Search results for: sustainability construction
132 Framework Proposal on How to Use Game-Based Learning, Collaboration and Design Challenges to Teach Mechatronics
Authors: Michael Wendland
Abstract:
This paper presents a framework to teach a methodical design approach by the help of using a mixture of game-based learning, design challenges and competitions as forms of direct assessment. In today’s world, developing products is more complex than ever. Conflicting goals of product cost and quality with limited time as well as post-pandemic part shortages increase the difficulty. Common design approaches for mechatronic products mitigate some of these effects by helping the users with their methodical framework. Due to the inherent complexity of these products, the number of involved resources and the comprehensive design processes, students very rarely have enough time or motivation to experience a complete approach in one semester course. But, for students to be successful in the industrial world, it is crucial to know these methodical frameworks and to gain first-hand experience. Therefore, it is necessary to teach these design approaches in a real-world setting and keep the motivation high as well as learning to manage upcoming problems. This is achieved by using a game-based approach and a set of design challenges that are given to the students. In order to mimic industrial collaboration, they work in teams of up to six participants and are given the main development target to design a remote-controlled robot that can manipulate a specified object. By setting this clear goal without a given solution path, a constricted time-frame and limited maximal cost, the students are subjected to similar boundary conditions as in the real world. They must follow the methodical approach steps by specifying requirements, conceptualizing their ideas, drafting, designing, manufacturing and building a prototype using rapid prototyping. At the end of the course, the prototypes will be entered into a contest against the other teams. The complete design process is accompanied by theoretical input via lectures which is immediately transferred by the students to their own design problem in practical sessions. To increase motivation in these sessions, a playful learning approach has been chosen, i.e. designing the first concepts is supported by using lego construction kits. After each challenge, mandatory online quizzes help to deepen the acquired knowledge of the students and badges are awarded to those who complete a quiz, resulting in higher motivation and a level-up on a fictional leaderboard. The final contest is held in presence and involves all teams with their functional prototypes that now need to contest against each other. Prices for the best mechanical design, the most innovative approach and for the winner of the robotic contest are awarded. Each robot design gets evaluated with regards to the specified requirements and partial grades are derived from the results. This paper concludes with a critical review of the proposed framework, the game-based approach for the designed prototypes, the reality of the boundary conditions, the problems that occurred during the design and manufacturing process, the experiences and feedback of the students and the effectiveness of their collaboration as well as a discussion of the potential transfer to other educational areas.Keywords: design challenges, game-based learning, playful learning, methodical framework, mechatronics, student assessment, constructive alignment
Procedia PDF Downloads 67131 Conceptual Methods of Mitigating Matured Urban Tree Roots Surviving in Conflicts Growth within Built Environment: A Review
Authors: Mohd Suhaizan Shamsuddin
Abstract:
Urbanization exacerbates the environment quality and pressures of matured urban trees' growth and development in changing environment. The growth of struggled matured urban tree-roots by spreading within the existences of infrastructures, resulting in large damage to the structured and declined growth. Many physiological growths declined or damages by the present and installations of infrastructures within and nearby root zone. Afford to remain both matured urban tree and infrastructures as a service provider causes damage and death, respectively. Inasmuch, spending more expenditure on fixing both or removing matured urban trees as risky to the future environment as the mitigation methods to reduce the problems are unconcerned. This paper aims to explain mitigation method practices of reducing the encountered problems of matured urban tree-roots settling and infrastructures while modified urban soil to sustain at an optimum level. Three categories capturing encountered conflicts growth of matured urban tree-roots growth within and nearby infrastructures by mitigating the problems of limited soil spaces, poor soil structures and soil space barrier installations and maintenance. The limited soil space encountered many conflicts and identified six methods that mitigate the survival tree-roots, such as soil volume/mounding, soil replacement/amendment for the radial trench, soil spacing-root bridge, root tunneling, walkway/pavement rising/diverted, and suspended pavement. The limited soil spaces are mitigation affords of inadequate soil-roots and spreading root settling and modification of construction soil media since the barrier existed and installed in root trails or zones. This is the reason for enabling tree-roots spreading and finds adequate sources (nutrients, water uptake and oxygen), spaces and functioning to stability stand of root anchorage since the matured tree grows larger. The poor soil structures were identified as three methods to mitigate soil materials' problems, and fewer soil voids comprise skeletal soil, structural soil, and soil cell. Mitigation of poor soil structure is altering the existing and introducing new structures by modifying the quantities and materials ratio allowing more voids beneath for roots spreading by considering the above structure of foot and vehicle traffics functioning or load-bearing. The soil space barrier installations and maintenance recognized to sustain both infrastructures and tree-roots grown in limited spaces and its benefits, the root barrier installations and root pruning are recommended. In conclusion, these recommended methods attempt to mitigate the present problems encountered at a particular place and problems among tree-roots and infrastructures exist. The combined method is the best way to alleviates the conflicts since the recognized conflicts are between tree-roots and man-made while the urban soil is modified. These presenting methods are most considered to sustain the matured urban trees' lifespan growth in the urban environment.Keywords: urban tree-roots, limited soil spaces, poor soil structures, soil space barrier and maintenance
Procedia PDF Downloads 200130 Adaptable Path to Net Zero Carbon: Feasibility Study of Grid-Connected Rooftop Solar PV Systems with Rooftop Rainwater Harvesting to Decrease Urban Flooding in India
Authors: Rajkumar Ghosh, Ananya Mukhopadhyay
Abstract:
India has seen enormous urbanization in recent years, resulting in increased energy consumption and water demand in its metropolitan regions. Adoption of grid-connected solar rooftop systems and rainwater collection has gained significant popularity in urban areas to address these challenges while also boosting sustainability and environmental consciousness. Grid-connected solar rooftop systems offer a long-term solution to India's growing energy needs. Solar panels are erected on the rooftops of residential and commercial buildings to generate power by utilizing the abundant solar energy available across the country. Solar rooftop systems generate clean, renewable electricity, reducing reliance on fossil fuels and lowering greenhouse gas emissions. This is compatible with India's goal of reducing its carbon footprint. Urban residents and companies can save money on electricity by generating their own and possibly selling excess power back to the grid through net metering arrangements. India gives several financial incentives (subsidies 40% for system capacity 1 kW to 3 kW) to stimulate the building of solar rooftop systems, making them an economically viable option for city dwellers. India provides subsidies up to 70% to special states such as Uttarakhand, Sikkim, Himachal Pradesh, Jammu & Kashmir, and Lakshadweep. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating pressure on traditional energy sources and improving air quality. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating demand on existing energy sources and improving power supply reliability. Rainwater harvesting is another key component of India's sustainable urban development. It comprises collecting and storing rainwater for use in non-potable water applications such as irrigation, toilet flushing, and groundwater recharge. Rainwater gathering 2 helps to conserve water resources by lowering the demand for freshwater sources. This technology is crucial in water-stressed areas to ensure a sustainable water supply. Excessive rainwater runoff in metropolitan areas can lead to Urban flooding. Solar PV system with Rooftop Rainwater harvesting systems absorb and channel excess rainwater, which helps to reduce flooding and waterlogging in Smart cities. Rainwater harvesting systems are inexpensive and quick to set up, making them a tempting option for city dwellers and businesses looking to save money on water. Rainwater harvesting systems are now compulsory in several Indian states for specified types of buildings (bye law, Rooftop space ≥ 300 sq. m.), ensuring widespread adoption. Finally, grid-connected solar rooftop systems and rainwater collection are important to India's long-term urban development. They not only reduce the environmental impact of urbanization, but also empower individuals and businesses to control their energy and water requirements. The G20 summit will focus on green financing, fossil fuel phaseout, and renewable energy transition. The G20 Summit in New Delhi reaffirmed India's commitment to battle climate change by doubling renewable energy capacity. To address climate change and mitigate global warming, India intends to attain 280 GW of solar renewable energy by 2030 and Net Zero carbon emissions by 2070. With continued government support and increased awareness, these strategies will help India develop a more resilient and sustainable urban future.Keywords: grid-connected solar PV system, rooftop rainwater harvesting, urban flood, groundwater, urban flooding, net zero carbon emission
Procedia PDF Downloads 93129 Coastal Foodscapes as Nature-Based Coastal Regeneration Systems
Authors: Gulce Kanturer Yasar, Hayriye Esbah Tuncay
Abstract:
Cultivated food production systems have coexisted harmoniously with nature for thousands of years through ancient techniques. Based on this experience, experimentation, and discovery, these culturally embedded methods have evolved to sustain food production, restore ecosystems, and harmoniously adapt to nature. In this era, as we seek solutions to food security challenges, enhancing and repairing our food production systems is crucial, making them more resilient to future disasters without harming the ecosystem. Instead of unsustainable conventional systems with ongoing destructive effects, we must investigate innovative and restorative production systems that integrate ancient wisdom and technology. Whether we consider agricultural fields, pastures, forests, coastal wetland ecosystems, or lagoons, it is crucial to harness the potential of these natural resources in addressing future global challenges, fostering both socio-economic resilience and ecological sustainability through strategic organization for food production. When thoughtfully designed and managed, marine-based food production has the potential to function as a living infrastructure system that addresses social and environmental challenges despite its known adverse impacts on the environment and local economies. These areas are also stages of daily life, vibrant hubs where local culture is produced and shared, contributing to the distinctive rural character of coastal settlements and exhibiting numerous spatial expressions of public nature. When we consider the history of humanity, indigenous communities have engaged in these sustainable production practices that provide goods for food, trade, culture, and the environment for many ages. Ecosystem restoration and socio-economic resilience can be achieved by combining production techniques based on ecological knowledge developed by indigenous societies with modern technologies. Coastal lagoons are highly productive coastal features that provide various natural services and societal values. They are especially vulnerable to severe physical, ecological, and social impacts of changing, challenging global conditions because of their placement within the coastal landscape. Coastal lagoons are crucial in sustaining fisheries productivity, providing storm protection, supporting tourism, and offering other natural services that hold significant value for society. Although there is considerable literature on the physical and ecological dimensions of lagoons, much less literature focuses on their economic and social values. This study will discuss the possibilities of coastal lagoons to achieve both ecologically sustainable and socio-economically resilient while maintaining their productivity by combining local techniques and modern technologies. The case study will present Turkey’s traditional aquaculture method, "Dalyans," predominantly operated by small-scale farmers in coastal lagoons. Due to human, ecological, and economic factors, dalyans are losing their landscape characteristics and efficiency. These 1000-year-old ancient techniques, rooted in centuries of traditional and agroecological knowledge, are under threat of tourism, urbanization, and unsustainable agricultural practices. Thus, Dalyans have diminished from 29 to approximately 4-5 active Dalyans. To deal with the adverse socio-economic and ecological consequences on Turkey's coastal areas, conserving Dalyans by protecting their indigenous practices while incorporating contemporary methods is essential. This study seeks to generate scenarios that envision the potential ways protection and development can manifest within case study areas.Keywords: coastal foodscape, lagoon aquaculture, regenerative food systems, watershed food networks
Procedia PDF Downloads 76128 Flood Risk Assessment, Mapping Finding the Vulnerability to Flood Level of the Study Area and Prioritizing the Study Area of Khinch District Using and Multi-Criteria Decision-Making Model
Authors: Muhammad Karim Ahmadzai
Abstract:
Floods are natural phenomena and are an integral part of the water cycle. The majority of them are the result of climatic conditions, but are also affected by the geology and geomorphology of the area, topography and hydrology, the water permeability of the soil and the vegetation cover, as well as by all kinds of human activities and structures. However, from the moment that human lives are at risk and significant economic impact is recorded, this natural phenomenon becomes a natural disaster. Flood management is now a key issue at regional and local levels around the world, affecting human lives and activities. The majority of floods are unlikely to be fully predicted, but it is feasible to reduce their risks through appropriate management plans and constructions. The aim of this Case Study is to identify, and map areas of flood risk in the Khinch District of Panjshir Province, Afghanistan specifically in the area of Peshghore, causing numerous damages. The main purpose of this study is to evaluate the contribution of remote sensing technology and Geographic Information Systems (GIS) in assessing the susceptibility of this region to flood events. Panjsher is facing Seasonal floods and human interventions on streams caused floods. The beds of which have been trampled to build houses and hotels or have been converted into roads, are causing flooding after every heavy rainfall. The streams crossing settlements and areas with high touristic development have been intensively modified by humans, as the pressure for real estate development land is growing. In particular, several areas in Khinch are facing a high risk of extensive flood occurrence. This study concentrates on the construction of a flood susceptibility map, of the study area, by combining vulnerability elements, using the Analytical Hierarchy Process/ AHP. The Analytic Hierarchy Process, normally called AHP, is a powerful yet simple method for making decisions. It is commonly used for project prioritization and selection. AHP lets you capture your strategic goals as a set of weighted criteria that you then use to score projects. This method is used to provide weights for each criterion which Contributes to the Flood Event. After processing of a digital elevation model (DEM), important secondary data were extracted, such as the slope map, the flow direction and the flow accumulation. Together with additional thematic information (Landuse and Landcover, topographic wetness index, precipitation, Normalized Difference Vegetation Index, Elevation, River Density, Distance from River, Distance to Road, Slope), these led to the final Flood Risk Map. Finally, according to this map, the Priority Protection Areas and Villages and the structural and nonstructural measures were demonstrated to Minimize the Impacts of Floods on residential and Agricultural areas.Keywords: flood hazard, flood risk map, flood mitigation measures, AHP analysis
Procedia PDF Downloads 119127 Improving Sanitation and Hygiene Using a Behavioral Change Approach in Public and Private Schools in Kampala, Uganda
Authors: G. Senoga, D. Nakimuli, B. Ndagire, B. Lukwago, D. Kyamagwa
Abstract:
Background: The COVID-19 epidemic affected the education sector, with some private schools closing while other children missed schooling for fear contracting COVID-19. Post COVID-19, PSIU in collaborated with Kampala City Council Authority Directorate of Education and Social Science, Water and Sanitation department, and Directorate of Public Health and Environment to improve sanitation and hygiene among pupils and staff in 50 public and private school system in Kampala city. The “Be Clean, Stay Healthy Campaign” used a behavioral change approach in educating, reinforcing and engaging learners on proper hand washing behaviors, proper toilet usage and garbage disposal. In April 2022, 40 Washa lots were constructed, to reduce the pupil - hand wash station ratio; distributed KCCA approved printed materials; oriented 50 teachers, WASH committees to execute and implement hygiene promotion. To ensure sustainability, WASH messages were memorized and practiced through hand washing songs, Pledge, prayer, Poems, Skits, Music, dance and drama, coupled with participatory, practical demonstrations using peer to peer approach, guest speakers at assemblies and in classes. This improved hygiene and sanitation practices. Premised on this, PSI conducted an end line assessment to explore the impact of a hand washing campaign in regards to improvements in hand washing practices and hand hygiene among pupils, accessibility, functionality and usage of the constructed hygiene and sanitation facilities. Method: A cross-sectional post intervention assessment using a mixed methods approach, targeting headteachers, wash committee members and pupils less <17 years was used. Quantitative approaches with a mix of open-ended questions were used in purposively selected respondents in 50 schools. Primary three to primary seven pupils were randomly selected, data was analyzed using the Statistical Package for Social Scientists (SPSS) Outcomes and Findings: 46,989 pupils (51% female), 1,127 and 524 teaching and non-teaching staff were reached by the intervention, respectively. 96% of schools trained on sanitation, sustainable water usage and hygiene constituted 17-man school WASH committees with teacher, parents and pupils representatives. (31%) of the WASH committees developed workplans, (78%) held WASH meetings monthly. This resulted into improved sanitation, water usage, waste management, proper use of toilets, and improved pupils’ health with reduced occurrences of stomach upsets, diarrhoea initially attributed to improper use of latrines and general waste management. Teachers reported reduced number of school absenteeism due to improved hygiene and general waste management at school, especially proper management of sanitary pads. School administrations response rate in purchase of hygiene equipment’s and detergents like soap improved. Regular WASH meetings in classes, teachers and community supervision ensured WASH facilities are used appropriately. Conclusion and Recommendations: Practical behaviour change innovations improves pupil’s knowledge and understanding of hygiene messages and usage. Over 70% of pupils had clear recall of key WASH Messages. There is need for continuous water flow in the Washa lots, harvesting rain water would reduce water bills while complementing National water supply coupled with increasing on Washa lots in densely populated schools.Keywords: handwashing, hygyiene, sanitation, behaviour change
Procedia PDF Downloads 93126 Ascribing Identities and Othering: A Multimodal Discourse Analysis of a BBC Documentary on YouTube
Authors: Shomaila Sadaf, Margarethe Olbertz-Siitonen
Abstract:
This study looks at identity and othering in discourses around sensitive issues in social media. More specifically, the study explores the multimodal resources and narratives through which the other is formed, and identities are ascribed in online spaces. As an integral part of social life, media spaces have become an important site for negotiating and ascribing identities. In line with recent research, identity is seen hereas constructions of belonging which go hand in hand with processes of in- and out-group formations that in some cases may lead to othering. Previous findings underline that identities are neither fixed nor limited but rather contextual, intersectional, and interactively achieved. The goal of this study is to explore and develop an understanding of how people co-construct the ‘other’ and ascribe certain identities in social media using multiple modes. In the beginning of the year 2018, the British government decided to include relationships, sexual orientation, and sex education into the curriculum of state funded primary schools. However, the addition of information related to LGBTQ+in the curriculum has been met with resistance, particularly from religious parents.For example, the British Muslim community has voiced their concerns and protested against the actions taken by the British government. YouTube has been used by news companies to air video stories covering the protest and narratives of the protestors along with the position ofschool officials. The analysis centers on a YouTube video dealing with the protest ofa local group of parents against the addition of information about LGBTQ+ in the curriculum in the UK. The video was posted in 2019. By the time of this study, the videos had approximately 169,000 views andaround 6000 comments. In deference to multimodal nature of YouTube videos, this study utilizes multimodal discourse analysis as a method of choice. The study is still ongoing and therefore has not yet yielded any final results. However, the initial analysis indicates a hierarchy of ascribing identities in the data. Drawing on multimodal resources, the media works with social categorizations throughout the documentary, presenting and classifying involved conflicting parties in the light of their own visible and audible identifications. The protesters can be seen to construct a strong group identity as Muslim parents (e.g., clothing and reference to shared values). While the video appears to be designed as a documentary that puts forward facts, the media does not seem to succeed in taking a neutral position consistently throughout the video. At times, the use of images, soundsand language contributes to the formation of “us” vs. “them”, where the audience is implicitly encouraged to pick a side. Only towards the end of the documentary this problematic opposition is addressed and critically reflected through an expert interview that is – interestingly – visually located outside the previously presented ‘battlefield’. This study contributes to the growing understanding of the discursive construction of the ‘other’ in social media. Videos available online are a rich source for examining how the different social actors ascribe multiple identities and form the other.Keywords: identity, multimodal discourse analysis, othering, youtube
Procedia PDF Downloads 115125 Deterioration Prediction of Pavement Load Bearing Capacity from FWD Data
Authors: Kotaro Sasai, Daijiro Mizutani, Kiyoyuki Kaito
Abstract:
Expressways in Japan have been built in an accelerating manner since the 1960s with the aid of rapid economic growth. About 40 percent in length of expressways in Japan is now 30 years and older and has become superannuated. Time-related deterioration has therefore reached to a degree that administrators, from a standpoint of operation and maintenance, are forced to take prompt measures on a large scale aiming at repairing inner damage deep in pavements. These measures have already been performed for bridge management in Japan and are also expected to be embodied for pavement management. Thus, planning methods for the measures are increasingly demanded. Deterioration of layers around road surface such as surface course and binder course is brought about at the early stages of whole pavement deterioration process, around 10 to 30 years after construction. These layers have been repaired primarily because inner damage usually becomes significant after outer damage, and because surveys for measuring inner damage such as Falling Weight Deflectometer (FWD) survey and open-cut survey are costly and time-consuming process, which has made it difficult for administrators to focus on inner damage as much as they have been supposed to. As expressways today have serious time-related deterioration within them deriving from the long time span since they started to be used, it is obvious the idea of repairing layers deep in pavements such as base course and subgrade must be taken into consideration when planning maintenance on a large scale. This sort of maintenance requires precisely predicting degrees of deterioration as well as grasping the present situations of pavements. Methods for predicting deterioration are determined to be either mechanical or statistical. While few mechanical models have been presented, as far as the authors know of, previous studies have presented statistical methods for predicting deterioration in pavements. One describes deterioration process by estimating Markov deterioration hazard model, while another study illustrates it by estimating Proportional deterioration hazard model. Both of the studies analyze deflection data obtained from FWD surveys and present statistical methods for predicting deterioration process of layers around road surface. However, layers of base course and subgrade remain unanalyzed. In this study, data collected from FWD surveys are analyzed to predict deterioration process of layers deep in pavements in addition to surface layers by a means of estimating a deterioration hazard model using continuous indexes. This model can prevent the loss of information of data when setting rating categories in Markov deterioration hazard model when evaluating degrees of deterioration in roadbeds and subgrades. As a result of portraying continuous indexes, the model can predict deterioration in each layer of pavements and evaluate it quantitatively. Additionally, as the model can also depict probability distribution of the indexes at an arbitrary point and establish a risk control level arbitrarily, it is expected that this study will provide knowledge like life cycle cost and informative content during decision making process referring to where to do maintenance on as well as when.Keywords: deterioration hazard model, falling weight deflectometer, inner damage, load bearing capacity, pavement
Procedia PDF Downloads 390124 Socio-Psychological Significance of Vandalism in the Urban Environment: Destruction, Modernization, Communication
Authors: Olga Kruzhkova, Irina Vorobyeva, Roman Porozov
Abstract:
Vandalism is a common phenomenon, but its definition is still not clearly defined. In the public sense, vandalism is the blatant cases of pogroms in cemeteries, destruction of public places (regardless of whether these actions are authorized), damage to significant objects of culture and history (monuments, religious buildings). From a legal point of view, only such an act can be called vandalism, which is aimed at 'desecrating buildings or other structures, damaging property on public transport or in other public places'. The key here is the notion of public property that is being damaged. In addition, the principal is the semantics of messages, expressed in a kind of sign system (drawing, inscription, symbol), which initially threatens public order, the calmness of citizens, public morality. Because of this, the legal qualification of vandalism doesn’t include a sufficiently wide layer of environmental destructions that are common in modern urban space (graffiti and other damage to private property, broken shop windows, damage to entrances and elevator cabins), which in ordinary consciousness are seen as obvious facts of vandalism. At the same time, the understanding of vandalism from the position of psychology implies an appeal to the question of the limits of the activity of the subject of vandalism and his motivational basis. Also recently, the discourse on the positive meaning of some forms of vandalism (graffiti, street-art, etc.) has been activated. But there is no discussion of the role and significance of vandalism in public and individual life, although, like any socio-cultural and socio-psychological phenomenon, vandalism is not groundless and meaningless. Our aim of the study was to identify and describe the functions of vandalism as a socio-cultural and socio-psychological phenomenon of the life of the urban community, as well as personal determinants of its manifestations. The study was conducted in the spatial environment of the Russian megalopolis (Ekaterinburg) by photographing visual results of vandal acts (6217 photos) with subsequent trace-assessment and image content analysis, as well as diagnostics of personal characteristics and motivational basis of vandal activity of possible subjects of vandalism among youth. The results of the study allowed to identify the functions of vandalism at the socio-environmental and individual-subjective levels. The socio-environmental functions of vandalism include the signaling function, the function of preparing of social changes, the constructing function, and the function of managing public moods. The demonstrative-protest function, the response function, the refund function, and the self-expression function are assigned to the individual-subjective functions of vandalism. A two-dimensional model of vandal functions has been formed, where functions are distributed in the spaces 'construction reconstruction', 'emotional regulation/moral regulation'. It is noted that any function of vandal activity at the individual level becomes a kind of marker of 'points of tension' at the social and environmental level. Acknowledgment: The research was supported financially by Russian Science Foundation, (Project No. 17-18-01278).Keywords: destruction, urban environment, vandal behavior, vandalism, vandalism functions
Procedia PDF Downloads 204123 Assessing the Risk of Socio-economic Drought: A Case Study of Chuxiong Yi Autonomous Prefecture, China
Authors: Mengdan Guo, Zongmin Wang, Haibo Yang
Abstract:
Drought is one of the most complex and destructive natural disasters, with a huge impact on both nature and society. In recent years, adverse climate conditions and uncontrolled human activities have exacerbated the occurrence of global droughts, among which socio-economic droughts are closely related to human survival. The study of socio-economic drought risk assessment is crucial for sustainable social development. Therefore, this study comprehensively considered the risk of disaster causing factors, the exposure level of the disaster-prone environment, and the vulnerability of the disaster bearing body to construct a socio-economic drought risk assessment model for Chuxiong Prefecture in Yunnan Province. Firstly, a threedimensional frequency analysis of intensity area duration drought was conducted, followed by a statistical analysis of the drought risk of the socio-economic system. Secondly, a grid analysis model was constructed to assess the exposure levels of different agents and study the effects of drought on regional crop growth, industrial economic growth, and human consumption thresholds. Thirdly, an agricultural vulnerability model for different irrigation levels was established by using the DSSAT crop model. Industrial economic vulnerability and domestic water vulnerability under the impact of drought were investigated by constructing a standardized socio-economic drought index and coupling water loss. Finally, the socio-economic drought risk was assessed by combining hazard, exposure, and vulnerability. The results show that the frequency of drought occurrence in Chuxiong Prefecture, Yunnan Province is relatively high, with high population and economic exposure concentrated in urban areas of various counties and districts, and high agricultural exposure concentrated in mountainous and rural areas. Irrigation can effectively reduce agricultural vulnerability in Chuxiong, and the yield loss rate under the 20mm winter irrigation scenario decreased by 10.7% compared to the rain fed scenario. From the perspective of comprehensive risk, the distribution of long-term socio-economic drought risk in Chuxiong Prefecture is relatively consistent, with the more severe areas mainly concentrated in Chuxiong City and Lufeng County, followed by counties such as Yao'an, Mouding and Yuanmou. Shuangbai County has the lowest socio-economic drought risk, which is basically consistent with the economic distribution trend of Chuxiong Prefecture. And in June, July, and August, the drought risk in Chuxiong Prefecture is generally high. These results can provide constructive suggestions for the allocation of water resources and the construction of water conservancy facilities in Chuxiong Prefecture, and provide scientific basis for more effective drought prevention and control. Future research is in the areas of data quality and availability, climate change impacts, human activity impacts, and countermeasures for a more comprehensive understanding and effective response to drought risk in Chuxiong Prefecture.Keywords: DSSAT model, risk assessment, socio-economic drought, standardized socio-economic drought index
Procedia PDF Downloads 55122 Seismic Analysis of Vertical Expansion Hybrid Structure by Response Spectrum Method Concern with Disaster Management and Solving the Problems of Urbanization
Authors: Gautam, Gurcharan Singh, Mandeep Kaur, Yogesh Aggarwal, Sanjeev Naval
Abstract:
The present ground reality scenario of suffering of humanity shows the evidence of failure to take wrong decisions to shape the civilization with Irresponsibilities in the history. A strong positive will of right responsibilities make the right civilization structure which affects itself and the whole world. Present suffering of humanity shows and reflect the failure of past decisions taken to shape the true culture with right social structure of society, due to unplanned system of Indian civilization and its rapid disaster of population make the failure to face all kind of problems which make the society sufferer. Our India is still suffering from disaster like earthquake, floods, droughts, tsunamis etc. and we face the uncountable disaster of deaths from the beginning of humanity at the present time. In this research paper our focus is to make a Disaster Resistance Structure having the solution of dense populated urban cities area by high vertical expansion HYBRID STRUCTURE. Our efforts are to analyse the Reinforced Concrete Hybrid Structure at different seismic zones, these concrete frames were analyzed using the response spectrum method to calculate and compare the different seismic displacement and drift. Seismic analysis by this method generally is based on dynamic analysis of building. Analysis results shows that the Reinforced Concrete Building at seismic Zone V having maximum peak story shear, base shear, drift and node displacement as compare to the analytical results of Reinforced Concrete Building at seismic Zone III and Zone IV. This analysis results indicating to focus on structural drawings strictly at construction site to make a HYBRID STRUCTURE. The study case is deal with the 10 story height of a vertical expansion Hybrid frame structure at different zones i.e. zone III, zone IV and zone V having the column 0.45x0.36mt and beam 0.6x0.36mt. with total height of 30mt, to make the structure more stable bracing techniques shell be applied like mage bracing and V shape bracing. If this kind of efforts or structure drawings are followed by the builders and contractors then we save the lives during earthquake disaster at Bhuj (Gujarat State, India) on 26th January, 2001 which resulted in more than 19,000 deaths. This kind of Disaster Resistance Structure having the capabilities to solve the problems of densely populated area of cities by the utilization of area in vertical expansion hybrid structure. We request to Government of India to make new plans and implementing it to save the lives from future disasters instead of unnecessary wants of development plans like Bullet Trains.Keywords: history, irresponsibilities, unplanned social structure, humanity, hybrid structure, response spectrum analysis, DRIFT, and NODE displacement
Procedia PDF Downloads 211121 Humanitarian Storytelling through Photographs with and for Resettled Refugees in Wellington
Authors: Ehsan K. Hazaveh
Abstract:
This research project explores creative methods of storytelling through photography to portray a vulnerable and marginalised community: former refugees living in Wellington, New Zealand. The project explores photographic representational techniques that can not only empower and give voice to those communities but also challenge dominant stereotypes about refugees and support humanitarian actions. The aims of this study are to develop insights surrounding issues associated with the photographic representation of refugees and to explore the collaborative construction of possible counter-narratives that might lead to the formulation of a practice framework for representing refugees using photography. In other words, the goal of this study is to explore representational and narrative strategies that frame refugees as active community members and as individuals with specific histories and expertise. These counter-narratives will bring the diversity of refugees to the surface by offering personal stories, contextualising their experience, raising awareness about the plight and human rights of the refugee community in New Zealand, evoking empathy and, therefore, facilitating the process of social change. The study has designed a photographic narrative framework by determining effective methods of photo storytelling, framing, and aesthetic techniques, focusing on different ways of taking, selecting, editing and curating photographs. Photo elicitation interviews have been used to ‘explore’, ‘produce’ and ‘co-curate’ the counter-narrative along with participants. Photo elicitation is a qualitative research method that employs images to evoke data in order to find out how other people experience their world - the researcher shows photographs to the participant and asks open-ended questions to get them to talk about their life experiences and the world around them. The qualitative data have been collected and produced through interactions with four former refugees living in Wellington, New Zealand. In this way, this project offers a unique account of their conditions and basic knowledge about their living experience and their stories. The participants of this study have engaged with PhotoVoice, a photo elicitation methodology that employs photography and storytelling, to share activities, emotions, hopes, and aspects of their lived experiences. PhotoVoice was designed to empower members of marginalised populations. It involves a series of meeting sessions, in which participants share photographs they have taken and discuss stories about the photographs to identify, represent, and enhance the issues important to their lives and communities. Finally, the data provide a basis for systematically producing visual counter-narratives that highlight the experiences of former- refugees. By employing these methods, refugees can represent their world as well as interpret it. The process of developing this research framing has enabled the development of powerful counter-narratives that challenge prevailing stereotypical depictions which in turn have the potential to shape improved humanitarian outcomes, shifts in public attitudes and political perspectives in New Zealand.Keywords: media, photography, refugees, photo-elicitation, storytelling
Procedia PDF Downloads 151120 Landslide Hazard a Gigantic Problem in Indian Himalayan Region: Needs In-Depth Research to Minimize Disaster
Authors: Varun Joshi, M. S. Rawat
Abstract:
The Indian Himalayan Region (IHR) is inherently fragile and susceptible to landslide hazard due to its extremely weak geology, highly rugged topography and heavy monsoonal rainfall. One of the most common hazards in the IHR is landslide, and this event is particularly frequent in Himalayan states of India i.e. Jammu & Kashmir, Himachal Pradesh, Uttarakhand, Sikkim, Manipur and Arunachal Pradesh. Landslides are mostly triggered by extreme rainfall events but the incidence increases during monsoon months (June to September). Natural slopes which are otherwise stable but they get destabilized due to anthropogenic activities like construction of various developmental activities and deforestation. These activities are required to fulfill the developmental needs and upliftment of societal status in the region. Landslides also trigger during major earthquakes and reported most observable and damaging phenomena. Studies indicate that the landslide phenomenon has increased many folds due to developmental activities in Himalayan region. Gradually increasing and devastating consequences of landslides turned into one of the most important hydro-geological hazards in Himalayan states especially in Uttarakhand and Sikkim states of India. The recent most catastrophic rainfall in June 2013 in Uttarakhand lead to colossal loss of life and property. The societal damage due to this incident is still to be recovered even after three years. Sikkim earthquake of September 2011 is witnessed for triggering of large number of coseismic landslides. The rescue and relief team faced huge problem in helping the trapped villagers in remote locations of the state due to road side blockade by landslides. The recent past incidences of landslides in Uttarakhand, as well as Sikkim states, created a new domain of research in terms of understanding the phenomena of landslide and management of disaster in such situation. Every year at many locations landslides trigger which force dwellers to either evacuate their dwelling or lose their life and property. The communication and transportation networks are also severely affected by landslides at several locations. Many times the drinking water supply disturbed and shortage of daily need household items reported during monsoon months. To minimize the severity of landslide in IHR requires in-depth research and developmental planning. For most of the areas in the present study, landslide hazard zonation is done on 1:50,000 scale. The land use planning maps on extensive basis are not available. Therefore, there is a need of large-scale landslide hazard zonation and land use planning maps. If the scientist conduct research on desired aspects and their outcome of research is utilized by the government in developmental planning then the incidents of landslide could be minimized, subsequent impact on society, life and property would be reduced. Along with the scientific research, there is another need of awareness generation in the region for stake holders and local dwellers to combat with the landslide hazard, if triggered in their location.Keywords: coseismic, Indian Himalayan Region, landslide hazard zonation, Sikkim, societal, Uttarakhand
Procedia PDF Downloads 252119 Approach for the Mathematical Calculation of the Damping Factor of Railway Bridges with Ballasted Track
Authors: Andreas Stollwitzer, Lara Bettinelli, Josef Fink
Abstract:
The expansion of the high-speed rail network over the past decades has resulted in new challenges for engineers, including traffic-induced resonance vibrations of railway bridges. Excessive resonance-induced speed-dependent accelerations of railway bridges during high-speed traffic can lead to negative consequences such as fatigue symptoms, distortion of the track, destabilisation of the ballast bed, and potentially even derailment. A realistic prognosis of bridge vibrations during high-speed traffic must not only rely on the right choice of an adequate calculation model for both bridge and train but first and foremost on the use of dynamic model parameters which reflect reality appropriately. However, comparisons between measured and calculated bridge vibrations are often characterised by considerable discrepancies, whereas dynamic calculations overestimate the actual responses and therefore lead to uneconomical results. This gap between measurement and calculation constitutes a complex research issue and can be traced to several causes. One major cause is found in the dynamic properties of the ballasted track, more specifically in the persisting, substantial uncertainties regarding the consideration of the ballasted track (mechanical model and input parameters) in dynamic calculations. Furthermore, the discrepancy is particularly pronounced concerning the damping values of the bridge, as conservative values have to be used in the calculations due to normative specifications and lack of knowledge. By using a large-scale test facility, the analysis of the dynamic behaviour of ballasted track has been a major research topic at the Institute of Structural Engineering/Steel Construction at TU Wien in recent years. This highly specialised test facility is designed for isolated research of the ballasted track's dynamic stiffness and damping properties – independent of the bearing structure. Several mechanical models for the ballasted track consisting of one or more continuous spring-damper elements were developed based on the knowledge gained. These mechanical models can subsequently be integrated into bridge models for dynamic calculations. Furthermore, based on measurements at the test facility, model-dependent stiffness and damping parameters were determined for these mechanical models. As a result, realistic mechanical models of the railway bridge with different levels of detail and sufficiently precise characteristic values are available for bridge engineers. Besides that, this contribution also presents another practical application of such a bridge model: Based on the bridge model, determination equations for the damping factor (as Lehr's damping factor) can be derived. This approach constitutes a first-time method that makes the damping factor of a railway bridge calculable. A comparison of this mathematical approach with measured dynamic parameters of existing railway bridges illustrates, on the one hand, the apparent deviation between normatively prescribed and in-situ measured damping factors. On the other hand, it is also shown that a new approach, which makes it possible to calculate the damping factor, provides results that are close to reality and thus raises potentials for minimising the discrepancy between measurement and calculation.Keywords: ballasted track, bridge dynamics, damping, model design, railway bridges
Procedia PDF Downloads 164118 Accelerated Carbonation of Construction Materials by Using Slag from Steel and Metal Production as Substitute for Conventional Raw Materials
Authors: Karen Fuchs, Michael Prokein, Nils Mölders, Manfred Renner, Eckhard Weidner
Abstract:
Due to the high CO₂ emissions, the energy consumption for the production of sand-lime bricks is of great concern. Especially the production of quicklime from limestone and the energy consumption for hydrothermal curing contribute to high CO₂ emissions. Hydrothermal curing is carried out under a saturated steam atmosphere at about 15 bar and 200°C for 12 hours. Therefore, we are investigating the opportunity to replace quicklime and sand in the production of building materials with different types of slag as calcium-rich waste from steel production. We are also investigating the possibility of substituting conventional hydrothermal curing with CO₂ curing. Six different slags (Linz-Donawitz (LD), ferrochrome (FeCr), ladle (LS), stainless steel (SS), ladle furnace (LF), electric arc furnace (EAF)) provided by "thyssenkrupp MillServices & Systems GmbH" were ground at "Loesche GmbH". Cylindrical blocks with a diameter of 100 mm were pressed at 12 MPa. The composition of the blocks varied between pure slag and mixtures of slag and sand. The effects of pressure, temperature, and time on the CO₂ curing process were studied in a 2-liter high-pressure autoclave. Pressures between 0.1 and 5 MPa, temperatures between 25 and 140°C, and curing times between 1 and 100 hours were considered. The quality of the CO₂-cured blocks was determined by measuring the compressive strength by "Ruhrbaustoffwerke GmbH & Co. KG." The degree of carbonation was determined by total inorganic carbon (TIC) and X-ray diffraction (XRD) measurements. The pH trends in the cross-section of the blocks were monitored using phenolphthalein as a liquid pH indicator. The parameter set that yielded the best performing material was tested on all slag types. In addition, the method was scaled to steel slag-based building blocks (240 mm x 115 mm x 60 mm) provided by "Ruhrbaustoffwerke GmbH & Co. KG" and CO₂-cured in a 20-liter high-pressure autoclave. The results show that CO₂ curing of building blocks consisting of pure wetted LD slag leads to severe cracking of the cylindrical specimens. The high CO₂ uptake leads to an expansion of the specimens. However, if LD slag is used only proportionally to replace quicklime completely and sand proportionally, dimensionally stable bricks with high compressive strength are produced. The tests to determine the optimum pressure and temperature show 2 MPa and 50°C as promising parameters for the CO₂ curing process. At these parameters and after 3 h, the compressive strength of LD slag blocks reaches the highest average value of almost 50 N/mm². This is more than double that of conventional sand-lime bricks. Longer CO₂ curing times do not result in higher compressive strengths. XRD and TIC measurements confirmed the formation of carbonates. All tested slag-based bricks show higher compressive strengths compared to conventional sand-lime bricks. However, the type of slag has a significant influence on the compressive strength values. The results of the tests in the 20-liter plant agreed well with the results of the 2-liter tests. With its comparatively moderate operating conditions, the CO₂ curing process has a high potential for saving CO₂ emissions.Keywords: CO₂ curing, carbonation, CCU, steel slag
Procedia PDF Downloads 104117 GIS and Remote Sensing Approach in Earthquake Hazard Assessment and Monitoring: A Case Study in the Momase Region of Papua New Guinea
Authors: Tingneyuc Sekac, Sujoy Kumar Jana, Indrajit Pal, Dilip Kumar Pal
Abstract:
Tectonism induced Tsunami, landslide, ground shaking leading to liquefaction, infrastructure collapse, conflagration are the common earthquake hazards that are experienced worldwide. Apart from human casualty, the damage to built-up infrastructures like roads, bridges, buildings and other properties are the collateral episodes. The appropriate planning must precede with a view to safeguarding people’s welfare, infrastructures and other properties at a site based on proper evaluation and assessments of the potential level of earthquake hazard. The information or output results can be used as a tool that can assist in minimizing risk from earthquakes and also can foster appropriate construction design and formulation of building codes at a particular site. Different disciplines adopt different approaches in assessing and monitoring earthquake hazard throughout the world. For the present study, GIS and Remote Sensing potentials were utilized to evaluate and assess earthquake hazards of the study region. Subsurface geology and geomorphology were the common features or factors that were assessed and integrated within GIS environment coupling with seismicity data layers like; Peak Ground Acceleration (PGA), historical earthquake magnitude and earthquake depth to evaluate and prepare liquefaction potential zones (LPZ) culminating in earthquake hazard zonation of our study sites. The liquefaction can eventuate in the aftermath of severe ground shaking with amenable site soil condition, geology and geomorphology. The latter site conditions or the wave propagation media were assessed to identify the potential zones. The precept has been that during any earthquake event the seismic wave is generated and propagates from earthquake focus to the surface. As it propagates, it passes through certain geological or geomorphological and specific soil features, where these features according to their strength/stiffness/moisture content, aggravates or attenuates the strength of wave propagation to the surface. Accordingly, the resulting intensity of shaking may or may not culminate in the collapse of built-up infrastructures. For the case of earthquake hazard zonation, the overall assessment was carried out through integrating seismicity data layers with LPZ. Multi-criteria Evaluation (MCE) with Saaty’s Analytical Hierarchy Process (AHP) was adopted for this study. It is a GIS technology that involves integration of several factors (thematic layers) that can have a potential contribution to liquefaction triggered by earthquake hazard. The factors are to be weighted and ranked in the order of their contribution to earthquake induced liquefaction. The weightage and ranking assigned to each factor are to be normalized with AHP technique. The spatial analysis tools i.e., Raster calculator, reclassify, overlay analysis in ArcGIS 10 software were mainly employed in the study. The final output of LPZ and Earthquake hazard zones were reclassified to ‘Very high’, ‘High’, ‘Moderate’, ‘Low’ and ‘Very Low’ to indicate levels of hazard within a study region.Keywords: hazard micro-zonation, liquefaction, multi criteria evaluation, tectonism
Procedia PDF Downloads 267116 Development and application of Humidity-Responsive Controlled Release Active Packaging Based on Electrospinning Nanofibers and In Situ Growth Polymeric Film in Food preservation
Authors: Jin Yue
Abstract:
Fresh produces especially fruits, vegetables, meats and aquatic products have limited shelf life and are highly susceptible to deterioration. Essential oils (EOs) extracted from plants have excellent antioxidant and broad-spectrum antibacterial activities, and they can play as natural food preservatives. But EOs are volatile, water insoluble, pungent, and easily decomposing under light and heat. Many approaches have been developed to improve the solubility and stability of EOs such as polymeric film, coating, nanoparticles, nano-emulsions and nanofibers. Construction of active packaging film which can incorporate EOs with high loading efficiency and controlled release of EOs has received great attention. It is still difficult to achieve accurate release of antibacterial compounds at specific target locations in active packaging. In this research, a relative humidity-responsive packaging material was designed, employing the electrospinning technique to fabricate a nanofibrous film loaded with a 4-terpineol/β-cyclodextrin inclusion complexes (4-TA/β-CD ICs). Functioning as an innovative food packaging material, the film demonstrated commendable attributes including pleasing appearance, thermal stability, mechanical properties, and effective barrier properties. The incorporation of inclusion complexes greatly enhanced the antioxidant and antibacterial activity of the film, particularly against Shewanella putrefaciens, with an inhibitory efficiency of up to 65%. Crucially, the film realized controlled release of 4-TA under 98% high relative humidity conditions by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. To further improve the loading efficiency and long-acting release of EOs, we synthesized the γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs), and then efficiently anchored γ-CD-MOFs on chitosan-cellulose (CS-CEL) composite film by in situ growth method for controlled releasing of carvacrol (CAR). We found that the growth efficiency of γ-CD-MOFs was the highest when the concentration of CEL dispersion was 5%. The anchoring of γ-CD-MOFs on CS-CEL film significantly improved the surface area of CS-CEL film from 1.0294 m2/g to 43.3458 m2/g. The molecular docking and 1H NMR spectra indicated that γ-CD-MOF has better complexing and stabilizing ability for CAR molecules than γ-CD. In addition, the release of CAR reached 99.71±0.22% on the 10th day, while under 22% RH, the release pattern of CAR was a plateau with 14.71 ± 4.46%. The inhibition rate of this film against E. coli, S. aureus and B. cinerea was more than 99%, and extended the shelf life of strawberries to 7 days. By incorporating the merits of natural biopolymers and MOFs, this active packaging offers great potential as a substitute for traditional packaging materials.Keywords: active packaging, antibacterial activity, controlled release, essential oils, food quality control
Procedia PDF Downloads 65115 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines
Authors: Cristobal García
Abstract:
The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.Keywords: SHM, vibrations, connections, floating offshore platform
Procedia PDF Downloads 126114 Geotechnical Evaluation and Sizing of the Reinforcement Layer on Soft Soil in the Construction of the North Triage Road Clover, in Brasilia Federal District, Brazil
Authors: Rideci Farias, Haroldo Paranhos, Joyce Silva, Elson Almeida, Hellen Silva, Lucas Silva
Abstract:
The constant growth of the fleet of vehicles in the big cities, makes that the Engineering is dynamic, with respect to the new solutions for traffic flow in general. In the Federal District (DF), Brazil, it is no different. The city of Brasilia, Capital of Brazil, and Cultural Heritage of Humanity by UNESCO, is projected to 500 thousand inhabitants, and today circulates more than 3 million people in the city, and with a fleet of more than one vehicle for every two inhabitants. The growth of the city to the North region, made that the urban planning presented solutions for the fleet in constant growth. In this context, a complex of viaducts, road accesses, creation of new rolling roads and duplication of the Bragueto bridge over Paranoa lake in the northern part of the city was designed, giving access to the BR-020 highway, denominated Clover of North Triage (TTN). In the geopedological context, the region is composed of hydromorphic soils, with the presence of the water level at some times of the year. From the geotechnical point of view, are soils with SPT < 4 and Resistance not drained, Su < 50 kPa. According to urban planning in Brasília, special art works can not rise in the urban landscape, contrasting with the urban characteristics of the architects Lúcio Costa and Oscar Niemeyer. Architects hired to design the new Capital of Brazil. The urban criterion then created the technical impasse, resulting in the technical need to ‘bury’ the works of art and in turn the access greenhouses at different levels, in regions of low support soil and water level Outcrossing, generally inducing the need for this study and design. For the adoption of the appropriate solution, Standard Penetration Test (SPT), Vane Test, Diagnostic peritoneal lavage (DPL) and auger boring campaigns were carried out. With the comparison of the results of these tests, the profiles of resistance of the soils and water levels were created in the studied sections. Geometric factors such as existing sidewalks and lack of elevation for the discharge of deep drainage water have inhibited traditional techniques for total removal of soft soils, thus avoiding the use of temporary drawdown and shoring of excavations. Thus, a structural layer was designed to reinforce the subgrade by means of the ‘needling’ of the soft soil, without the need for longitudinal drains. In this context, the article presents the geological and geotechnical studies carried out, but also the dimensioning of the reinforcement layer on the soft soil with a view to the main objective of this solution that is to allow the execution of the civil works without the interference in the roads in use, Execution of services in rainy periods, presentation of solution compatible with drainage characteristics and soft soil reinforcement.Keywords: layer, reinforcement, soft soil, clover of north triage
Procedia PDF Downloads 229113 Spatial Organization of Cells over the Process of Pellicle Formation by Pseudomonas alkylphenolica KL28
Authors: Kyoung Lee
Abstract:
Numerous aerobic bacteria have the ability to form multicellular communities on the surface layer of the air-liquid (A-L) interface as a biofilm called a pellicle. Pellicles occupied at the A-L interface will benefit from the utilization of oxygen from air and nutrient from liquid. Buoyancy of cells can be obtained by high surface tension at the A-L interface. Thus, formation of pellicles is an adaptive advantage in utilization of excess nutrients in the standing culture where oxygen depletion is easily set up due to rapid cell growth. In natural environments, pellicles are commonly observed on the surface of lake or pond contaminated with pollutants. Previously, we have shown that when cultured in standing LB media an alkylphenol-degrading bacteria Pseudomonas alkylphenolia KL28 forms pellicles in a diameter of 0.3-0.5 mm with a thickness of ca 40 µm. The pellicles have unique features for possessing flatness and unusual rigidity. In this study, the biogenesis of the circular pellicles has been investigated by observing the cell organization at early stages of pellicle formation and cell arrangements in pellicle, providing a clue for highly organized cellular arrangement to be adapted to the air-liquid niche. Here, we first monitored developmental patterns of pellicle from monolayer to multicellular organization. Pellicles were shaped by controlled growth of constituent cells which accumulate extracellular polymeric substance. The initial two-dimensional growth was transited to multilayers by a constraint force of accumulated self-produced extracellular polymeric substance. Experiments showed that pellicles are formed by clonal growth and even with knock-out of genes for flagella and pilus formation. In contrast, the mutants in the epm gene cluster for alginate-like polymer biosynthesis were incompetent in cell alignment for initial two-dimensional growth of pellicles. Electron microscopic and confocal laser scanning microscopic studies showed that the fully matured structures are highly packed by matrix-encased cells which have special arrangements. The cells on the surface of the pellicle lie relatively flat and inside longitudinally cross packed. HPLC analysis of the extrapolysaccharide (EPS) hydrolysate from the colonies from LB agar showed a composition with L-fucose, L-rhamnose, D-galactosamine, D-glucosamine, D-galactose, D-glucose, D-mannose. However, that from pellicles showed similar neutral and amino sugar profile but missing galactose. Furthermore, uronic acid analysis of EPS hydrolysates by HPLC showed that mannuronic acid was detected from pellicles not from colonies, indicating the epm-derived polymer is critical for pellicle formation as proved by the epm mutants. This study verified that for the circular pellicle architecture P. alkylphenolica KL28 cells utilized EPS building blocks different from that used for colony construction. These results indicate that P. alkylphenolica KL28 is a clever architect that dictates unique cell arrangements with selected EPS matrix material to construct sophisticated building, circular biofilm pellicles.Keywords: biofilm, matrix, pellicle, pseudomonas
Procedia PDF Downloads 155112 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses
Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi
Abstract:
The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.Keywords: DNA barcoding, species complex, thrips, species delimitation
Procedia PDF Downloads 129111 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms
Authors: Abdul Rehman, Bo Liu
Abstract:
Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization
Procedia PDF Downloads 226110 Experimental Research of Canine Mandibular Defect Construction with the Controlled Meshy Titanium Alloy Scaffold Fabricated by Electron Beam Melting Combined with BMSCs-Encapsulating Chitosan Hydrogel
Authors: Wang Hong, Liu Chang Kui, Zhao Bing Jing, Hu Min
Abstract:
Objection We observed the repairment effection of canine mandibular defect with meshy Ti6Al4V scaffold fabricated by electron beam melting (EBM) combined with bone marrow mesenchymal stem cells (BMMSCs) encapsulated in chitosan hydrogel. Method Meshy titanium scaffolds were prepared by EBM of commercial Ti6Al4V power. The length of scaffolds was 24 mm, the width was 5 mm and height was 8mm. The pore size and porosity were evaluated by scanning electron microscopy (SEM). Chitosan /Bio-Oss hydrogel was prepared by chitosan, β- sodium glycerophosphate and Bio-Oss power. BMMSCs were harvested from canine iliac crests. BMMSCs were seeded in titanium scaffolds and encapsulated in Chitosan /Bio-Oss hydrogel. The validity of BMMSCs was evaluated by cell count kit-8 (CCK-8). The osteogenic differentiation ability was evaluated by alkaline phosphatase (ALP) activity and gene expression of OC, OPN and CoⅠ. Combination were performed by injecting BMMSCs/ Chitosan /Bio-Oss hydrogel into the meshy Ti6Al4V scaffolds and solidified. 24 mm long box-shaped bone defects were made at the mid-portion of mandible of adult beagles. The defects were randomly filled with BMMSCs/ Chitosan/Bio-Oss + titanium, Chitosan /Bio-Oss+titanium, titanium alone. Autogenous iliac crests graft as control group in 3 beagles. Radionuclide bone imaging was used to monitor the new bone tissue at 2, 4, 8 and 12 weeks after surgery. CT examination was made on the surgery day and 4 weeks, 12 weeks and 24 weeks after surgery. The animals were sacrificed in 4, 12 and 24 weeks after surgery. The bone formation were evaluated by histology and micro-CT. Results: The pores of the scaffolds was interconnected, the pore size was about 1 mm, the average porosity was about 76%. The pore size of the hydrogel was 50-200μm and the average porosity was approximately 90%. The hydrogel were solidified under the condition of 37℃in 10 minutes. The validity and the osteogenic differentiation ability of BMSCs were not affected by titanium scaffolds and hydrogel. Radionuclide bone imaging shown an increasing tendency of the revascularization and bone regeneration was observed in all the groups at 2, 4, 8 weeks after operation, and there were no changes at 12weeks.The tendency was more obvious in the BMMSCs/ Chitosan/Bio-Oss +titanium group and autogenous group. CT, Micro-CT and histology shown that new bone formed increasingly with the time extend. There were more new bone regenerated in BMMSCs/ Chitosan /Bio-Oss + titanium group and autogenous group than the other two groups. At 24 weeks, the autogenous group was achieved bone union. The BMSCs/ Chitosan /Bio-Oss group was seen extensive new bone formed around the scaffolds and more new bone inside of the central pores of scaffolds than Chitosan /Bio-Oss + titanium group and titanium group. The difference was significantly. Conclusion: The titanium scaffolds fabricated by EBM had controlled porous structure, good bone conduction and biocompatibility. Chitosan /Bio-Oss hydrogel had injectable plasticity, thermosensitive property and good biocompatibility. The meshy Ti6Al4V scaffold produced by EBM combined BMSCs encapsulated in chitosan hydrogel had good capacity on mandibular bone defect repair.Keywords: mandibular reconstruction, tissue engineering, electron beam melting, titanium alloy
Procedia PDF Downloads 445109 The Significance of Cultural Risks for Western Consultants Executing Gulf Cooperation Council Megaprojects
Authors: Alan Walsh, Peter Walker
Abstract:
Differences in commercial, professional and personal cultural traditions between western consultants and project sponsors in the Gulf Cooperation Council (GCC) region are potentially significant in the workplace, and this can impact on project outcomes. These cultural differences can, for example, result in conflict amongst senior managers, which can negatively impact the megaproject. New entrants to the GCC often experience ‘culture shock’ as they attempt to integrate into their unfamiliar environments. Megaprojects are unique ventures with individual project characteristics, which need to be considered when managing their associated risks. Megaproject research to date has mostly ignored the significance of the absence of cultural congruence in the GCC, which is surprising considering that there are large volumes of megaprojects in various stages of construction in the GCC. An initial step to dealing with cultural issues is to acknowledge culture as a significant risk factor (SRF). This paper seeks to understand the criticality for western consultants to address these risks. It considers the cultural barriers that exist between GCC sponsors and western consultants and examines the cultural distance between the key actors. Initial findings suggest the presence to a certain extent of ethnocentricity. Other cultural clashes arise out of a lack of appreciation of the customs, practices and traditions of ‘the Other’, such as the need for avoiding public humiliation and the hierarchal significance rankings. The concept and significance of cultural shock as part of the integration process for new arrivals are considered. Culture shock describes the state of anxiety and frustration resulting from the immersion in a culture distinctly different from one's own. There are potentially substantial project risks associated with underestimating the process of cultural integration. This paper examines two distinct but intertwined issues: the societal and professional culture differences associated with expatriate assignments. A case study examines the cultural congruences between GCC sponsors and American, British and German consultants, over a ten-year cycle. This provides indicators as to which nationalities encountered the most profound cultural issues and the nature of these. GCC megaprojects are typically intensive fast track demanding ventures, where consultant turnover is high. The study finds that building trust-filled relationships is key to successful project team integration and therefore, to successful megaproject execution. Findings indicate that both professional and social inclusion processes have steep learning curves. Traditional risk management practice is to approach any uncertainty in a structured way to mitigate the potential impact on project outcomes. This research highlights cultural risk as a significant factor in the management of GCC megaprojects. These risks arising from high staff turnover typically include loss of project knowledge, delays to the project, cost and disruption in replacing staff. This paper calls for cultural risk to be recognised as an SRF, as the first step to developing risk management strategies, and to reduce staff turnover for western consultants in GCC megaprojects.Keywords: western consultants in megaprojects, national culture impacts on GCC megaprojects, significant risk factors in megaprojects, professional culture in megaprojects
Procedia PDF Downloads 136108 European Electromagnetic Compatibility Directive Applied to Astronomical Observatories
Authors: Oibar Martinez, Clara Oliver
Abstract:
The Cherenkov Telescope Array Project (CTA) aims to build two different observatories of Cherenkov Telescopes, located in Cerro del Paranal, Chile, and La Palma, Spain. These facilities are used in this paper as a case study to investigate how to apply standard Directives on Electromagnetic Compatibility to astronomical observatories. Cherenkov Telescopes are able to provide valuable information from both Galactic and Extragalactic sources by measuring Cherenkov radiation, which is produced by particles which travel faster than light in the atmosphere. The construction requirements demand compliance with the European Electromagnetic Compatibility Directive. The largest telescopes of these observatories, called Large Scale Telescopes (LSTs), are high precision instruments with advanced photomultipliers able to detect the faint sub-nanosecond blue light pulses produced by Cherenkov Radiation. They have a 23-meter parabolic reflective surface. This surface focuses the radiation on a camera composed of an array of high-speed photosensors which are highly sensitive to the radio spectrum pollution. The camera has a field of view of about 4.5 degrees and has been designed for maximum compactness and lowest weight, cost and power consumption. Each pixel incorporates a photo-sensor able to discriminate single photons and the corresponding readout electronics. The first LST is already commissioned and intends to be operated as a service to Scientific Community. Because of this, it must comply with a series of reliability and functional requirements and must have a Conformité Européen (CE) marking. This demands compliance with Directive 2014/30/EU on electromagnetic compatibility. The main difficulty of accomplishing this goal resides on the fact that Conformité Européen marking setups and procedures were implemented for industrial products, whereas no clear protocols have been defined for scientific installations. In this paper, we aim to give an answer to the question on how the directive should be applied to our installation to guarantee the fulfillment of all the requirements and the proper functioning of the telescope itself. Experts in Optics and Electromagnetism were both needed to make these kinds of decisions and match tests which were designed to be made over the equipment of limited dimensions on large scientific plants. An analysis of the elements and configurations most likely to be affected by external interferences and those that are most likely to cause the maximum disturbances was also performed. Obtaining the Conformité Européen mark requires knowing what the harmonized standards are and how the elaboration of the specific requirement is defined. For this type of large installations, one needs to adapt and develop the tests to be carried out. In addition, throughout this process, certification entities and notified bodies play a key role in preparing and agreeing the required technical documentation. We have focused our attention mostly on the technical aspects of each point. We believe that this contribution will be of interest for other scientists involved in applying industrial quality assurance standards to large scientific plant.Keywords: CE marking, electromagnetic compatibility, european directive, scientific installations
Procedia PDF Downloads 110107 Optimum Irrigation System Management for Climate Resilient and Improved Productivity of Flood-based Livelihood Systems
Authors: Mara Getachew Zenebe, Luuk Fleskens, Abdu Obieda Ahmed
Abstract:
This paper seeks to advance our scientific understanding of optimizing flood utilization in regions impacted by climate change, with a focus on enhancing agricultural productivity through effective irrigation management. The study was conducted as part of a three-year (2021 to 2023) USAID-supported initiative aimed at promoting Economic Growth and Peace in the Gash Agricultural Scheme (GAS), situated in Sudan's water-stressed Eastern region. GAS is the country's largest flood-irrigated scheme, covering 100,800 hectares of cultivable land, with a potential to provide the food security needs of over a quarter of a million agro-pastoral community members. GAS relies on the Gash River, which sources its water from high-intensity rainfall events in the highlands of Ethiopia and Eritrea. However, climate change and variations in these highlands have led to increased variability in the Gash River's flow. The study conducted water balance analyses based on a ten-year dataset of the annual Gash River flow, irrigated area; as well as the evapotranspiration demand of the major sorghum crop. Data collection methods included field measurements, surveys, remote sensing, and CropWat modelling. The water balance assessment revealed that the existing three-year rotation-based irrigation system management, capping cultivated land at 33,000 hectares annually, is excessively risk-averse. While this system reduced conflicts among the agro-pastoral communities by consistently delivering on the land promised to be annually cultivated, it also increased GAS's vulnerability to flood damage due to several reasons. The irrigation efficiency over the past decade was approximately 30%, leaving significant unharnessed floodwater that caused damage to infrastructure and agricultural land. The three-year rotation resulted in inadequate infrastructural maintenance, given the destructive nature of floods. Additionally, it led to infrequent land tillage, allowing the encroachment of mesquite trees hindering major sorghum crop growth. Remote sensing data confirmed that mesquite trees have overtaken 70,000 hectares in the past two decades, rendering them unavailable for agriculture. The water balance analyses suggest shifting to a two-year rotation, covering approximately 50,000 hectares annually while maintaining risk aversion. This shift could boost GAS's annual sorghum production by two-thirds, exceeding 850,000 tons. The scheme's efficiency can be further enhanced through low-cost on-farm interventions. Currently, large irrigation plots that range from 420 to 756 hectares are irrigated with limited water distribution guidance, leading to uneven irrigation. As demonstrated through field trials, implementing internal longitudinal bunds and horizontal deflector bunds can increase adequately irrigated parts of the irrigation plots from 50% to 80% and thus nearly double the sorghum yield to 2 tons per hectare while reducing the irrigation duration from 30 days to a maximum of 17 days. Flow measurements in 2021 and 2022 confirmed that these changes sufficiently meet the sorghum crop's water requirements, even with a conservative 60% field application efficiency assumption. These insights and lessons from the GAS on enhancing agricultural resilience and sustainability in the face of climate change are relevant to flood-based livelihood systems globally.Keywords: climate change, irrigation management and productivity, variable flood flows, water balance analysis
Procedia PDF Downloads 75106 Challenges in Self-Managing Vitality: A Qualitative Study about Staying Vital at Work among Dutch Office Workers
Authors: Violet Petit-Steeghs, Jochem J. R. Van Roon, Jacqueline E. W. Broerse
Abstract:
Last decennia the retirement age in Europe is gradually increasing. As a result, people have to continue working for a longer period of time. Health problems due to increased sedentary behavior and mental conditions like burn-out, pose a threat in fulfilling employees’ working life. In order to stimulate the ability and willingness to work in the present and future, it is important to stay vital. Vitality is regarded in literature as a sense of energy, motivation and resilience. It is assumed that by increasing their vitality, employees will stay healthier and be more satisfied with their job, leading to a more sustainable employment and less absenteeism in the future. The aim of this project is to obtain insights into the experiences and barriers of employees, and specifically office workers, with regard to their vitality. These insights are essential in order to develop appropriate measures in the future. To get more insights in the experiences of office workers on their vitality, 8 focus group discussions were organized with 6-10 office workers from 4 different employers (an university, a national construction company and a large juridical and care service organization) in the Netherlands. The discussions were transcribed and analyzed via open coding. This project is part of a larger consortium project Provita2, and conducted in collaboration with University of Technology Eindhoven. Results showed that a range of interdependent factors form a complex network that influences office workers’ vitality. These factors can be divided in three overarching groups: (1) personal (2) organizational and (3) environmental factors. Personal intrinsic factors, relating to the office worker, comprise someone’s physical health, coping style, life style, needs, and private life. Organizational factors, relating to the employer, are the workload, management style and the structure, vision and culture of the organization. Lastly, environmental factors consist of the air, light, temperature at the workplace and whether the workplace is inspiring and workable. Office workers experienced barriers to improve their own vitality due to a lack of autonomy. On the one hand, because most factors were not only intrinsic but extrinsic, like work atmosphere or the temperature in the room. On the other hand, office workers were restricted in adapting both intrinsic as well as extrinsic factors. Restrictions to for instance the flexibility of working times and the workload, can set limitations for improving vitality through personal factors like physical activity and mental relaxation. In conclusion, a large range of interdependent factors influence the vitality of office workers. Office workers are often regarded to have a responsibility to improve their vitality, but are limitedly autonomous in adapting these factors. Measures to improve vitality should therefore not only focus on increasing awareness among office workers, but also on empowering them to fulfill this responsibility. A holistic approach that takes the complex mutual dependencies between the different factors and actors (like managers, employees and HR personnel) into account is highly recommended.Keywords: occupational health, perspectives office workers, sustainable employment, vitality at work, work & wellbeing
Procedia PDF Downloads 139105 Diversity in the Community - The Disability Perspective
Authors: Sarah Reker, Christiane H. Kellner
Abstract:
From the perspective of people with disabilities, inequalities can also emerge from spatial segregation, the lack of social contacts or limited economic resources. In order to reduce or even eliminate these disadvantages and increase general well-being, community-based participation as well as decentralisation efforts within exclusively residential homes is essential. Therefore, the new research project “Index for participation development and quality of life for persons with disabilities”(TeLe-Index, 2014-2016), which is anchored at the Technische Universität München in Munich and at a large residential complex and service provider for persons with disabilities in the outskirts of Munich aims to assist the development of community-based living environments. People with disabilities should be able to participate in social life beyond the confines of the institution. Since a diverse society is a society in which different individual needs and wishes can emerge and be catered to, the ultimate goal of the project is to create an environment for all citizens–regardless of disability, age or ethnic background–that accommodates their daily activities and requirements. The UN-Convention on the Rights of Persons with Disabilities, which Germany also ratified, postulates the necessity of user-centered design, especially when it comes to evaluating the individual needs and wishes of all citizens. Therefore, a multidimensional approach is required. Based on this insight, the structure of the town-like center will be remodeled to open up the community to all people. This strategy should lead to more equal opportunities and open the way for a much more diverse community. Therefore, macro-level research questions were inspired by quality of life theory and were formulated as follows for different dimensions: •The user dimension: what needs and necessities can we identify? Are needs person-related? Are there any options to choose from? What type of quality of life can we identify? The economic dimension: what resources (both material and staff-related) are available in the region? (How) are they used? What costs (can) arise and what effects do they entail? •The environment dimension: what “environmental factors” such as access (mobility and absence of barriers) prove beneficial or impedimental? In this context, we have provided academic supervision and support for three projects (the construction of a new school, inclusive housing for children and teenagers with disabilities and the professionalization of employees with person-centered thinking). Since we cannot present all the issues of the umbrella-project within the conference framework, we will be focusing on one project more in-depth, namely “Outpatient Housing Options for Children and Teenagers with Disabilities”. The insights we have obtained until now will enable us to present the intermediary results of our evaluation. The most central questions pertaining to this part of the research were the following: •How have the existing network relations been designed? •What meaning (or significance) does the existing service offers and structures have for the everyday life of an external residential group? These issues underpinned the environmental analyses as well as the qualitative guided interviews and qualitative network analyses we carried out.Keywords: decentralisation, environmental analyses, outpatient housing options for children and teenagers with disabilities, qualitative network analyses
Procedia PDF Downloads 366104 Visco-Hyperelastic Finite Element Analysis for Diagnosis of Knee Joint Injury Caused by Meniscal Tearing
Authors: Eiji Nakamachi, Tsuyoshi Eguchi, Sayo Yamamoto, Yusuke Morita, H. Sakamoto
Abstract:
In this study, we aim to reveal the relationship between the meniscal tearing and the articular cartilage injury of knee joint by using the dynamic explicit finite element (FE) method. Meniscal injuries reduce its functional ability and consequently increase the load on the articular cartilage of knee joint. In order to prevent the induction of osteoarthritis (OA) caused by meniscal injuries, many medical treatment techniques, such as artificial meniscus replacement and meniscal regeneration, have been developed. However, it is reported that these treatments are not the comprehensive methods. In order to reveal the fundamental mechanism of OA induction, the mechanical characterization of meniscus under the condition of normal and injured states is carried out by using FE analyses. At first, a FE model of the human knee joint in the case of normal state – ‘intact’ - was constructed by using the magnetron resonance (MR) tomography images and the image construction code, Materialize Mimics. Next, two types of meniscal injury models with the radial tears of medial and lateral menisci were constructed. In FE analyses, the linear elastic constitutive law was adopted for the femur and tibia bones, the visco-hyperelastic constitutive law for the articular cartilage, and the visco-anisotropic hyperelastic constitutive law for the meniscus, respectively. Material properties of articular cartilage and meniscus were identified using the stress-strain curves obtained by our compressive and the tensile tests. The numerical results under the normal walking condition revealed how and where the maximum compressive stress occurred on the articular cartilage. The maximum compressive stress and its occurrence point were varied in the intact and two meniscal tear models. These compressive stress values can be used to establish the threshold value to cause the pathological change for the diagnosis. In this study, FE analyses of knee joint were carried out to reveal the influence of meniscal injuries on the cartilage injury. The following conclusions are obtained. 1. 3D FE model, which consists femur, tibia, articular cartilage and meniscus was constructed based on MR images of human knee joint. The image processing code, Materialize Mimics was used by using the tetrahedral FE elements. 2. Visco-anisotropic hyperelastic constitutive equation was formulated by adopting the generalized Kelvin model. The material properties of meniscus and articular cartilage were determined by curve fitting with experimental results. 3. Stresses on the articular cartilage and menisci were obtained in cases of the intact and two radial tears of medial and lateral menisci. Through comparison with the case of intact knee joint, two tear models show almost same stress value and higher value than the intact one. It was shown that both meniscal tears induce the stress localization in both medial and lateral regions. It is confirmed that our newly developed FE analysis code has a potential to be a new diagnostic system to evaluate the meniscal damage on the articular cartilage through the mechanical functional assessment.Keywords: finite element analysis, hyperelastic constitutive law, knee joint injury, meniscal tear, stress concentration
Procedia PDF Downloads 247103 The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles
Authors: Marta Paszkiewicz, Justyna Łuczak, Martyna Marchelek, Adriana Zaleska-Medynska
Abstract:
In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds.Keywords: heterogeneous photocatalysis, IL-assisted synthesis, ionic liquids, TiO2
Procedia PDF Downloads 268