundarbans, sustainability, vulnerability

Procedia PDF Downloads 182
522 The Comparison of Physical Fitness across Age and Gender in the Lithuanian Primary School Students: Population-Based Cross-Sectional Study

Authors: Arunas Emeljanovas, Brigita Mieziene, Vida Cesnaitiene, Ingunn Fjortoft, Lise Kjonniksen

Abstract:

Background: Gender differences in physical fitness were tracked in many studies with lower effect in preschool children and increasing difference among genders across age. In Lithuania, on a population level, secular trends in physical fitness were regularly observed each ten years for the last two decades for 11-18 years old students. However, there is apparently a lack of such epidemiological studies among primary school students. Assessing and monitoring physical fitness from an early age is of particular importance seeking to develop and strengthen physical abilities of youths for future health benefits. The goal of the current study was to indicate age and gender differences in anthropometric measures, musculoskeletal, motor and cardiorespiratory fitness in Lithuanian primary school children. Methods: The study included 3456 1-4th grade students from 6 to 10 years. The data reliably represents the population of primary school children in Lithuania. Among them, 1721 (49.8 percent) were boys. Physical fitness was measured by the 9-item test battery, developed by Fjørtoft and colleagues (2011). Height and weight were measured and body mass index was calculated. Student t test evaluated differences in physical fitness between boys and girls, ANOVA was performed to indicate differences across age. Results: All anthropometric and fitness means that were identified as significantly different were better in boys than in girls and in older than younger students (p < .05). Among anthropometric measures, height was higher in boys aged 7 through 9 years. Weight and BMI differed among boys and girls only at 8 years old. Means of height and weight increased significantly across all ages. Among musculoskeletal fitness tests, means of standing broad jump, throwing a tennis ball and pushing a medicine ball were different between genders within each age group and across all ages. Differences between genders were less likely in motor fitness than in musculoskeletal or cardiorespiratory fitness. Differences in means of shuttle run 10 x 5 test between genders occurred at age 6, 9 and 10 years; running 20 m at age 6 and 9 years, and climbing wall bars at age 9 and 10. Means of Reduced Cooper test representing cardiorespiratory fitness were different between genders within each age group but did not differ among age 6 and 8 as well as 7 and 8 years in boys, and among age 7 and 8 years in girls. Conclusion: In general, the current study confirms gender differences in musculoskeletal, motor and cardiorespiratory fitness found in other studies across the world in primary school and older children. Observed gender differences might be explained by higher physical activity in boys rather than girls. As it is explained by previous literature, older boys and girls had better performances than younger ones, because of the components of fitness change as a function of growth, maturation, development, and interactions among the three processes.

Keywords: primary school children, motor fitness, musculoskeletal fitness, cardiovascular fitness

Procedia PDF Downloads 198
521 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X

Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira

Abstract:

An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.

Keywords: boundary-layer, scramjet, simple algorithm, shock wave

Procedia PDF Downloads 472
520 The Coaching on Lifestyle Intervention (CooL): Preliminary Results and Implementation Process

Authors: Celeste E. van Rinsum, Sanne M. P. L. Gerards, Geert M. Rutten, Ien A. M. van de Goor, Stef P. J. Kremers

Abstract:

Combined lifestyle interventions have shown to be effective in changing and maintaining behavioral lifestyle changes and reducing overweight and obesity. A lifestyle coach is expected to promote lifestyle changes in adults related to physical activity and diet. The present Coaching on Lifestyle (CooL) study examined participants’ physical activity level, dietary behavioral, and motivational changes immediately after the intervention and at 1.5 years after baseline. In CooL intervention a lifestyle coach coaches individuals from eighteen years and older with (a high risk of) obesity in group and individual sessions. In addition a process evaluation was conducted in order to examine the implementation process and to be able to interpret the changes within the participants. This action-oriented research has a pre-post design. Participants of the CooL intervention (N = 200) completed three questionnaires: at baseline, immediately after the intervention (on average after 44 weeks), and at 1.5 years after baseline. T-tests and linear regressions were conducted to test self-reported changes in physical activity (IPAQ), dietary behaviors, their quality of motivation for physical activity (BREQ-3) and for diet (REBS), body mass index (BMI), and quality of life (EQ-5D-3L). For the process evaluation, we used individual and group interviews, observations and document analyses to gain insight in the implementation process (e.g. the recruitment) and how the intervention was valued by the participants, lifestyle coaches, and referrers. The study is currently ongoing and therefore the results presented here are preliminary. On average, the participants that finished the intervention and those that have completed the long-term measurement improved their level of vigorous-intense physical activity, sedentary behavior, sugar-sweetened beverage consumption and BMI. Mixed results were observed in motivational regulation for physical activity and nutrition. Moreover, an improvement on the quality of life dimension anxiety/depression was found, also in the long-term. All the other constructs did not show significant change over time. The results of the process evaluation have shown that recruitment of clients was difficult. Participants evaluated the intervention positively and the lifestyle coaches have continuously adapted the structure and contents of the intervention throughout the study period, based on their experiences and feedback from research. Preliminary results indicate that the CooL-intervention may have beneficial effects on overweight and obese participants in terms of energy balance-related behaviors, weight reduction, and quality of life. Recruitment of participants and embedding the position of the lifestyle coach in traditional care structures is challenging.

Keywords: combined lifestyle intervention, effect evaluation, lifestyle coaching, process evaluation, overweight, the Netherlands

Procedia PDF Downloads 222
519 Cobalamin, Folate and Metabolic Syndrome Parameters in Pediatric Morbid Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is known to be associated with many clinically important diseases including metabolic syndrome (MetS). Vitamin B12 plays essential roles in fat and protein metabolisms and its cooperation with vitamin B9 is well-known. The aim of this study is to investigate the possible contributions as well as associations of these micronutrients upon obesity and MetS during childhood. A total of 128 children admitted to Namik Kemal University, Medical Faculty, Department of Pediatrics Outpatient Clinics were included into the scope of this study. The mean age±SEM of 92 morbid obese (MO) children and 36 with MetS were 118.3±3.8 months and 129.5±6.4 months, respectively (p > 0.05). The study was approved by Namık Kemal University, Medical Faculty Ethics Committee. Written informed consent forms were obtained from the parents. Demographic features and anthropometric measurements were recorded. WHO BMI-for age percentiles were used. The values above 99 percentile were defined as MO. Components of MetS [waist circumference (WC), fasting blood glucose (FBG), triacylglycerol (TRG), high density lipoprotein cholesterol (HDL-Chol), systolic pressure (SP), diastolic pressure (DP)] were determined. Routine laboratory tests were performed. Serum vitamin B12 concentrations were measured using electrochemiluminescence immunoassay. Vitamin B9 was analyzed by an immunoassay analyzer. Values for vitamin B12 < 148 pmol/L, 148-221 pmol/L, > 221 pmol/L were accepted as low, borderline and normal, respectively. Vitamin B9 levels ≤ 4 mcg/L defined deficiency state. Statistical evaluations were performed by SPSSx Version 16.0. p≤0.05 was accepted as statistical significance level. Statistically higher body mass index (BMI), WC, hip circumference (C) and neck C were calculated in MetS group compared to children with MO. No difference was noted for head C. All MetS components differed between the groups (SP, DP p < 0.001; WC, FBG, TRG p < 0.01; HDL-Chol p < 0.05). Significantly decreased vitamin B9 and vitamin B12 levels were detected (p < 0.05) in children with MetS. In both groups percentage of folate deficiency was 5.5%. No cases were below < 148 pmol/L. However, in MO group 14.3% and in MetS group 22.2% of the cases were of borderline status. In MO group B12 levels were negatively correlated with BMI, WC, hip C and head C, but not with neck C. WC, hip C, head C and neck C were all negatively correlated with HDL-Chol. None of these correlations were observed in the group of children with MetS. Strong positive correlation between FBG and insulin as well as strong negative correlation between TRG and HDL-Chol detected in MO children were lost in MetS group. Deficiency state end-products of both B9 and B12 may interfere with the expected profiles of MetS components. In this study, the alterations in MetS components affected vitamin B12 metabolism and also its associations with anthropometric body measurements. Further increases in vitamin B12 and vitamin B9 deficiency in MetS associated with the increased vitamin B12 as well as vitamin B9 deficiency metabolites may add to MetS parameters.

Keywords: children, cobalamin, folate, metabolic syndrome, obesity

Procedia PDF Downloads 178
518 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 20
517 Acrylate-Based Photopolymer Resin Combined with Acrylated Epoxidized Soybean Oil for 3D-Printing

Authors: Raphael Palucci Rosa, Giuseppe Rosace

Abstract:

Stereolithography (SLA) is one of the 3D-printing technologies that has been steadily growing in popularity for both industrial and personal applications due to its versatility, high accuracy, and low cost. Its printing process consists of using a light emitter to solidify photosensitive liquid resins layer-by-layer to produce solid objects. However, the majority of the resins used in SLA are derived from petroleum and characterized by toxicity, stability, and recalcitrance to degradation in natural environments. Aiming to develop an eco-friendly resin, in this work, different combinations of a standard commercial SLA resin (Peopoly UV professional) with a vegetable-based resin were investigated. To reach this goal, different mass concentrations (varying from 10 to 50 wt%) of acrylated epoxidized soybean oil (AESO), a vegetable resin produced from soyabean oil, were mixed with a commercial acrylate-based resin. 1.0 wt% of Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) was used as photo-initiator, and the samples were printed using a Peopoly moai 130. The machine was set to operate at standard configurations when printing commercial resins. After the print was finished, the excess resin was drained off, and the samples were washed in isopropanol and water to remove any non-reacted resin. Finally, the samples were post-cured for 30 min in a UV chamber. FT-IR analysis was used to confirm the UV polymerization of the formulated resin with different AESO/Peopoly ratios. The signals from 1643.7 to 1616, which corresponds to the C=C stretching of the AESO acrylic acids and Peopoly acrylic groups, significantly decreases after the reaction. The signal decrease indicates the consumption of the double bonds during the radical polymerization. Furthermore, the slight change of the C-O-C signal from 1186.1 to 1159.9 decrease of the signals at 809.5 and 983.1, which corresponds to unsaturated double bonds, are both proofs of the successful polymerization. Mechanical analyses showed a decrease of 50.44% on tensile strength when adding 10 wt% of AESO, but it was still in the same range as other commercial resins. The elongation of break increased by 24% with 10 wt% of AESO and swelling analysis showed that samples with a higher concentration of AESO mixed absorbed less water than their counterparts. Furthermore, high-resolution prototypes were printed using both resins, and visual analysis did not show any significant difference between both products. In conclusion, the AESO resin was successful incorporated into a commercial resin without affecting its printability. The bio-based resin showed lower tensile strength than the Peopoly resin due to network loosening, but it was still in the range of other commercial resins. The hybrid resin also showed better flexibility and water resistance than Peopoly resin without affecting its resolution. Finally, the development of new types of SLA resins is essential to provide new sustainable alternatives to the commercial petroleum-based ones.

Keywords: 3D-printing, bio-based, resin, soybean, stereolithography

Procedia PDF Downloads 117
516 Improving the Management Systems of the Ownership Risks in Conditions of Transformation of the Russian Economy

Authors: Mikhail V. Khachaturyan

Abstract:

The article analyzes problems of improving the management systems of the ownership risks in the conditions of the transformation of the Russian economy. Among the main sources of threats business owners should highlight is the inefficiency of the implementation of business models and interaction with hired managers. In this context, it is particularly important to analyze the relationship of business models and ownership risks. The analysis of this problem appears to be relevant for a number of reasons: Firstly, the increased risk appetite of the owner directly affects the business model and the composition of his holdings; secondly, owners with significant stakes in the company are factors in the formation of particular types of risks for owners, for which relations have a significant influence on a firm's competitiveness and ultimately determines its survival; and thirdly, inefficient system of management ownership of risk is one of the main causes of mass bankruptcies, which significantly affects the stable operation of the economy as a whole. The separation of the processes of possession, disposal and use in modern organizations is the cause of not only problems in the process of interaction between the owner and managers in managing the organization as a whole, but also the asymmetric information about the kinds and forms of the main risks. Managers tend to avoid risky projects, inhibit the diversification of the organization's assets, while owners can insist on the development of such projects, with the aim not only of creating new values for themselves and consumers, but also increasing the value of the company as a result of increasing capital. In terms of separating ownership and management, evaluation of projects by the ratio of risk-yield requires preservation of the influence of the owner on the process of development and making management decisions. It is obvious that without a clearly structured system of participation of the owner in managing the risks of their business, further development is hopeless. In modern conditions of forming a risk management system, owners are compelled to compromise between the desire to increase the organization's ability to produce new value, and, consequently, increase its cost due to the implementation of risky projects and the need to tolerate the cost of lost opportunities of risk diversification. Improving the effectiveness of the management of ownership risks may also contribute to the revitalization of creditors on implementation claims to inefficient owners, which ultimately will contribute to the efficiency models of ownership control to exclude variants of insolvency. It is obvious that in modern conditions, the success of the model of the ownership of risk management and audit is largely determined by the ability and willingness of the owner to find a compromise between potential opportunities for expanding the firm's ability to create new value through risk and maintaining the current level of new value creation and an acceptable level of risk through the use of models of diversification.

Keywords: improving, ownership risks, problem, Russia

Procedia PDF Downloads 338
515 Social Inclusion in Higher Institutions: The Plights of Students with Disabilities in Kaduna Polytechnic, Nigeria

Authors: Mairo H. Ipadeola, Catherine James Atteng

Abstract:

The term social inclusion refers to a process by which those disadvantaged in society can have access to fully participate in education like others. Student with special needs are expected to learn along with their peers within the some educational institutions which provide adequate access for all. There for, the study sort to understand the typical ways in which students with disabilities (SWD) were denied from fully participating as students in Kaduna Polytechnic. In doing this, two (2) objectives and research questions were raised. Firstly, to explore the attitudes of others towards students with disabilities in the institutions and secondly, to ascertain the extent of social participation and physical accessibility for students with disabilities (SWD) while in the institutions. Based on the objectives the paper postulated the research questions: what are the attitudes of management, teachers, and students towards students with special need in Kaduna Polytechnic and to what extent did the students with disabilities experience social participation and physical accessibility within Kaduna Polytechnic school environment? The study area was Kaduna Polytechnic. The study engaged the interview for the data collected which were transcribed and analyzed by thematic coding. The findings were categorized under themes, sub-themes, and codes. The findings revealed that the perception, behavior, and association experiences of students with disabilities within Kaduna Polytechnic were not encouraging. Their experiences were characterized by negative attitudes, feelings of rejection, neglect, and bullying. Data generated on social participation indicated that 71% of the respondents believed that learning, school activities, recreations, and student politics between SWD and the other student were in the direction of low / very low. All the respondents, particularly students with blindness and physical challenges faced difficulty with environmental and physical access above all within the school environment, classroom, walkways and ramps, Also, directions were none existent in most departments with physical access to classrooms, toilets, cafeterias, and school shops absent or very low (71% and 29% of the respondents). The conclusion was that the physical barriers limited the possibilities of social participation of SWD.The paper made some recommendations such as mass public enlightenment on radio and television to change the perception of society about people with disability. Also, the federal, state, and local governments enact building acts for fresh builders and adopted measures and time frames for existing public buildings to be made accessible for people with disabilities. All stakeholders should ensure that the five (5) percent budget set aside by State Universal Basic Education Board (SUBEB) and/or Tertiary Education Trust Fund (TETFUND) for the provision of specialized equipment and facilities for the student with special needs should be used prudently spent and monitored by the board.cm.

Keywords: social inclusion, students with disability, social participation, environmental/physical access

Procedia PDF Downloads 42
514 Stability Analysis of Hossack Suspension Systems in High Performance Motorcycles

Authors: Ciro Moreno-Ramirez, Maria Tomas-Rodriguez, Simos A. Evangelou

Abstract:

A motorcycle's front end links the front wheel to the motorcycle's chassis and has two main functions: the front wheel suspension and the vehicle steering. Up to this date, several suspension systems have been developed in order to achieve the best possible front end behavior, being the telescopic fork the most common one and already subjected to several years of study in terms of its kinematics, dynamics, stability and control. A motorcycle telescopic fork suspension model consists of a couple of outer tubes which contain the suspension components (coil springs and dampers) internally and two inner tubes which slide into the outer ones allowing the suspension travel. The outer tubes are attached to the frame through two triple trees which connect the front end to the main frame through the steering bearings and allow the front wheel to turn about the steering axis. This system keeps the front wheel's displacement in a straight line parallel to the steering axis. However, there exist alternative suspension designs that allow different trajectories of the front wheel with the suspension travel. In this contribution, the authors investigate an alternative front suspension system (Hossack suspension) and its influence on the motorcycle nonlinear dynamics to identify and reduce stability risks that a new suspension systems may introduce in the motorcycle dynamics. Based on an existing high-fidelity motorcycle mathematical model, the front end geometry is modified to accommodate a Hossack suspension system. It is characterized by a double wishbone design that varies the front end geometry on certain maneuverings and, consequently, the machine's behavior/response. It consists of a double wishbone structure directly attached to the chassis. In here, the kinematics of this system and its impact on the motorcycle performance/stability are analyzed and compared to the well known telescopic fork suspension system. The framework of this research is the mathematical modelling and numerical simulation. Full stability analyses are performed in order to understand how the motorcycle dynamics may be affected by the newly introduced front end design. This study is carried out by a combination of nonlinear dynamical simulation and root-loci methods. A modal analysis is performed in order to get a deeper understanding of the different modes of oscillation and how the Hossack suspension system affects them. The results show that different kinematic designs of a double wishbone suspension systems do not modify the general motorcycle's stability. The normal modes properties remain unaffected by the new geometrical configurations. However, these normal modes differ from one suspension system to the other. It is seen that the normal modes behaviour depends on various important dynamic parameters, such as the front frame flexibility, the steering damping coefficient and the centre of mass location.

Keywords: nonlinear mechanical systems, motorcycle dynamics, suspension systems, stability

Procedia PDF Downloads 215
513 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 337
512 Phytochemical and Antimicrobial Properties of Zinc Oxide Nanocomposites on Multidrug-Resistant E. coli Enzyme: In-vitro and in-silico Studies

Authors: Callistus I. Iheme, Kenneth E. Asika, Emmanuel I. Ugwor, Chukwuka U. Ogbonna, Ugonna H. Uzoka, Nneamaka A. Chiegboka, Chinwe S. Alisi, Obinna S. Nwabueze, Amanda U. Ezirim, Judeanthony N. Ogbulie

Abstract:

Antimicrobial resistance (AMR) is a major threat to the global health sector. Zinc oxide nanocomposites (ZnONCs), composed of zinc oxide nanoparticles and phytochemicals from Azadirachta indica aqueous leaf extract, were assessed for their physico-chemicals, in silico and in vitro antimicrobial properties on multidrug-resistant Escherichia coli enzymes. Gas chromatography coupled with mass spectroscope (GC-MS) analysis on the ZnONCs revealed the presence of twenty volatile phytochemical compounds, among which is scoparone. Characterization of the ZnONCs was done using ultraviolet-visible spectroscopy (UV-vis), energy dispersive spectroscopy (EDX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffractometer (XRD). Dehydrogenase enzyme converts colorless 2,3,5-triphenyltetrazolium chloride to the red triphenyl formazan (TPF). The rate of formazan formation in the presence of ZnONCs is proportional to the enzyme activities. The color formation is extracted and determined at 500 nm, and the percentage of enzyme activity is calculated. To determine the bioactive components of the ZnONCs, characterize their binding to enzymes, and evaluate the enzyme-ligand complex stability, respectively Discrete Fourier Transform (DFT) analysis, docking, and molecular dynamics simulations will be employed. The results showed arrays of ZnONCs nanorods with maximal absorption wavelengths of 320 nm and 350 nm and thermally stable at the temperature range of 423.77 to 889.69 ℃. In vitro study assessed the dehydrogenase inhibitory properties of the ZnONCs, conjugate of ZnONCs and ampicillin (ZnONCs-amp), the aqueous leaf extract of A. indica, and ampicillin (standard drug). The findings revealed that at the concentration of 500 μm/mL, 57.89 % of the enzyme activities were inhibited by ZnONCs compared to 33.33% and 21.05% of the standard drug (Ampicillin), and the aqueous leaf extract of the A. indica respectively. The inhibition of the enzyme activities by the ZnONCs at 500 μm/mL was further enhanced to 89.74 % by conjugating with Ampicillin. In silico study on the ZnONCs revealed scoparone as the most viable competitor of nicotinamide adenine dinucleotide (NAD⁺) for the coenzyme binding pocket on E. coli malate and histidinol dehydrogenase. From the findings, it can be concluded that the scoparone components of the nanocomposites in synergy with the zinc oxide nanoparticles inhibited E. coli malate and histidinol dehydrogenase by competitively binding to the NAD⁺ pocket and that the conjugation of the ZnONCs with ampicillin further enhanced the antimicrobial efficiency of the nanocomposite against multidrug resistant E. coli.

Keywords: antimicrobial resistance, dehydrogenase activities, E. coli, zinc oxide nanocomposites

Procedia PDF Downloads 23
511 Pentosan Polysulfate Sodium: A Potential Treatment to Improve Bone and Joint Manifestations of Mucopolysaccharidosis I

Authors: Drago Bratkovic, Curtis Gravance, David Ketteridge, Ravi Krishnan, Michael Imperiale

Abstract:

The mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases that have a common defect in the catabolism of glycosaminoglycans (GAGs). MPS I is the most common of the MPS diseases. Manifestations of MPS I include coarsening of facial features, corneal clouding, developmental delay, short stature, skeletal manifestations, hearing loss, cardiac valve disease, hepatosplenomegaly, and umbilical and inguinal hernias. Treatments for MPS I restore or activate the missing or deficient enzyme in the case of enzyme replacement therapy (ERT) and haematopoietic stem cell transplantation (HSCT). Pentosan polysulfate sodium (PPS) is a potential treatment to improve bone and joint manifestations of MPS I. The mechanisms of action of PPS that are relevant to the treatment of MPS I are the ability to: (i) Reduce systemic and accumulated GAG, (ii) Reduce inflammatory effects via the inhibition of NF-kB, resulting in the reduction in pro-inflammatory mediators. (iii) Reduce the expression of the pain mediator nerve growth factor in osteocytes from degenerating joints. (iv) Inhibit the cartilage degrading enzymes related to joint dysfunction in MPS I. PPS is being evaluated as an adjunctive therapy to ERT and/or HSCT in an open-label, single-centre, phase 2 study. Patients are ≥ 5 years of age with a diagnosis of MPS I and previously received HSCT and/or ERT. Three white, female, patients with MPS I-Hurler, ages 14, 15, and 19 years, and one, white male patient aged 15 years are enrolled. All were diagnosed at ≤2 years of age. All patients received HSCT ≤ 6 months after diagnosis. Two of the patients were treated with ERT prior to HSCT, and 1 patient received ERT commencing 3 months prior to HSCT. Two patients received 0.75mg/kg and 2 patients received 1.5mg/kg of PPS. PPS was well tolerated at doses of 0.75 and 1.5 mg/kg to 47 weeks of continuous dosing. Of the 19 adverse events (AEs), 2 were related to PPS. One AE was moderate (pre-syncope) and 1 was mild (injection site bruising), experienced in the same patient. All AEs were reported as mild or moderate. There have been no SAEs. One subject experienced a COVID-19 infection and PPS was interrupted. The MPS I signature GAG fragments, sulfated disaccharide and UA-HNAc S, tended to decrease in 3 patients from baseline through Week 25. Week 25 GAG data are pending for the 4th patient. Overall, most biomarkers (inflammatory, cartilage degeneration, and bone turnover) evaluated in the 3 patients with 25-week assessments have indicated either no change or a reduction in levels compared to baseline. In 3 patients, there was a trend toward improvement in the 2MWT from baseline to Week 48 with > 100% increase in 1 patient (01-201). In the 3 patients that had Week 48 assessments, patients and proxies reported improvement in PGIC, including “worthwhile difference” (n=1), or “made all the difference” (n=2).

Keywords: MPS I, pentosan polysulfate sodium, clinical study, 2MWT, QoL

Procedia PDF Downloads 104
510 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy

Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket

Abstract:

Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.

Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety

Procedia PDF Downloads 141
509 Utilization of Fly Ash Amended Sewage Sludge as Sustainable Building Material

Authors: Kaling Taki, Rohit Gahlot, Manish Kumar

Abstract:

Disposal of Sewage Sludge (SS) is a big issue especially in developing nation like India, where there is no control in the dynamicity of SS produced. The present research work demonstrates the potential application of SS amended with varying percentage (0-100%) of Fly Ash (FA) for brick manufacturing as an alternative of SS management. SS samples were collected from Jaspur sewage treatment plant (Ahmedabad, India) and subjected to different preconditioning treatments: (i) atmospheric drying (ii) pulverization (iii) heat treatment in oven (110°C, moisture removal) and muffle furnace (440°C, organic content removal). Geotechnical parameters of the SS were obtained as liquid limit (52%), plastic limit (24%), shrinkage limit (10%), plasticity index (28%), differential free swell index (DFSI, 47%), silt (68%), clay (27%), organic content (5%), optimum moisture content (OMC, 20%), maximum dry density (MDD, 1.55gm/cc), specific gravity (2.66), swell pressure (57kPa) and unconfined compressive strength (UCS, 207kPa). For FA liquid limit, plastic limit and specific gravity was 44%, 0% and 2.2 respectively. Initially, for brick casting pulverized SS sample was heat treated in a muffle furnace around 440℃ (5 hours) for removal of organic matter. Later, mixing of SS, FA and water by weight ratio was done at OMC. 7*7*7 cm3 sample mold was used for casting bricks at MDD. Brick samples were then first dried in room temperature for 24 hours, then in oven at 100℃ (24 hours) and finally firing in muffle furnace for 1000℃ (10 hours). The fired brick samples were then cured for 3 days according to Indian Standards (IS) common burnt clay building bricks- specification (5th revision). The Compressive strength of brick samples (0, 10, 20, 30, 40, 50 ,60, 70, 80, 90, 100%) of FA were 0.45, 0.76, 1.89, 1.83, 4.02, 3.74, 3.42, 3.19, 2.87, 0.78 and 4.95MPa when evaluated through compressive testing machine (CTM) for a stress rate of 14MPa/min. The highest strength was obtained at 40% FA mixture i.e. 4.02MPa which is much higher than the pure SS brick sample. According to IS 1077: 1992 this combination gives strength more than 3.5 MPa and can be utilized as common building bricks. The loss in weight after firing was much higher than the oven treatment, this might be due to degradation temperature higher than 100℃. The thermal conductivity of the fired brick was obtained as 0.44Wm-1K-1, indicating better insulation properties than other reported studies. TCLP (Toxicity characteristic leaching procedure) test of Cr, Cu, Co, Fe and Ni in raw SS was found as 69, 70, 21, 39502 and 47 mg/kg. The study positively concludes that SS and FA at optimum ratio can be utilized as common building bricks such as partitioning wall and other small strength requirement works. The uniqueness of the work is it emphasizes on utilization of FA for stabilizing SS as construction material as a replacement of natural clay as reported in existing studies.

Keywords: Compressive strength, Curing, Fly Ash, Sewage Sludge.

Procedia PDF Downloads 98
508 Convective Boiling of CO₂/R744 in Macro and Micro-Channels

Authors: Adonis Menezes, J. C. Passos

Abstract:

The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.

Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels

Procedia PDF Downloads 134
507 Excess Body Fat as a Store Toxin Affecting the Glomerular Filtration and Excretory Function of the Liver in Patients after Renal Transplantation

Authors: Magdalena B. Kaziuk, Waldemar Kosiba, Marek J. Kuzniewski

Abstract:

Introduction: Adipose tissue is a typical place for storage water-insoluble toxins in the body. It's connective tissue, where the intercellular substance consist of fat, which level in people with low physical activity should be 18-25% for women and 13-18% for men. Due to the fat distribution in the body we distinquish two types of obesity: android (visceral, abdominal) and gynoidal (gluteal-femoral, peripheral). Abdominal obesity increases the risk of complications of the cardiovascular system diseases, and impaired renal and liver function. Through the influence on disorders of metabolism, lipid metabolism, diabetes and hypertension, leading to emergence of the metabolic syndrome. So thus, obesity will especially overload kidney function in patients after transplantation. Aim: An attempt was made to estimate the impact of amount fat tissue on transplanted kidney function and excretory function of the liver in patients after Ktx. Material and Methods: The study included 108 patients (50 females, 58 male, age 46.5 +/- 12.9 years) with active kidney transplant after more than 3 months from the transplantation. An analysis of body composition was done by using electrical bioimpedance (BIA) and anthropometric measurements. Estimated basal metabolic rate (BMR), muscle mass, total body water content and the amount of body fat. Information about physical activity were obtained during clinical examination. Nutritional status, and type of obesity were determined by using indicators: Waist to Height Ratio (WHR) and Waist to Hip Ratio (WHR). Excretory functions of the transplanted kidney was rated by calculating the estimated renal glomerular filtration rate (eGFR) using the MDRD formula. Liver function was rated by total bilirubin and alanine aminotransferase levels ALT concentration in serum. In our patients haemolitic uremic syndrome (HUS) was excluded. Results: In 19.44% of patients had underweight, 22.37% of the respondents were with normal weight, 11.11% had overweight, and the rest were with obese (49.08%). People with android stature have a lower eGFR compared with those with the gynoidal stature (p = 0.004). All patients with obesity had higher amount of body fat from a few to several percent. The higher amount of body fat percentage, the lower eGFR had patients (p <0.001). Elevated ALT levels significantly correlated with a high fat content (p <0.02). Conclusion: Increased amount of body fat, particularly in the case of android obesity can be a predictor of kidney and liver damage. Due to that obese patients should have more frequent control of diagnostic functions of these organs and the intensive dietary proceedings, pharmacological and regular physical activity adapted to the current physical condition of patients after transplantation.

Keywords: obesity, body fat, kidney transplantation, glomerular filtration rate, liver function

Procedia PDF Downloads 450
506 The Influence of Newest Generation Butyrate Combined with Acids, Medium Chain Fatty Acids and Plant Extract on the Performance and Physiological State of Laying Hens

Authors: Vilma Sasyte, Vilma Viliene, Asta Raceviciute-Stupeliene, Agila Dauksiene, Romas Gruzauskas, Virginijus Slausgalvis, Jamal Al-Saifi

Abstract:

The aim of the present study was to investigate the effect of butyrate, acids, medium-chain fatty acids and plant extract mixture on performance, blood and gastrointestinal tract characteristics of laying hens’. For the period of 8 weeks, 24 Hisex Brown laying hens were randomly assigned to 2 dietary treatments: 1) control wheat-corn-soybean meal based diet (Control group), 2) control diet supplemented with the mixture of butyrate, acids, medium chain fatty acids and plant extract (Lumance®) at the level of 1.5 g/kg of feed (Experimental group). Hens were fed with a crumbled diet at 125 g per day. Housing and feeding conditions were the same for all groups and met the requirements of growth for laying hens of Hisex Brown strain. In the blood serum total protein, bilirubin, cholesterol, DTL- and MTL- cholesterol, triglycerides, glucose, GGT, GOT, GPT, alkaline phosphatase, alpha amylase, contents of c-reactive protein, uric acid, and lipase were analyzed. Development of intestines and internal organs (intestinal length, intestinal weight, the weight of glandular and muscular stomach, pancreas, heart, and liver) were determined. The concentration of short chain fatty acids in caecal content was measured using the method of HPLC. The results of the present study showed that 1.5 g/kg supplementation of feed additive affected egg production and feed conversion ratio for the production of 1 kg of egg mass. Dietary supplementation of analyzed additive in the diets increased the concentration of triglycerides, GOT, alkaline phosphatase and decreased uric acid content compared with the control group (P<0.05). No significant difference for others blood indices in comparison to the control was observed. The addition of feed additives in laying hens’ diets increased intestinal weight by 11% and liver weight by 14% compared with the control group (P<0.05). The short chain fatty acids (propionic, acetic and butyric acids) in the caecum of laying hens in experimental groups decreased compared with the control group. The supplementation of the mixture of butyrate, acids, medium-chain fatty acids and plant extract at the level of 1.5 g/kg in the laying hens’ diets had the effect on the performance, some gastrointestinal tract function and blood parameters of laying hens.

Keywords: acids, butyrate, laying hens, MCFA, performance, plant extract, psysiological state

Procedia PDF Downloads 291
505 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction

Authors: Xiaoling Ren, Guidong Yang

Abstract:

As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.

Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility

Procedia PDF Downloads 151
504 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects

Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town

Abstract:

The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.

Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry

Procedia PDF Downloads 76
503 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops

Authors: Vivek Rangarajan, Kim G. Klarke

Abstract:

With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.

Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops

Procedia PDF Downloads 398