Search results for: wood plastic composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3370

Search results for: wood plastic composite

2800 Constructing White-Box Implementations Based on Threshold Shares and Composite Fields

Authors: Tingting Lin, Manfred von Willich, Dafu Lou, Phil Eisen

Abstract:

A white-box implementation of a cryptographic algorithm is a software implementation intended to resist extraction of the secret key by an adversary. To date, most of the white-box techniques are used to protect block cipher implementations. However, a large proportion of the white-box implementations are proven to be vulnerable to affine equivalence attacks and other algebraic attacks, as well as differential computation analysis (DCA). In this paper, we identify a class of block ciphers for which we propose a method of constructing white-box implementations. Our method is based on threshold implementations and operations in composite fields. The resulting implementations consist of lookup tables and few exclusive OR operations. All intermediate values (inputs and outputs of the lookup tables) are masked. The threshold implementation makes the distribution of the masked values uniform and independent of the original inputs, and the operations in composite fields reduce the size of the lookup tables. The white-box implementations can provide resistance against algebraic attacks and DCA-like attacks.

Keywords: white-box, block cipher, composite field, threshold implementation

Procedia PDF Downloads 159
2799 Selective Adsorption of Anionic Textile Dyes with Sustainable Composite Materials Based on Physically Activated Carbon and Basic Polyelectrolytes

Authors: Mari Carmen Reyes Angeles, Dalia Michel Reyes Villeda, Ana María Herrera González

Abstract:

This work reports the design and synthesis of two composite materials based on physically activated carbon and basic polyelectrolytes useful in the adsorption of textile dyes present in aqueous solutions and wastewater. The synthesis of basic polyelectrolytes poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP) was made by means of free radical polymerization. The carbon made from prickly pear peel (CarTunaF) was thermally activated in the presence of combustion gases. Composite materials CarTunaF2VP and CarTunaF4VP were obtained from CarTunaF and polybasic polyelectrolytes P2VP and P4VP with a ratio of 67:33 wt. The structure of each polyelectrolyte, P2VP, and P4VP, was elucidated by means of the FTIR and 1H NMR spectrophotometric techniques. Their thermal stability was evaluated using TGA. The characterization of CarTunaF and composite materials CarTunaF2VP and CarTunaF4VP was made by means of FTIR, TGA, SEM, and N2 adsorption. The adsorptive capacities of the polyelectrolytes and the composite materials were evaluated by adsorption of direct dyes present in aqueous solutions. The polyelectrolytes removed between 90 and 100% of the dyes, and the composite materials removed between 68 and 93% of the dyes. Using the four adsorbents P2VP, P4VP, CarTuna2VP, and CarTuna4VP, it was observed that the dyes studied, Direct Blue 80, Direct Turquoise 86, and Direct Orange 26, were adsorbed in the range between 46.1 and 188.7mg∙g-1 by means of electrostatic interactions between the anionic groups in the dyes with the cationic groups in the adsorbents. By using adsorbent materials in the treatment of wastewater from the textile industry, an improvement in the quality of the water was observed by decreasing its pH, COD, conductivity, and color considerably

Keywords: adsorption, anionic dyes, composite, polyelectrolytes

Procedia PDF Downloads 90
2798 Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

Authors: M. Aruna

Abstract:

Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fiber-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. The sisal fiber has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18, and 24% by weight of sisal fibres were assessed. Sisal fiber reinforced cement composite slabs with long sisal fibers were manufactured using a cast hand layup technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively.

Keywords: sisal fibre, fiber-reinforced concrete, mechanical behaviour, composite materials

Procedia PDF Downloads 251
2797 Lead Free BNT-BKT-BMgT-CoFe₂O₄ Magnetoelectric Nanoparticulate Composite Thin Films Prepared by Chemical Solution Deposition Method

Authors: A. K. Paul, Vinod Kumar

Abstract:

Lead free magnetoelectric (ME) nanoparticulate (1−x) BNT-BKT-BMgT−x CFO (x = 0, 0.1, 0.2, 0.3) composite films were synthesized using chemical solution deposition method. The X-ray diffraction and transmission electron microscope (TEM) reveal that CFO nanoparticles were well distributed in the matrix of BNT-BKT-BMgT. The nanocomposite films exhibit both good magnetic and ferroelectric properties at room temperature (R-T). It is concluded that the modulation in compositions of piezomagnetic/piezoelectric components plays a fundamental role in the magnetoelectric coupling in these nanoparticulate composite films. These ME composites provide a great opportunity as potential lead-free systems for ME devices.

Keywords: lead free multiferroic, nanocomposite, ferroelectric, ferromagnetic and magneto-electric properties

Procedia PDF Downloads 119
2796 Utilization of Composite Components for Land Vehicle Systems: A Review

Authors: Kivilcim Ersoy, Cansu Yazganarikan

Abstract:

In recent years, composite materials are more frequently utilized not only in aviation but also in automotive industry due to its high strength to weight ratio, fatigue and corrosion resistances as well as better performances in specific environments. The market demand also favors lightweight design for wheeled and tracked armored vehicles due to the increased demand for land and amphibious mobility features. This study represents the current application areas and trends in automotive, bus and armored land vehicles industries. In addition, potential utilization areas of fiber composite and hybrid material concepts are being addressed. This work starts with a survey of current applications and patent trends of composite materials in automotive and land vehicle industries. An intensive investigation is conducted to determine the potential of these materials for application in land vehicle industry, where small series production dominates and challenging requirements are concerned. In the end, potential utilization areas for combat land vehicle systems are offered. By implementing these light weight solutions with alternative materials and design concepts, it is possible to achieve drastic weight reduction, which will enable both land and amphibious mobility without unyielding stiffness and survivability capabilities.

Keywords: land vehicle, composite, light-weight design, armored vehicle

Procedia PDF Downloads 454
2795 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique

Authors: Stefano Iannello, Massimiliano Materazzi

Abstract:

Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.

Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray

Procedia PDF Downloads 161
2794 Analysis Thermal of Composite Material in Cold Systems

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes

Abstract:

Given the unquestionable need of environmental preservation of discarded industrial residues, The scrape of tires have been seen as a salutary alternative for addictive in concrete, asphalt production and of other composites materials. In this work, grew a composite the base of scrape of tire as reinforcement and latex as matrix, to be used as insulating thermal in "cold" systems (0º). Analyzed the acting of the material was what plays the thermal conservation when submitted the flow of heat. Verified the temperature profiles in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. As a consequence, in function of the answers of the system, conclusions were reached.

Keywords: cold system, latex, flow of heat, asphalt production

Procedia PDF Downloads 457
2793 Simulation of Cure Kinetics and Process-Induced Stresses in Carbon Fibre Composite Laminate Manufactured by a Liquid Composite Molding Technique

Authors: Jayaraman Muniyappan, Bachchan Kr Mishra, Gautam Salkar, Swetha Manian Sridhar

Abstract:

Vacuum Assisted Resin Transfer Molding (VARTM), a cost effective method of Liquid Composite Molding (LCM), is a single step process where the resin, at atmospheric pressure, is infused through a preform that is maintained under vacuum. This hydrodynamic pressure gradient is responsible for the flow of resin through the dry fabric preform. The current study has a slight variation to traditional VARTM, wherein, the resin infuses through the fabric placed on a heated mold to reduce its viscosity. The saturated preform is subjected to a cure cycle where the resin hardens as it undergoes curing. During this cycle, an uneven temperature distribution through the thickness of the composite and excess exothermic heat released due to different cure rates result in non-uniform curing. Additionally, there is a difference in thermal expansion coefficient between fiber and resin in a given plane and between adjacent plies. All these effects coupled with orthotropic coefficient of thermal expansion of the composite give rise to process-induced stresses in the laminate. Such stresses lead to part deformation when the laminate tries to relieve them as the part is released off the mold. The current study looks at simulating resin infusion, cure kinetics and the structural response of composite laminate subject to process-induced stresses.

Keywords: cure kinetics, process-induced stresses, thermal expansion coefficient, vacuum assisted resin transfer molding

Procedia PDF Downloads 231
2792 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 209
2791 Protein-Starch-Potassium Iodide Composite as a Sensor for Chlorine in Water

Authors: S. Mowafi, A. Abou El-Kheir, M. Abou Taleb, H. El-Sayed

Abstract:

Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Protein-starch-potassium iodide (PSPI) composite was prepared by anchoring starch and potassium iodide mixture onto the film surface using appropriate polymeric material. The possibility of using PSPI composite for determination of the concentration of chlorine ions in domestic as well as industrial water was examined. The concentration of chlorine in water was determined spectrophotometrically by measuring the intensity of blue colour of formed between starch and the released iodine obtained by interaction of potassium iodide chlorine in the tested water sample.

Keywords: chlorine, protein, potassium iodide, water

Procedia PDF Downloads 367
2790 Relocation of Plastic Hinge of Interior Beam Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames

Authors: P. Wongmatar, C. Hansapinyo, C. Buachart

Abstract:

Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. Past researches shown that the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam–column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.

Keywords: relocation, plastic hinge, intermediate bar, T-section steel, precast concrete frame

Procedia PDF Downloads 269
2789 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood

Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy

Abstract:

In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.

Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage

Procedia PDF Downloads 151
2788 An Electrochemical Study on Ethanol Oxidation with Pt/Pd Composite Electrodes in Sodium Hydroxide Solution

Authors: Yu-Chen Luo, Wan-Tzu Yen, I-Ping Liu, Po-Hsuan Yeh, Yuh-Lang Lee

Abstract:

The use of a Pt electrode leads to high catalytic efficiency in the ethanol electro-oxidation. However, the carbon monoxide (CO) released in the reaction will poison the Pt surfaces, lowering the electrocatalytic activity. In this study, composite electrodes are prepared to overcome the poisoning issue, and the related electro-oxidation behaviors are studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). An electroless plating method is utilized to deposit Pt catalytic layers on the Pd film-coated FTO substrates. According to the SEIRAS spectra, the carbon dioxide signal of the Pt/Pd composite electrode is larger than that of the Pt one, whereas the CO signal of the composite electrode is relatively smaller. This result suggests that the studied Pt/Pd electrode has a better ability against CO poisoning. The CV analyses are conducted in alkaline environments, and current densities related to the ethanol oxidation in the forward scan (If) and to the CO poisoning in the backward scan (Ib) are measured. A higher ratio of If to Ib (If/Ib) usually represents a better ability against the poisoning effect. The If/Ib values are 2.53 and 2.07 for the Pt and Pt/Pd electrodes, respectively, which is possibly attributed to the increasing ability of CO adsorption of Pt electrode. Despite the lower If/Ib, the Pt/Pd composite electrode shows a higher ethanol oxidation performance in the alkaline system than the Pt does. Furthermore, its stability is also superior.

Keywords: cyclic voltammogram, electroless deposition, ethanol electro-oxidation, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 112
2787 Flammability of Banana Fibre Reinforced Epoxy/Sodium Bromate Blend: Investigation of Variation in Mechanical Properties

Authors: S. Badrinarayanan, R. Vimal, H. Sivaraman, P. Deepak, R. Vignesh Kumar, A. Ponshanmugakumar

Abstract:

In the present study, the flammability properties of banana fibre reinforced epoxy/ sodium bromate blended composites are studied. Two sets of composite material were prepared, one formed by blending sodium bromate with epoxy matrix and other with neat epoxy matrix. Epoxy resin was blended with various weight fractions of sodium bromate, 4%, 8% and 12%. The composite made with plain epoxy matrix was used as the standard reference material. The mechanical tests, heat deflection tests and flammability tests were carried out on all the composite samples. Flammability test shows the improved flammability properties of the sodium bromated banana-epoxy composite. The modification in flammability properties of the composites by the addition of sodium bromate results in the reduced mechanical properties. The fractured surfaces under various mechanical testing were analysed using morphological analysis done using scanning electron microscope.

Keywords: banana fibres, epoxy resin, sodium bromate, flammability test, heat deflection

Procedia PDF Downloads 293
2786 FE Analysis of the Notch Effect on the Behavior of Repaired Crack with Bonded Composite Patch in Aircraft Structures

Authors: Faycal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this paper, the finite element analysis is applied to study the performance of the bonded composite reinforcement or repair for reducing stress concentration at a semi-circular lateral notch and repairing cracks emanating from this kind of notch. The effects of the adhesive properties on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress concentration factor at the notch tip is reduced about 30% and the maximal reduction of the stress intensity factor is about 80%. The adhesive properties must be optimized in order to increase the performance of the patch repair or reinforcement.

Keywords: bonded repair, notch, crack, adhesive, composite

Procedia PDF Downloads 382
2785 Investigation of Failure Mechanisms of Composite Laminates with Delamination and Repaired with Bolts

Authors: Shuxin Li, Peihao Song, Haixiao Hu, Dongfeng Cao

Abstract:

The interactive deformation and failure mechanisms, including local bucking/delamination propagation and global bucking, are investigated in this paper with numerical simulation and validation with experimental results. Three dimensional numerical models using ABAQUS brick elements combined with cohesive elements and contact elements are developed to simulate the deformation and failure characteristics of composite laminates with and without delamination under compressive loading. The zero-thickness cohesive elements are inserted on the possible path of delamination propagation, and the inter-laminate behavior is characterized by the mixed-mode traction-separation law. The numerical simulations identified the complex feature of interaction among local buckling and/or delamination propagation and final global bucking for composite laminates with delamination under compressive loading. Firstly there is an interaction between the local buckling and delamination propagation, i.e., local buckling induces delamination propagation, and then delamination growth further enhances the local buckling. Secondly, the interaction between the out-plan deformation caused by local buckling and the global bucking deformation results in final failure of the composite laminates. The simulation results are validated by the good agreement with the experimental results published in the literature. The numerical simulation validated with experimental results revealed that the degradation of the load capacity, in particular of the compressive strength of composite structures with delamination, is mainly attributed to the combined local buckling/delamination propagation effects. Consequently, a simple field-bolt repair approach that can hinder the local buckling and prevent delamination growth is explored. The analysis and simulation results demonstrated field-bolt repair could effectively restore compressive strength of composite laminates with delamination.

Keywords: cohesive elements, composite laminates, delamination, local and global bucking, field-bolt repair

Procedia PDF Downloads 114
2784 Application of Digital Image Correlation Technique on Vacuum Assisted Resin Transfer Molding Process and Performance Evaluation of the Produced Materials

Authors: Dingding Chen, Kazuo Arakawa, Masakazu Uchino, Changheng Xu

Abstract:

Vacuum assisted resin transfer moulding (VARTM) is a promising manufacture process for making large and complex fiber reinforced composite structures. However, the complexity of the flow of the resin in the infusion stage usually leads to nonuniform property distribution of the produced composite part. In order to control the flow of the resin, the situation of flow should be mastered. For the safety of the usage of the produced composite in practice, the understanding of the property distribution is essential. In this paper, we did some trials on monitoring the resin infusion stage and evaluation for the fiber volume fraction distribution of the VARTM produced composite using the digital image correlation methods. The results show that 3D-DIC is valid on monitoring the resin infusion stage and it is possible to use 2D-DIC to estimate the distribution of the fiber volume fraction on a FRP plate.

Keywords: digital image correlation, VARTM, FRP, fiber volume fraction

Procedia PDF Downloads 330
2783 COVID-19 Pandemic and Disruptions in Nigeria’s Domestic Economic Activities: A Pre-post Empirical Investigation

Authors: Amaefule, Leonard Ifeanyi

Abstract:

The study evaluated the disruptions in Nigeria’s domestic economic activities occasioned by the COVID-19 pandemic: a pre and post-pandemic investigation approach. Domestic economic activities were measured with composite manufacturing purchasing managers index (PMI) and composite non-manufacturing PMI. Production and employment levels indices were proxies for composite manufacturing PMI, while business activities and employment level indices were proxies for non-manufacturing PMI. Data for these indices were sourced from monthly and quarterly publications of the Central Bank of Nigeria for periods covering fifteen (15) months before and 15 months after the outbreak of the virus in Nigeria. Test of equality of means was employed in establishing the significance of the difference of means between the pre and post-pandemic domestic economic activities. Results from the analysis indicated that a significant negative difference exists in each of the measures of domestic economic activities between the pre and post-pandemic periods. These findings, therefore, offer empirical evidence that the COVID-19 pandemic has disrupted domestic economic activities in Nigeria; thus, it exerts a negative influence on the measures of the nation’s domestic economic activities. The study thus recommended (among other things) that the Nigerian government should focus on policies that would enhance domestic production, employment and enhance business activities.

Keywords: COVID-19, domestic economic activities, composite manufacturing indices, composite non-manufacturing indices

Procedia PDF Downloads 162
2782 Behavior of Double Skin Circular Tubular Steel-Concrete-Composite Column

Authors: Usha Sivasankaran, Seetha Raman

Abstract:

Experimental work on Double skin Concrete Filled tubes (DSCFT) are a variation of CFT (Concrete- filled steel tubular) with a hollow core formed by two concentric steel tubes in – filled with concrete. Six Specimens with three different volume fractions of steel fibres are cast and tested. Experiments on circular steel tubes in – filled with steel fibre reinforced concrete (SFRC) and normal concrete have been performed to investigate the contribution of steel fibres to the load bearing capacity of Short Composite Columns. The main Variable considered in the test study is the percentage of steel fibres added to the in –filled concrete. All the specimens were tested under axial compression until failure state realisation. This project presents the percentage Variation in the compression strengths of the 3 types of Composite members taken under Study. The results show that 1.5% SFRC in filled steel columns exhibit enhanced ultimate load carrying capacity.

Keywords: composite columns, optimization of steel, double skin, DSCFT

Procedia PDF Downloads 542
2781 Improved Accuracy of Ratio Multiple Valuation

Authors: Julianto Agung Saputro, Jogiyanto Hartono

Abstract:

Multiple valuation is widely used by investors and practitioners but its accuracy is questionable. Multiple valuation inaccuracies are due to the unreliability of information used in valuation, inaccuracies comparison group selection, and use of individual multiple values. This study investigated the accuracy of valuation to examine factors that can increase the accuracy of the valuation of multiple ratios, that are discretionary accruals, the comparison group, and the composite of multiple valuation. These results indicate that multiple value adjustment method with discretionary accruals provides better accuracy, the industry comparator group method combined with the size and growth of companies also provide better accuracy. Composite of individual multiple valuation gives the best accuracy. If all of these factors combined, the accuracy of valuation of multiple ratios will give the best results.

Keywords: multiple, valuation, composite, accuracy

Procedia PDF Downloads 271
2780 Understanding the Productivity Effect on Industrial Management: The Portuguese Wood Furniture Industry Case Study

Authors: Jonas A. R. H. Lima, Maria Antonia Carravilla

Abstract:

As productivity concepts are widely related to industrial savings, it is becoming particularly important in a more and more competitive world, to really understand how productivity can be well used in industrial management techniques. Nowadays, consumers are no more willing to pay for mistakes and inefficiencies. Therefore, one way for companies to stay competitive is to control and increase their productivity. This study aims to define clearly the productivity concept, understand how a company can affect productivity, and, if possible, identify the relation between each identified productivity factor. This will help managers, by clarifying the main issues behind productivity concepts and proposing a methodology to measure, control and increase productivity. The main questions to be answered are: what is the importance of productivity for the Portuguese Wood Furniture Industry? Is it possible to control productivity internally, or is it a phenomenon external to companies, hard or even impossible to control? How to understand, control and adjust productivity performance? How to make productivity to become one main asset for maximizing the use of the available resources? This essay will follow a constructive approach mostly based in the research hypothesis mentioned above. For that, a literature review is being done to find the main conceptual frameworks and empirical studies that already exist, and by doing so, highlight eventual knowledge or conflicting research to be addressed in this work. We expect to build theoretical explanations and test theoretical predictions from participants understandings and own experiences, by elaborating field surveys and interviews, to select adjusted productivity indicators and analyze the productivity evolution according the adjustments on other variables. Its intended the conduction of an exploratory work that can simultaneous clarify productivity concepts, objectives, and define frameworks. This investigation intends to migrate from merely academic concepts to a daily basis operational reality of the companies from the Portuguese Wood Furniture Industry highlighting productivity increased importance within modern engineering and industrial management. The ambition is to clarify, systemize and develop a management tool that may not only control but positively influence the way resources are used.

Keywords: industrial management, motivation, productivity, performance indicators, reward management, wood furniture industry

Procedia PDF Downloads 223
2779 Effects of Stirring Time and Reinforcement Preheating on the Porosity of Particulate Periwinkle Shell-Aluminium 6063 Metal Matrix Composite (PPS-ALMMC) Produced by Two-Step Casting

Authors: Reginald Umunakwe, Obinna Chibuzor Okoye, Uzoma Samuel Nwigwe, Damilare John Olaleye, Akinlabi Oyetunji

Abstract:

The potential for the development of PPS-AlMMCs as light weight material for industrial applications was investigated. Periwinkle shells were milled and the density of the particles determined. Particulate periwinkle shell of particle size 75µm was used to reinforce aluminium 6063 alloy at 10wt% filler loading using two-step stir casting technique. The composite materials were stirred for five minutes in a semi-solid state and the stirring time varied as 3, 6 and 9 minutes at above the liquidus temperature. A specimen was also produced with pre-heated filler. The effect of variation in stirring time and reinforcement pre-heating on the porosity of the composite materials was investigated. The results of the analysis show that a composition of reinforcement pre-heating and stirring for 3 minutes produced a composite material with the lowest porosity of 1.05%.

Keywords: composites, periwinkle shell, two-step casting, porosity

Procedia PDF Downloads 344
2778 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 208
2777 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials

Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics

Abstract:

Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.

Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool

Procedia PDF Downloads 215
2776 Portuguese Pine Resin: The Economic and Activity Decline to a New Forestry and Biotechnology Approach

Authors: Carolina Nunes, Sónia Ribeiro, Hélio Faustinho, Hélia Sales, Rita Pontes, João Nunes

Abstract:

Pine resin activity in Portugal was one of the most important and major non-wood forestry, representing a strategic natural resource for Portuguese Bioeconomy and an important social activity for rural regions. Pine forests representing a stock of atmospheric carbon, contributing to greenhouse effect mitigation and social and environmental important services returns. They are important sources of numerous useful products, including not only wood and cellulose but also nonwood products used by the chemical, food, and pharmaceutical industries, as well as for biorefineries. Portuguese pine forest area decreases from 1 million hectares to 400 mil hectares in the last 20 years. Portugal, in 80´s decade, was one of the world´s TOP 3 producers, with a middle annual production of 140 mil tones.year-1. With the pressure of the social desertification, forest fires, phytosanitary problems (e.g. nematode of the pine wood) and the decrease of economic value and competitivity of the Portuguese forest, the actual middle annual production is less than 10 mil tones.year-1 (lesser 92%). This significant decrease representing an annual economic loss of approximately 130-140 million Euros. year⁻¹ for forest primary sector in Portugal. The Biopinus project design new forestry approach and strategic biotechnologies knowledge to increase the economic value of Pine resin in Portugal, with an impact on the growth of the economic value of Pine resin from 1,1 to 1,5 Euros/kg.

Keywords: pine resin, bioeconomy, economic value, biotecnology

Procedia PDF Downloads 65
2775 Effect of Different Planting Times and Mulching Materials on Seed Quality and Yield of China Aster Cultivars

Authors: A. A. Bajad, B. P. Sharma, Y. C. Gupta, B. S. Dilt, R. K. Gupta

Abstract:

The present investigations were carried out at the experimental farm of Department of Floriculture and Landscape Architecture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P. during 2015 and 2016. The experiment was laid out in a Randomized Block Design (factorial) consisting of 48 treatment combinations of four planting dates viz., D1- mid March, D2-mid April, D3-mid May and D4- mid June and two cultivars namely V1- Kamini and V2 -Poornima with six mulching materials M¬0¬- without mulch, M1- Black plastic mulch (100 µ), M2- Silver plastic mulch (100 µ), M3¬- Transparent plastic mulch (100 µ), M3-Transparent plastic mulch (100 µ), M4¬- Pine needle (100 µ) and M5- Grass (1 inch layer). Among different planting times, D4 i.e. mid June planting obtained best results for number of seed per flower (179.38), germination percent (83.92 %), electrical conductivity (0.97 ds/m), seedling length (7.93 cm), seedling dry weight (7.09 mg), seedling vigour index I (763.79), moisture content (7.83 %) and 1000 seed weight (1.94 g). However, seed yield per plant (14.30 g) was recorded to be maximum in mid of March. Among the cultivars, cv. ‘Poornima’ gave best results for number of seed per plant (187.30). However, cv. ‘Kamini’ recorded the best result for seed yield per plant (12.55), electrical conductivity (1.11 ds/m), germination percent (80.47 %), seedling length (6.39 cm), seedling dry weight (5.11 mg), seedling vigour index I (649.49), moisture content (9.28 %) and 1000 seed weight (1.70 g). Silver plastic obtained best results for number of seed per flower (170.10), seed yield per plant (15.66 g), germination percent (80.17 %), electrical conductivity (1.26 ds/m), seedling length (5.88 cm), seedling dry weight (4.46 mg), seedling vigour index I (616.78), Moisture content (9.35 %) and 100 seed weight (1.97 g).

Keywords: cultivars, mulch materials, planting times, flowers

Procedia PDF Downloads 270
2774 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material

Authors: Livia Guerini, Christian Paglia

Abstract:

In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.

Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP

Procedia PDF Downloads 137
2773 Improvement of Heat Dissipation Ability of Polyimide Composite Film

Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han

Abstract:

Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.

Keywords: polyimide, heat dissipation, electric device, filler

Procedia PDF Downloads 669
2772 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection

Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary

Abstract:

Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.

Keywords: k-nearest neighbor (knn), face detection, vitiligo, bone deformity

Procedia PDF Downloads 154
2771 Two Component Source Apportionment Based on Absorption and Size Distribution Measurement

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Gábor Szabó, Zoltán Bozóki

Abstract:

Beyond its climate and health related issues ambient light absorbing carbonaceous particulate matter (LAC) has also become a great scientific interest in terms of its regulations recently. It has been experimentally demonstrated in recent studies, that LAC is dominantly composed of traffic and wood burning aerosol particularly under wintertime urban conditions, when the photochemical and biological activities are negligible. Several methods have been introduced to quantitatively apportion aerosol fractions emitted by wood burning and traffic but most of them require costly and time consuming off-line chemical analysis. As opposed to chemical features, the microphysical properties of airborne particles such as optical absorption and size distribution can be easily measured on-line, with high accuracy and sensitivity, especially under highly polluted urban conditions. Recently a new method has been proposed for the apportionment of wood burning and traffic aerosols based on the spectral dependence of their absorption quantified by the Aerosol Angström Exponent (AAE). In this approach the absorption coefficient is deduced from transmission measurement on a filter accumulated aerosol sample and the conversion factor between the measured optical absorption and the corresponding mass concentration (the specific absorption cross section) are determined by on-site chemical analysis. The recently developed multi-wavelength photoacoustic instruments provide novel, in-situ approach towards the reliable and quantitative characterization of carbonaceous particulate matter. Therefore, it also opens up novel possibilities on the source apportionment through the measurement of light absorption. In this study, we demonstrate an in-situ spectral characterization method of the ambient carbon fraction based on light absorption and size distribution measurements using our state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS) and Single Mobility Particle Sizer (SMPS) The carbonaceous particulate selective source apportionment study was performed for ambient particulate matter in the city center of Szeged, Hungary where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. The proposed model is based on the parallel, in-situ measurement of optical absorption and size distribution. AAEff and AAEwb were deduced from the measured data using the defined correlation between the AOC(1064nm)/AOC(266nm) and N100/N20 ratios. σff(λ) and σwb(λ) were determined with the help of the independently measured temporal mass concentrations in the PM1 mode. Furthermore, the proposed optical source apportionment is based on the assumption that the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed here by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data. The results by the proposed novel optical absorption based source apportionment method prove its applicability whenever measurements are performed at an urban site where traffic and wood burning are the dominant carbonaceous sources of emission.

Keywords: absorption, size distribution, source apportionment, wood burning, traffic aerosol

Procedia PDF Downloads 221