Search results for: cognitive models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8525

Search results for: cognitive models

2495 The Effect of Surgical Intervention on Pediatric and Adolescent Obstructive Sleep Apnea Syndrome

Authors: Ching-Yi Yiu, Hui-Chen Hsu

Abstract:

Objectives: Obstructive sleep apnea syndrome (OSAS) is a popular problem in the modern society. It usually leads to sleep disorder, excessive daytime sleepiness and associated with cardiovascular diseases, cognitive dysfunction and even death. The nonsurgical therapies include continuous positive airway pressure (CPAP), diet and oral appliances. The surgical approaches have nasal surgery, tonsillectomy, adenoidectomy, uvulopalatopharyngoplasty (UPPP) and transoral robotic surgery (TORS).We compare the impact of surgical treatments on these kinds of patients. Methods: Between January 2018 to September 2022, We have enrolled 125 OSAS patients including 82 male and 43 female in Chi Mei Medical Center, Liouying, Taiwan. The age distribution from 6 to 71 years old (y/o) with mean age 36.1 y/o. The averaged body mass index (BMI) is 25 kg/m2 in male and 25.5 kg/m2 in female. In this cohort, we evaluated their upper airway obstruction sites with nasopharyngoscopy and scheduled a planned surgery. Some of cases received polysomnography (PSG) preoperatively, the averaged apnea-hypopnea index (AHI) is 37.7 events/hour. We have 68 patients received tonsillectomy, 9 received UPPP, 42 received UPPP and septomeatoplasty (SMP) and 6 received adenoidectomy and tonsillectomy (A and T). The subjective daytime sleepiness was evaluated with the Epworth sleepiness scale (ESS). Results: In the 68 tonsillectomy group, the averaged BMI is 24.9 kg/m2. In the UPPP group, the averaged BMI is 28.9 kg/m2. In UPPP and SMP group, the averaged BMI is 27.9 kg/m2. In the A and T group, the averaged BMI is 17.2 kg/m2. The reduction of AHI less than 20 is 58% postoperatively. The ESS reduced from 10.9 to 4.9 after surgery. Conclusion: Obstructive sleep apnea syndrome is a common upper airway disturbance in the general population. The prevalence rate is ranging high depending on different regions, age, sex and race. It leads to severe morbidity and mortality including car accident, stroke, nocturnal desaand sudden death and should be considered to be a major public health problem. The CPAP is effective to improve daytime sleepiness but the long-term compliance is low. The surgical treatment with different modalities can produce 50% decrease in AHI and ESS after surgery in the 6 to 12 months short-term period.

Keywords: apnea-hypopnea index, obstructive sleep apnea syndrome, polysomnography, uvulopalatopharyngoplasty

Procedia PDF Downloads 101
2494 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform

Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu

Abstract:

Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.

Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform

Procedia PDF Downloads 70
2493 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources

Authors: PR

Abstract:

Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.

Keywords: artificial intelligence, renewable energy sources, spiral model, optimize

Procedia PDF Downloads 21
2492 Shedding Light on Colorism: Exploring Stereotypes, Influential Factors, and Consequences in African American Communities

Authors: India Sanders, Jeffrey Sherman

Abstract:

Colorism has been a persistent and ingrained issue in the history of the United States, with far-reaching consequences that continue to affect various aspects of daily life, institutional policies, public spaces, economic structures, and social norms. This complex problem has had a particularly profound impact on the African-American community, shaping how they are perceived and treated within society at large. The prevalence of negative stereotypes surrounding African Americans can lead to severe repercussions such as discrimination and mental health disparities. The effects of such biases can also materialize in diverse forms, impacting the well-being and livelihoods of individuals within this community. Current research has examined how people from different racial groups perceive different skin tones of Black people, looking at the cognitive processes that manifest through categorization and stereotypes. Additionally, studies observed consequences related to colorism and how it directly affects those with darker versus lighter skin tones. However, not much research has been conducted on the influence of stereotypes associated with various skin tones. In the present study, it is hypothesized that participants in Group A will rate positive stereotypes associated with lighter skin tones significantly higher than positive stereotypes associated with darker skin tones. It is also hypothesized that participants in Group B will rate negative stereotypes associated with darker skin tones significantly higher than negative stereotypes associated with lighter skin tones. For this study, a quantitative study on stereotypes of skin tone representation within the African-American community will be conducted. Participants will rate the accuracy of various visual representations within mass media of African Americans with light skin tones and dark skin tones using a Likert scale. Participants will also be provided a questionnaire further examining the perception of stereotypes and how this affects their interactions with African Americans with lighter versus darker skin tones. The purpose of this study is to investigate the impact of skin tone portrayals on African Americans, including associated stereotypes and societal perceptions. It is expected that participants will more likely associate negative stereotypes with African Americans who have darker skin tones, as this is a common and reinforced viewpoint in the cultural and social system.

Keywords: colorism, discrimination, racism, stereotype

Procedia PDF Downloads 72
2491 Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding

Authors: Isabel Moscol, Carlos J. Díaz, Ciro Rodríguez

Abstract:

Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur.

Keywords: machine learning techniques, metaheuristic algorithms, short-stem design, stress shielding, hip replacement

Procedia PDF Downloads 199
2490 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling

Procedia PDF Downloads 226
2489 Attachment Patterns in a Sample of South African Children at Risk in Middle Childhood

Authors: Renate Gericke, Carol Long

Abstract:

Despite the robust empirical support of attachment, advancement in the description and conceptualization of attachment has been slow and has not significantly advanced beyond the identification of attachment security or type (namely, secure, avoidant, ambivalent and disorganized). This has continued despite papers arguing for theoretical refinement in the classification of attachment presentations. For thinking and practice to advance, it is critically important that these categories and their assessment be interrogated in different contexts and across developmental age. To achieve this, a quantitative design was used with descriptive and inferential statistics, and general linear models were employed to analyze the data. The Attachment Story Completion Test (ASCT) was administered to 105 children between the ages of eight and twelve from socio-economically deprived contexts with high exposure to trauma. A staggering 93% of the children had insecure attachments (specifically, avoidant 37%, disorganized 34% and ambivalent 22%) and attachment was more complex than currently conceptualized in the attachment literature. Primary attachment did not only present as one of four discreet categories, but 70% of the sample had a complex attachment with more than one type of maternal attachment style. Attachment intensity also varied along a continuum (between 1 and 5). The findings have implications for a) research that has not considered the potential complexity of attachment or attachment intensity, b) policy to more actively support mother-infant dyads, particularly in high-risk contexts and c) question the applicability of a western conceptualization of a primary maternal attachment figure in non-western collectivist societies.

Keywords: attachment, children at risk, middle childhood, non-western context

Procedia PDF Downloads 199
2488 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame

Authors: Saeed Javaherzadeh, Babak Dindar Safa

Abstract:

Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.

Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history

Procedia PDF Downloads 443
2487 Akt: Isoform-Specific Regulation of Cellular Signaling in Cancer

Authors: Bhumika Wadhwa, Fayaz Malik

Abstract:

The serine/threonine protein kinase B (PKB) also known as Akt, is one of the multifaceted kinase in human kinome, existing in three isoforms. Akt plays a vital role in phosphoinositide 3-kinase (PI3K) mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. The functional significance of an individual isoform of Akt is not redundant in cancer cell proliferation and metastasis instead Akt isoforms play distinct roles during metastasis; thereby regulating EMT. This study aims to determine isoform specific functions of Akt in cancer. The results obtained suggest that Akt1 restrict tumor invasion, whereas Akt2 promotes cell migration and invasion by various techniques like MTT, wound healing and invasion assay. Similarly, qRT-PCR also revealed that Akt3 has shown promising results in promoting cancer cell migration. Contrary to pro-oncogenic properties attributed to Akt, it is to be understood how various isoforms of Akt compensates each other in the regulation of common pathways during cancer progression and drug resistance. In conclusion, this study aims to target selective isoforms which is essential to inhibit cancer. However, the question now is whether, and how much, Akt inhibition will be tolerated in the clinic remains to be answered and the experiments will have to address the question of which combinations of newly devised Akt isoform specific inhibitors exert a favourable therapeutic effect in in vivo models of cancer to provide the therapeutic window with minimal toxicity.

Keywords: Akt isoforms, cancer, drug resistance, epithelial mesenchymal transition

Procedia PDF Downloads 261
2486 Evidence-Based Practice Attributes across Nursing Roles at a Children’s Hospital

Authors: Rose Chapman Rodriguez

Abstract:

Problem: Evidence-based practice (EBP) attributes are significantly associated with EBP implementation science, which improves patient care outcomes. Nurses influence EBP, yet little is known of the specific EBP attributes of pediatric nurses in their clinical sub-specialties. Aim: This study aims to investigate the relationship between nursing academic degree, years of experience, and clinical specialty, with mean survey scores on EBP belief, organizational culture, and implementation scales across all levels of nursing in a Children’s Hospital. Methods: A convenience sample of nurses (n=185) participated in a descriptive, cross-sectional, correlational study in May 2023. The electronic surveys comprised 11 demographic questions and nine survey items from the short-version EBP Beliefs Scale (Cronbach α = 0.81), Organizational Culture and Readiness Scale for System-wide Integration Scale (Cronbach α = 0.87), and EBP Implementation Scale (Cronbach α = 0.89). Findings: EBP belief scores were notably higher in nurses working in neonatology (m=4.33), critical care (m=4.47), and among nurse leaders (m=4.50). There was a statistically significant difference in EBP organizational culture among nurse leaders (m = 3.95, p=0.039) compared to clinical nurses (m = 3.34) and advanced practice nurses (m = 3.34). EBP implementation was favorable in neonatology (m=4.20), acute care (m=4.05), and nurse leaders (m=4.33). No significant difference or correlation was found in EBP belief, organizational culture, or implementation mean scores related to nurses' age, academic nursing degree, or years of experience in our cohort (EBP beliefs (r = -.06, p = .400), organizational readiness (r = .02, p = .770), and implementation scales (r = .01, p = .867). Conclusions: This study identified nurse’s EBP attributes in a Children’s Hospital using key variables studied in EBP social cognitive theory and learning theory. Magnet status, shared governance structure, specialty certification, and nurse leaders play a significant role in favorable EBP culture and implementation. Nurses’ unit level ‘group culture’ may vary depending on the EBP attributes and collaborative efforts of local teams. Opportunities for mentoring were identified, which may continue to enhance EBP implementation science across all nursing roles in our pediatric organization.

Keywords: evidence-based practice, peditrics, nursing roles, implementation

Procedia PDF Downloads 73
2485 Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration

Authors: Sakina Fatima, Joseph-Patrick W. E. Clarke, Patricia A. Thibault, Subha Kalyaanamoorthy, Michael Levin, Aravindhan Ganesan

Abstract:

Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs.

Keywords: hnRNPA1, molecular docking, molecular dynamics, RNA-binding proteins

Procedia PDF Downloads 126
2484 Seismic Integrity Determination of Dams in Urban Areas

Authors: J. M. Mayoral, M. Anaya

Abstract:

The urban and economic development of cities demands the construction of water use and flood control infrastructure. Likewise, it is necessary to determine the safety level of the structures built with the current standards and if it is necessary to define the reinforcement actions. The foregoing is even more important in structures of great importance, such as dams, since they imply a greater risk for the population in case of failure or undesirable operating conditions (e.g., seepage, cracks, subsidence). This article presents a methodology for determining the seismic integrity of dams in urban areas. From direct measurements of the dynamic properties using geophysical exploration and ambient seismic noise measurements, the seismic integrity of the concrete-faced rockfill dam selected as a case of study is evaluated. To validate the results, two accelerometer stations were installed (e.g., free field and crest of the dam). Once the dynamic properties were determined, three-dimensional finite difference models were developed to evaluate the dam seismic performance for different intensities of movement, considering the site response and soil-structure interaction effects. The seismic environment was determined from the uniform hazard spectra for several return periods. Based on the results obtained, the safety level of the dam against different seismic actions was determined, and the effectiveness of ambient seismic noise measurements in dynamic characterization and subsequent evaluation of the seismic integrity of urban dams was evaluated.

Keywords: risk, seismic, soil-structure interaction, urban dams

Procedia PDF Downloads 124
2483 Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.)

Authors: Erika K. Méndez, Carlos E. Orrego, Diana L. Manrique, Juan D. Gonzalez, Doménica Vallejo

Abstract:

High moisture content in fruits generates post-harvest problems such as mechanical, biochemical, microbial and physical losses. Dehydration, which is based on the reduction of water activity of the fruit, is a common option for overcoming such losses. However, regular hot air drying could affect negatively the quality properties of the fruit due to the long residence time at high temperature. Power ultrasound (US) application during the convective drying has been used as a novel method able to enhance drying rate and, consequently, to decrease drying time. In the present study, a new approach was tested to evaluate the effect of US on the drying time, the final antioxidant activity (AA) and the total polyphenol content (TPC) of banana slices (BS), mango slices (MS) and guava slices (GS). There were also studied the drying kinetics with nine different models from which water effective diffusivities (Deff) (with or without shrinkage corrections) were calculated. Compared with the corresponding control tests, US assisted drying for fruit slices showed reductions in drying time between 16.23 and 30.19%, 11.34 and 32.73%, and 19.25 and 47.51% for the MS, BS and GS respectively. Considering shrinkage effects, Deff calculated values ranged from 1.67*10-10 to 3.18*10-10 m2/s, 3.96*10-10 and 5.57*10-10 m2/s and 4.61*10-10 to 8.16*10-10 m2/s for the BS, MS and GS samples respectively. Reductions of TPC and AA (as DPPH) were observed compared with the original content in fresh fruit data in all kinds of drying assays.

Keywords: banana, drying, effective diffusivity, guava, mango, ultrasound

Procedia PDF Downloads 538
2482 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation

Authors: Abdal-Hafeez Alhussein

Abstract:

Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.

Keywords: artificial intelligence, information technology, automation, scalability

Procedia PDF Downloads 22
2481 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode

Authors: Girish Chavadappanavar

Abstract:

The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).

Keywords: climate impact, regression analysis, yield and forecast model, sugar models

Procedia PDF Downloads 76
2480 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 263
2479 Relationship between the Ability of Accruals and Non-Systematic Risk of Shares for Companies Listed in Stock Exchange: Case Study, Tehran

Authors: Lina Najafian, Hamidreza Vakilifard

Abstract:

The present study focused on the relationship between the quality of accruals and non-systematic risk. The independent study variables included the ability of accruals, the information content of accruals, and amount of discretionary accruals considered as accruals quality measures. The dependent variable was non-systematic risk based on the Fama and French Three Factor model (FFTFM) and the capital asset pricing model (CAPM). The control variables were firm size, financial leverage, stock return, cash flow fluctuations, and book-to-market ratio. The data collection method was based on library research and document mining including financial statements. Multiple regression analysis was used to analyze the data. The study results showed that there is a significant direct relationship between financial leverage and discretionary accruals and non-systematic risk based on FFTFM and CAPM. There is also a significant direct relationship between the ability of accruals, information content of accruals, firm size, and stock return and non-systematic based on both models. It was also found that there is no relationship between book-to-market ratio and cash flow fluctuations and non-systematic risk.

Keywords: accruals quality, non-systematic risk, CAPM, FFTFM

Procedia PDF Downloads 162
2478 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 329
2477 Time Delayed Susceptible-Vaccinated-Infected-Recovered-Susceptible Epidemic Model along with Nonlinear Incidence and Nonlinear Treatment

Authors: Kanica Goel, Nilam

Abstract:

Infectious diseases are a leading cause of death worldwide and hence a great challenge for every nation. Thus, it becomes utmost essential to prevent and reduce the spread of infectious disease among humans. Mathematical models help to better understand the transmission dynamics and spread of infections. For this purpose, in the present article, we have proposed a nonlinear time-delayed SVIRS (Susceptible-Vaccinated-Infected-Recovered-Susceptible) mathematical model with nonlinear type incidence rate and nonlinear type treatment rate. Analytical study of the model shows that model exhibits two types of equilibrium points, namely, disease-free equilibrium and endemic equilibrium. Further, for the long-term behavior of the model, stability of the model is discussed with the help of basic reproduction number R₀ and we showed that disease-free equilibrium is locally asymptotically stable if the basic reproduction number R₀ is less than one and unstable if the basic reproduction number R₀ is greater than one for the time lag τ≥0. Furthermore, when basic reproduction number R₀ is one, using center manifold theory and Casillo-Chavez and Song theorem, we showed that the model undergoes transcritical bifurcation. Moreover, numerical simulations are being carried out using MATLAB 2012b to illustrate the theoretical results.

Keywords: nonlinear incidence rate, nonlinear treatment rate, stability, time delayed SVIRS epidemic model

Procedia PDF Downloads 153
2476 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 82
2475 Antidiabetic and Admet Pharmacokinetic Properties of Grewia Lasiocarpa E. Mey. Ex Harv. Stem Bark Extracts: An in Vitro and in Silico Study

Authors: Akwu N. A., Naidoo Y., Salau V. F., Olofinsan K. A.

Abstract:

Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is a Southern African medicinal plant indigenously used with other plants for birthing problems. The anti-diabetic properties of the hexane, chloroform, and methanol extracts of Grewia lasiocarpa stem bark were assessed using in vitro α-glucosidase enzyme inhibition assay. The predictive in silico drug-likeness and toxicity properties of the phytocompounds were conducted using the pKCSM, ADMElab, and SwissADME computer-aided online tools. The highest α-glucosidase percentage inhibition was observed in the hexane extract (86.76%, IC50= 0.24 mg/mL), followed by chloroform (63.08%, IC50= 4.87 mg/mL) and methanol (53.22%, IC50= 9.41 mg/mL); while acarbose, the standard anti-diabetic drug was (84.54%, IC50= 1.96 mg/mL). The α-glucosidase assay revealed that the hexane extract exhibited the strongest carbohydrate inhibiting capacity and is a better inhibitor than the standard reference drug-acarbose. The computational studies also affirm the results observed in the in vitroα-glucosidaseassay. Thus, the extracts of G. lasiocarpa may be considered a potential plant-sourced compound for treating type 2 diabetes mellitus. This is the first study on the anti-diabetic properties of Grewia lasiocarpa hexane, chloroform, and methanol extracts using in vitro and in silico models.

Keywords: grewia lasiocarpa, α-glucosidase inhibition, anti-diabetes, ADMET

Procedia PDF Downloads 107
2474 Nurse-Led Codes: Practical Application in the Emergency Department during a Global Pandemic

Authors: F. DelGaudio, H. Gill

Abstract:

Resuscitation during cardiopulmonary (CPA) arrest is dynamic, high stress, high acuity situation, which can easily lead to communication breakdown, and errors. The care of these high acuity patients has also been shown to increase physiologic stress and task saturation of providers, which can negatively impact the care being provided. These difficulties are further complicated during a global pandemic and pose a significant safety risk to bedside providers. Nurse-led codes are a relatively new concept that may be a potential solution for alleviating some of these difficulties. An experienced nurse who has completed advanced cardiac life support (ACLS), and additional training, assumed the responsibility of directing the mechanics of the appropriate ACLS algorithm. This was done in conjunction with a physician who also acted as a physician leader. The additional nurse-led code training included a multi-disciplinary in situ simulation of a CPA on a suspected COVID-19 patient. During the CPA, the nurse leader’s responsibilities include: ensuring adequate compression depth and rate, minimizing interruptions in chest compressions, the timing of rhythm/pulse checks, and appropriate medication administration. In addition, the nurse leader also functions as a last line safety check for appropriate personal protective equipment and limiting exposure of staff. The use of nurse-led codes for CPA has shown to decrease the cognitive overload and task saturation for the physician, as well as limiting the number of staff being exposed to a potentially infectious patient. The real-world application has allowed physicians to perform and oversee high-risk procedures such as intubation, line placement, and point of care ultrasound, without sacrificing the integrity of the resuscitation. Nurse-led codes have also given the physician the bandwidth to review pertinent medical history, advanced directives, determine reversible causes, and have the end of life conversations with family. While there is a paucity of research on the effectiveness of nurse-led codes, there are many potentially significant benefits. In addition to its value during a pandemic, it may also be beneficial during complex circumstances such as extracorporeal cardiopulmonary resuscitation.

Keywords: cardiopulmonary arrest, COVID-19, nurse-led code, task saturation

Procedia PDF Downloads 161
2473 Peer-Mediated Interventions as a High-Leverage Practice in Inclusive General Education Classrooms

Authors: Daniel Pyle, Nicole Pyle, Ben Lignugaris-Kraft, Lawrence Maheady

Abstract:

Students with disabilities are not included in general education at the same rate as their peers without disabilities. There are multiple reasons cited for why inclusion rates vary, such as teachers' lack of knowledge of the successful delivery of inclusive practices to students with the most extensive support needs. However, decades of research document effective inclusive practices associated with benefits across domains for students with disabilities. One effective inclusive practice that teachers use to improve outcomes for students with disabilities is flexible grouping. Teachers can use flexible grouping to facilitate students working collaboratively by using peer-mediated interventions (PMIs). This article describes PMIs as a flexible grouping of High Leverage Practices (HLP). There are variations of PMIs to select from when using flexible grouping. PMIs are described by varied grouping arrangements and different instructional procedures to clarify the flexibility of grouping students and students’ roles within those groupings. In support of teachers’ use of flexible grouping in inclusive general education classrooms, we identify different PMI formats teachers can use depending on the preferred grouping arrangement, explain the distinctive characteristics of PMI models to distinguish expected procedures with peers, highlight outcomes associated with PMIs, and provide an overview of evaluating PMIs effectiveness.

Keywords: peer-mediated interventions, high leverage practices, flexible grouping, general education, special education

Procedia PDF Downloads 82
2472 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 668
2471 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems

Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani

Abstract:

As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.

Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning

Procedia PDF Downloads 105
2470 Influence of Loading Pattern and Shaft Rigidity on Laterally Loaded Helical Piles in Cohesion-Less Soil

Authors: Mohamed Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Aziz, Mona Fawzy Al-Daghma

Abstract:

Helical piles are widely used as axially and laterally loaded deep foundations. Once they are required to resist bearing combined loads (BCLs), as axial compression and lateral thrust, different behaviour is expected, necessitating further investigation. The objective of the present article is to clarify the behaviour of a single helical pile of different shaft rigidity embedded in cohesion-less soil and subjected to simultaneous or successive loading patterns of BCLs. The study was first developed analytically and extended numerically. The numerical analysis was further verified through a laboratory experimental program on a set of helical pile models. The results indicate highly interactive effects of the studied parameters, but it is obviously confirmed that the pile performance increases with both the increase of shaft rigidity and the change of BCLs loading pattern from simultaneous to successive. However, it is noted that the increase of vertical load does not always enhance the lateral capacity but may cause a decrement in lateral capacity, as observed with helical piles of flexible shafts. This study provides insightful information for the design of helical piles in structures loaded by complex sequence of forces, wind turbines, and industrial shafts.

Keywords: helical pile, lateral loads, combined loads, cohesion-less soil, analytical, numerical

Procedia PDF Downloads 72
2469 Substance Use and Association of Adverse Childhood Experience and Mental Health in Young Adults

Authors: Sreelekha Prakash, Yulong Gu

Abstract:

Background: About 61% of adults surveyed across 25 states reported they had experienced at least one type of Adverse Childhood Experience (ACE) before 18 years of age. Relationships between ACEs and a variety of substance-related behaviors and behavioral health have been reported in previous studies. ACEs can have lasting, negative effects on health, well-being, as well as life opportunities such as education and job potential. Objectives: For the current research, the aim was to assess the factors affecting substance use behavior in young adults. The further onset of drug use and its association was analyzed with ACEs and mental health. Method: The young adults from a county in the north-eastern United States were invited to participate in an online questionnaire survey with prior consent through an IRB approved study. The Survey included questions related to social determinants of health, 10 item ACE questionnaire, and substance use related to Alcohol, Marijuana, Opioids, Stimulants, and other drugs. PHQ-9 questionnaire was used to assess cognitive health. Results: Data was analyzed for the 244 completed surveys {68% (165) were females, and 78% (190) were Whites}. The average age of the participants was 26.7 years, and approximately 80% were lifelong residents of the county or year-round residents. Of the respondents, 50% (122) were high school graduates with some college education, and 56% (136) had a full-time jobs. Past 30-day usage for alcohol was 76% (72), and marijuana was 28.4% (27). The data showed that the higher the ACE scores, the younger they start using any substance (p < 0.0001). The data for PHQ-9 and ACE scores showed that the higher the ACE score, the higher the PHQ-9 score, with a significant p-value (p 0.0001). The current data also showed a significant association with other drugs; marijuana use showed significance for 30 days of use (p 0.0001), stimulant use (0.0008), prescription drug misuse (0.01), and opioids (0.01). Conclusion: These findings further support the association between ACEs and initiation of drug use and its correlation with mental health symptoms. Promoting a safe and supportive environment for children and youth in their earlier ages can prevent the youth and young adults from the effects of drug use and create healthy living habits for young adults.

Keywords: subtance use, young adults, adverse childhood experience, PHQ-9

Procedia PDF Downloads 92
2468 Qualitative and Quantitative Research Methodology Theoretical Framework and Descriptive Theory: PhD Construction Management

Authors: Samuel Quashie

Abstract:

PhDs in Construction Management often designs their methods based on those established in social sciences using theoretical models, to collect, gather and analysis data to answer research questions. Work aim is to apply qualitative and quantitative as a data analysis method, and as part of the theoretical framework - descriptive theory. To improve the ability to replicate the contribution to knowledge the research. Using practical triangulation approach, which covers, interviews and observations, literature review and (archival) document studies, project-based case studies, questionnaires surveys and review of integrated systems used in, construction and construction related industries. The clarification of organisational context and management delivery that influences organizational performance and quality of product and measures are achieved. Results illustrate improved reliability in this research approach when interpreting real world phenomena; cumulative results of research can be applied with confidence under similar environments. Assisted validity of the PhD research outcomes and strengthens the confidence to apply cumulative results of research under similar conditions in the Built Environment research systems, which have been criticised for the lack of reliability in approaches when interpreting real world phenomena.

Keywords: case studies, descriptive theory, theoretical framework, qualitative and quantitative research

Procedia PDF Downloads 391
2467 Investigating the Factors Affecting the Innovation of Firms in Metropolitan Regions: The Case of Mashhad Metropolitan Region, Iran

Authors: Hashem Dadashpoor, Sadegh Saeidi Shirvan

Abstract:

While with the evolution of the economy towards a knowledge-based economy, innovation is a requirement for metropolitan regions, the adoption of an open innovation strategy is an option and a requirement for many industrial firms in these regions. Studies show that investing in research and development units cannot alone increase innovation. Within the framework of the theory of learning regions, this gap, which scholars call it the ‘innovation gap’, is filled with regional features of firms. This paper attempts to investigate the factors affecting the open innovation of firms in metropolitan regions, and it searches for these in territorial innovation models and, in particular, the theory of learning regions. In the next step, the effect of identified factors which is considered as regional learning factors in this research is analyzed on the innovation of sample firms by SPSS software using multiple linear regression. The case study of this research is constituted of industrial enterprises from two groups of food industry and auto parts in Toos industrial town in Mashhad metropolitan region. For data gathering of this research, interviews were conducted with managers of industrial firms using structured questionnaires. Based on this study, the effect of factors such as size of firms, inter-firm competition, the use of local labor force and institutional infrastructures were significant in the innovation of the firms studied, and 44% of the changes in the firms’ innovation occurred as a result of the change in these factors.

Keywords: regional knowledge networks, learning regions, interactive learning, innovation

Procedia PDF Downloads 182
2466 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques

Authors: Gurmail Singh

Abstract:

Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).

Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility

Procedia PDF Downloads 132