Search results for: finite element model/COMSOL multiphysics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19215

Search results for: finite element model/COMSOL multiphysics

13245 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution

Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang

Abstract:

Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.

Keywords: parallel compressor model (pcm), revised calculation method, inlet distortion, outlet unequal pressure distribution

Procedia PDF Downloads 337
13244 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning

Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park

Abstract:

The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.

Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement

Procedia PDF Downloads 240
13243 A Research on Tourism Market Forecast and Its Evaluation

Authors: Min Wei

Abstract:

The traditional prediction methods of the forecast for tourism market are paid more attention to the accuracy of the forecasts, ignoring the results of the feasibility of forecasting and predicting operability, which had made it difficult to predict the results of scientific testing. With the application of Linear Regression Model, this paper attempts to construct a scientific evaluation system for predictive value, both to ensure the accuracy, stability of the predicted value, and to ensure the feasibility of forecasting and predicting the results of operation. The findings show is that a scientific evaluation system can implement the scientific concept of development, the harmonious development of man and nature co-ordinate.

Keywords: linear regression model, tourism market, forecast, tourism economics

Procedia PDF Downloads 335
13242 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 303
13241 Numerical Simulation Using Lattice Boltzmann Technique for Mass Transfer Characteristics in Liquid Jet Ejector

Authors: K. S. Agrawal

Abstract:

The performance of jet ejector was studied in detail by different authors. Several authors have studied mass transfer characteristics like interfacial area, mass transfer coefficients etc. In this paper, we have made an attempt to develop PDE model by considering bubble properties and apply Lattice-Boltzmann technique for PDE model. We may present the results for the interfacial area which we have obtained from our numerical simulation. Later the results are compared with previous work.

Keywords: jet ejector, mass transfer characteristics, numerical simulation, Lattice-Boltzmann technique

Procedia PDF Downloads 372
13240 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework

Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.

Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles

Procedia PDF Downloads 22
13239 Human Resources Management Practices in Hospitality Companies

Authors: Dora Martins, Susana Silva, Cândida Silva

Abstract:

Human Resources Management (HRM) has been recognized by academics and practitioners as an important element in organizations. Therefore, this paper explores the best practices of HRM and seeks to understand the level of participation in the development of these practices by human resources managers in the hospitality industry and compare it with other industries. Thus, the study compared the HRM practices of companies in the hospitality sector with HRM practices of companies in other sectors, and identifies the main differences between their HRM practices. The results show that the most frequent HRM practices in all companies, independently of its sector of activity, are hiring and training. When comparing hospitality sector with other sectors of activity, some differences were noticed, namely in the adoption of the practices of communication and information sharing, and of recruitment and selection. According to these results, the paper discusses the major theoretical and practical implications. Suggestions for future research are also presented.

Keywords: exploratory study, human resources management practices, human resources manager, hospitality companies, Portuguese companies

Procedia PDF Downloads 486
13238 Structural Model on Organizational Climate, Leadership Behavior and Organizational Commitment: Work Engagement of Private Secondary School Teachers in Davao City

Authors: Genevaive Melendres

Abstract:

School administrators face the reality of teachers losing their engagement, or schools losing the teachers. This study is then conducted to identify a structural model that best predict work engagement of private secondary teachers in Davao City. Ninety-three teachers from four sectarian schools and 56 teachers from four non-sectarian schools were involved in the completion of four survey instruments namely Organizational Climate Questionnaire, Leader Behavior Descriptive Questionnaire, Organizational Commitment Scales, and Utrecht Work Engagement Scales. Data were analyzed using frequency distribution, mean, standardized deviation, t-test for independent sample, Pearson r, stepwise multiple regression analysis, and structural equation modeling. Results show that schools have high level of organizational climate dimensions; leaders oftentimes show work-oriented and people-oriented behavior; teachers have high normative commitment and they are very often engaged at their work. Teachers from non-sectarian schools have higher organizational commitment than those from sectarian schools. Organizational climate and leadership behavior are positively related to and predict work engagement whereas commitment did not show any relationship. This study underscores the relative effects of three variables on the work engagement of teachers. After testing network of relationships and evaluating several models, a best-fitting model was found between leadership behavior and work engagement. The noteworthy findings suggest that principals pay attention and consistently evaluate their behavior for this best predicts the work engagement of the teachers. The study provides value to administrators who take decisions and create conditions in which teachers derive fulfillment.

Keywords: leadership behavior, organizational climate, organizational commitment, private secondary school teachers, structural model on work engagement

Procedia PDF Downloads 275
13237 Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique

Authors: Ahmed Najah Ahmed Al-Mahfoodh, Ali Najah Ahmed Al-Mahfoodh, Ahmed Al-Shafie

Abstract:

In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia.

Keywords: genetic programming, prediction, rainfall-runoff, Malaysia

Procedia PDF Downloads 487
13236 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 184
13235 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 428
13234 Predicting Foreign Direct Investment of IC Design Firms from Taiwan to East and South China Using Lotka-Volterra Model

Authors: Bi-Huei Tsai

Abstract:

This work explores the inter-region investment behaviors of integrated circuit (IC) design industry from Taiwan to China using the amount of foreign direct investment (FDI). According to the mutual dependence among different IC design industrial locations, Lotka-Volterra model is utilized to explore the FDI interactions between South and East China. Effects of inter-regional collaborations on FDI flows into China are considered. Evolutions of FDIs into South China for IC design industry significantly inspire the subsequent FDIs into East China, while FDIs into East China for Taiwan’s IC design industry significantly hinder the subsequent FDIs into South China. The supply chain along IC industry includes IC design, manufacturing, packing and testing enterprises. I C manufacturing, packaging and testing industries depend on IC design industry to gain advanced business benefits. The FDI amount from Taiwan’s IC design industry into East China is the greatest among the four regions: North, East, Mid-West and South China. The FDI amount from Taiwan’s IC design industry into South China is the second largest. If IC design houses buy more equipment and bring more capitals in South China, those in East China will have pressure to undertake more FDIs into East China to maintain the leading position advantages of the supply chain in East China. On the other hand, as the FDIs in East China rise, the FDIs in South China will successively decline since capitals have concentrated in East China. Prediction of Lotka-Volterra model in FDI trends is accurate because the industrial interactions between the two regions are included. Finally, this work confirms that the FDI flows cannot reach a stable equilibrium point, so the FDI inflows into East and South China will expand in the future.

Keywords: Lotka-Volterra model, foreign direct investment, competitive, Equilibrium analysis

Procedia PDF Downloads 365
13233 Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background

Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik

Abstract:

The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built.

Keywords: exact solutions for Einstein equations, Lemaitre-Tolman-Bondi solution, cosmological black holes, particle and photon trajectories

Procedia PDF Downloads 341
13232 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom

Authors: Yen-Hui Lu

Abstract:

In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.

Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning

Procedia PDF Downloads 85
13231 The Role of the State in Creating a Cosmopolitan Canada

Authors: Scott Staring

Abstract:

This paper critically examines the claim that Canada represents a uniquely ‘postnational’ model of political existence. Canadian political thinkers and politicians alike have played a role in casting their country as the vanguard of an order wherein national sovereignty is gradually being eclipsed, while political authority is increasingly integrated at the international level. Proponents of this view frequently cite as evidence Canada’s high number of foreign-born citizens, its official policy of multiculturalism, its ready embrace of international institutions, and its enthusiasm for international trade deals like NAFTA, CETA and the TPP. This paper builds on historical research to show that the postnationalist thesis has precedents in a Whig-inspired view of Canada that has long challenged the role of a strong central state in the country. An alternative portrait of Canada will be put forward, one that contests both the historical evidence for the Whig view as well as its theoretical presuppositions. The claim will be made that Canada’s celebrated diversity and openness is not the product of a nation-state in retreat; instead, it is largely the product of a strong and sovereign state that has intervened to create a sense of a shared concern amongst its citizens. Canada does indeed offer the world a model of cosmopolitanism, but it is a model that is rooted in the nation-state rather than its eclipse.

Keywords: Canada, cosmopolitanism, postnationalism, statism

Procedia PDF Downloads 199
13230 Using the Yield-SAFE Model to Assess the Impacts of Climate Change on Yield of Coffee (Coffea arabica L.) Under Agroforestry and Monoculture Systems

Authors: Tesfay Gidey Bezabeh, Tânia Sofia Oliveira, Josep Crous-Duran, João H. N. Palma

Abstract:

Ethiopia's economy depends strongly on Coffea arabica production. Coffee, like many other crops, is sensitive to climate change. An urgent development and application of strategies against the negative impacts of climate change on coffee production is important. Agroforestry-based system is one of the strategies that may ensure sustainable coffee production amidst the likelihood of future impacts of climate change. This system involves the combination of trees in buffer extremes, thereby modifying microclimate conditions. This paper assessed coffee production under 1) coffee monoculture and 2) coffee grown using an agroforestry system, under a) current climate and b) two different future climate change scenarios. The study focused on two representative coffee-growing regions of Ethiopia under different soil, climate, and elevation conditions. A process-based growth model (Yield-SAFE) was used to simulate coffee production for a time horizon of 40 years. Climate change scenarios considered were representative concentration pathways (RCP) 4.5 and 8.5. The results revealed that in monoculture systems, the current coffee yields are between 1200-1250 kg ha⁻¹ yr⁻¹, with an expected decrease between 4-38% and 20-60% in scenarios RCP 4.5 and 8.5, respectively. However, in agroforestry systems, the current yields are between 1600-2200 kg ha⁻¹ yr⁻¹; the decrease was lower, ranging between 4-13% and 16-25% in RCP 4.5 and 8.5 scenarios, respectively. From the results, it can be concluded that coffee production under agroforestry systems has a higher level of resilience when facing future climate change and reinforces the idea of using this type of management in the near future for adapting climate change's negative impacts on coffee production.

Keywords: Albizia gummifera, CORDEX, Ethiopia, HADCM3 model, process-based model

Procedia PDF Downloads 123
13229 Migratory Diaspora: The Media and the Human Element

Authors: Peter R. Alfieri

Abstract:

The principal aim of this research and presentation is to give global and personal perspective of the migratory diaspora and how it is perceived by a substantial majority that relies on the media’s portrayal of migratory movements. Since its Greek origins the word “diaspora” has taken on several connotations, but none has surpassed its use in regard to the human element; because since before the dawn of history, man has had to struggle for survival. That survival was a struggle against the elements and other natural enemies, but none as tenacious and relentless as other men. Many have used the term diaspora to describe the spread of certain ethnic groups resulting in new generations in new places; but has the human diaspora been as haphazard as that of spores? The quest for survival has spawned migrations that are not quite that simple, even though it has several similarities to plant spores or dandelion seeds flying throughout the atmosphere. Man kind has constantly migrated in search of food, shelter, and safety. When they were able to find food and shelter, they would inform others who would venture to the new place. Information, whether through word of mouth, written material, or visual communications, has been a moving force in man’s life; and it spurred migrants in their quest for better environments. Today we pride ourselves in being able to communicate instantly with anyone anywhere in the world, and we are privileged to see most of what is happening in the world thanks to the highly developed modern media. Is Media a “wind/force” instrumental in propelling the diaspora throughout the world? The media has been the tool that has incentive many migratory, but unfortunately it is also the means responsible for many misconceptions regarding migrants and their hosts. Has the Media presented an unbiased view of the migrant or has it been the means that generated negative or prejudiced views of the migrant and, perhaps, the host environment? Some examples were easily seen in 19th century the United States where they advertised the following, “Help needed, Irish need not apply”. How do immigrants circumvent latent barriers that are not as obvious as the ones just mentioned? Some immigrants return home and have children that decide to emigrate. It is a perpetual cycle in the search for self-improvement. The stories that are brought back might be inspiration for the new generation of emigrants. Poverty, hunger, and political turmoil spur most migrations. The majority learn from others or through the media about certain destinations that will provide one or several opportunities to improve their existence. Many of those migrants suffer untold hardships to succeed. When they succeed, they provide a great incentive for their children to obtain an education or skill that will insure them a better life. Although the new environment may contribute greatly to a successful career, most immigrants do not forget their own struggle. They see the media’s portrayal of other migrants from all over the globe. Some try to communicate to others the true feelings of despair felt by immigrants, because they are all brothers and sisters in the perennial struggle for a better life. “HOPE” for a better life drives the immigrant toward the unknown and it has helped overcome the obstacles that present themselves challenging every newcomer. Hope and perseverance strengthen the resolve of the migrant in his struggle to survive.

Keywords: media, migration, heath, education, obstacles

Procedia PDF Downloads 385
13228 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 144
13227 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 102
13226 The Experimental and Modeling Adsorption Properties of Sr2+ on Raw and Purified Bentonite

Authors: A. A. Khodadadi, S. C. Ravaj, B. D. Tavildari, M. B. Abdolahi

Abstract:

The adsorption properties of local bentonite (Semnan Iran) and purified prepared from this bentonite towards Sr2+ adsorption, were investigated by batch equilibration. The influence of equilibration time, adsorption isotherms, kinetic adsorption, solution pH, and presence of EDTA and NaCl on these properties was studied and discussed. Kinetic data were found to be well fitted with a pseudo-second order kinetic model. Sr2+ is preferably adsorbed by bentonite and purified bentonite. The D-R isotherm model has the best fit with experimental data than other adsorption isotherm models. The maximum adsorption of Sr2+ representing the highest negative charge density on the surface of the adsorbent was seen at pH 12. Presence of EDTA and NaCl decreased the amount of Sr2+ adsorption.

Keywords: bentonite, purified bentonite, Sr2+, equilibrium isotherm, kinetics

Procedia PDF Downloads 380
13225 Static Simulation of Pressure and Velocity Behaviour for NACA 0006 Blade Profile of Well’s Turbine

Authors: Chetan Apurav

Abstract:

In this journal the behavioural analysis of pressure and velocity has been done over the blade profile of Well’s turbine. The blade profile that has been taken into consideration is NACA 0006. The analysis has been done in Ansys Workbench under CFX module. The CAD model of the blade profile with certain dimensions has been made in CREO, and then is imported to Ansys for further analysis. The turbine model has been enclosed under a cylindrical body and has been analysed under a constant velocity of air at 5 m/s and zero relative pressure in static condition of the turbine. Further the results are represented in tabular as well as graphical form. It has been observed that the relative pressure of the blade profile has been stable throughout the radial length and hence will be suitable for practical usage.

Keywords: Well's turbine, oscillating water column, ocean engineering, wave energy, NACA 0006

Procedia PDF Downloads 205
13224 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia

Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez

Abstract:

This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.

Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models

Procedia PDF Downloads 194
13223 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: sliding mode control, model predictive control, integral action, electric vehicle, slip suppression

Procedia PDF Downloads 564
13222 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: power system, stability, oscillations, power system stabilizer, model reference adaptive control

Procedia PDF Downloads 141
13221 Morroniside Intervention Mechanism of Renal Lesions, a Combination Model of AGEs Exacerbation of STZ-Induced Diabetes Mellitus

Authors: Hui-Qin Xu, Xing Lv, Yu-Han Tao

Abstract:

The depth study aimed on the mechanism of morroniside in protecting diabetic nephropathy. The diabetic mice models with blood glucose above 15mmol/L were divided into model, aminoguanidine, metformin, captopril, morroniside low-dose, and morroniside high-dose groups. And normal group was set simultaneously. All groups were fed with high AGEs food except normal group. Each group was intragastric administration of the corresponding medicine except model and normal groups. After 12 weeks, all the indictors were measured. It showed that the morroniside could reduce blood glucose significantly, urinary protein, serum urea nitrogen, creatine, pathological changes, AGEs levels, renal cortex RAGE mRNA and RAGE protein expression levels; increase food consumption, water intake, urine volume, insulin secretion. As a conclusion, morroniside from cornus officinalis can protect renal in diabetic mice, its mechanism may be related to the proliferation of islet cells, rectify glycometabolism, reduce serum and kidney AGEs content, and descend renal RAGEmRNA and RAGE protein expression levels.

Keywords: cornus officinalis, diabetic nephropathy, morroniside, RAGE protein

Procedia PDF Downloads 452
13220 Training as a Service for Electronic Warfare

Authors: Toan Vo

Abstract:

Electronic attacks, illegal drones, interference, and jamming are no longer capabilities reserved for a state-sponsored, near-peer adversary. The proliferation of jammers on auction websites has lowered the price of entry for electronics hobbyists and nefarious actors. To enable local authorities and enforcement bodies to keep up with these challenges, this paper proposes a training as a service model to quickly and economically train and equip police departments and local law enforcement agencies. Using the U.S Department of Defense’s investment in Electronic Warfare as a guideline, a large number of personnel can be trained on effective spectrum monitoring techniques using commercial equipment readily available on the market. Finally, this paper will examine the economic benefits to the test and measurement industry if the TaaS model is applied.

Keywords: training, electronic warfare, economics, law enforcement

Procedia PDF Downloads 108
13219 On Periodic Integer-Valued Moving Average Models

Authors: Aries Nawel, Bentarzi Mohamed

Abstract:

This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.

Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data

Procedia PDF Downloads 207
13218 Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator

Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Kim Dowon, Qing Fang, Mingbin Yu, Guoqiang Lo

Abstract:

Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed.

Keywords: integrated optical devices, silicon photonics, micro-resonator, photodetectors

Procedia PDF Downloads 411
13217 Stress Analysis of Tubular Bonded Joints under Torsion and Hygrothermal Effects Using DQM

Authors: Mansour Mohieddin Ghomshei, Reza Shahi

Abstract:

Laminated composite tubes with adhesively bonded joints are widely used in aerospace and automotive industries as well as oil and gas industries. In this research, adhesively tubular single lap joints subjected to torsional and hygrothermal loadings are studied using the differential quadrature method (DQM). The analysis is based on the classical shell theory. At first, an approximate closed form solution is developed by omitting the lateral deflections in the connecting tubes. Using the analytical model, the circumferential displacements in tubes and the shear stresses in the interfacing adhesive layer are determined. Then, a numerical formulation is presented using DQM in which the lateral deflections are taken into account. By using the DQM formulation, the circumferential and radial displacements in tubes as well as shear and peel stresses in the adhesive layer are calculated. Results obtained from the proposed DQM solutions are compared well with those of the approximate analytical model and those of some published references. Finally using the DQM model, parametric studies are carried out to investigate the influence of various parameters such as adhesive layer thickness, torsional loading, overlap length, tubes radii, relative humidity, and temperature.

Keywords: adhesively bonded joint, differential quadrature method (DQM), hygrothermal, laminated composite tube

Procedia PDF Downloads 306
13216 Rheological Evaluation of Various Indigenous Gums

Authors: Yogita Weikey, Shobha Lata Sinha, Satish Kumar Dewangan

Abstract:

In the present investigation, rheology of the three different natural gums has been evaluated experimentally using MCR 102 rheometer. Various samples based on the variation of the concentration of the solid gum powder have been prepared. Their non-Newtonian behavior has been observed by the consistency plots and viscosity variation plots with respect to different solid concentration. The viscosity-shear rate curves of gums are similar and the behavior is shear thinning. Gums are showing pseudoplastic behavior. The value of k and n are calculated by using various models. Results show that the Herschel–Bulkley rheological model is reliable to describe the relationship of shear stress as a function of shear rate. R² values are also calculated to support the choice of gum selection.

Keywords: bentonite, Indian gum, non-Newtonian model, rheology

Procedia PDF Downloads 312