Search results for: system reliability optimization
20502 An Optimization Model for Waste Management in Demolition Works
Authors: Eva Queheille, Franck Taillandier, Nadia Saiyouri
Abstract:
Waste management has become a major issue in demolition works, because of its environmental impact (energy consumption, resource consumption, pollution…). However, improving waste management requires to take also into account the overall demolition process and to consider demolition main objectives (e.g. cost, delay). Establishing a strategy with these conflicting objectives (economic and environment) remains complex. In order to provide a decision-support for demolition companies, a multi-objective optimization model was developed. In this model, a demolition strategy is computed from a set of 80 decision variables (worker team composition, machines, treatment for each type of waste, choice of treatment platform…), which impacts the demolition objectives. The model has experimented on a real-case study (demolition of several buildings in France). To process the optimization, different optimization algorithms (NSGA2, MOPSO, DBEA…) were tested. Results allow the engineer in charge of this case, to build a sustainable demolition strategy without affecting cost or delay.Keywords: deconstruction, life cycle assessment, multi-objective optimization, waste management
Procedia PDF Downloads 15220501 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources
Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy
Abstract:
This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.Keywords: big bang big crunch, distributed generation, load control, optimization, planning
Procedia PDF Downloads 34520500 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems
Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani
Abstract:
As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning
Procedia PDF Downloads 9920499 Optimization of Heterojunction Solar Cell Using AMPS-1D
Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui
Abstract:
Photovoltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP / GaAs configuration for p / n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction
Procedia PDF Downloads 51820498 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems
Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer
Abstract:
This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.Keywords: cascade control, multi-Loop control systems, multiobjective optimization, optimal control
Procedia PDF Downloads 15320497 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair
Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira
Abstract:
A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.Keywords: bottleneck, golgohar iron ore mining & industrial company, maintainability, maintenance costs, reliability
Procedia PDF Downloads 36320496 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model
Authors: T. Sanches, K. Bousson
Abstract:
As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control
Procedia PDF Downloads 13820495 Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO
Authors: Mahmoud Nadir, Adel Ghenaiet
Abstract:
The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods.Keywords: combined cycle, HRSG thermodynamic modeling, optimization, PSO, steam cycle specific work
Procedia PDF Downloads 38220494 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy securityKeywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization
Procedia PDF Downloads 13920493 Reliability Qualification Test Plan Derivation Method for Weibull Distributed Products
Authors: Ping Jiang, Yunyan Xing, Dian Zhang, Bo Guo
Abstract:
The reliability qualification test (RQT) is widely used in product development to qualify whether the product meets predetermined reliability requirements, which are mainly described in terms of reliability indices, for example, MTBF (Mean Time Between Failures). It is widely exercised in product development. In engineering practices, RQT plans are mandatorily referred to standards, such as MIL-STD-781 or GJB899A-2009. But these conventional RQT plans in standards are not preferred, as the test plans often require long test times or have high risks for both producer and consumer due to the fact that the methods in the standards only use the test data of the product itself. And the standards usually assume that the product is exponentially distributed, which is not suitable for a complex product other than electronics. So it is desirable to develop an RQT plan derivation method that safely shortens test time while keeping the two risks under control. To meet this end, for the product whose lifetime follows Weibull distribution, an RQT plan derivation method is developed. The merit of the method is that expert judgment is taken into account. This is implemented by applying the Bayesian method, which translates the expert judgment into prior information on product reliability. Then producer’s risk and the consumer’s risk are calculated accordingly. The procedures to derive RQT plans are also proposed in this paper. As extra information and expert judgment are added to the derivation, the derived test plans have the potential to shorten the required test time and have satisfactory low risks for both producer and consumer, compared with conventional test plans. A case study is provided to prove that when using expert judgment in deriving product test plans, the proposed method is capable of finding ideal test plans that not only reduce the two risks but also shorten the required test time as well.Keywords: expert judgment, reliability qualification test, test plan derivation, producer’s risk, consumer’s risk
Procedia PDF Downloads 13720492 Impact Study on a Load Rich Island and Development of Frequency Based Auto-Load Shedding Scheme to Improve Service Reliability of the Island
Authors: Md. Shafiullah, M. Shafiul Alam, Bandar Suliman Alsharif
Abstract:
Electrical quantities such as frequency, voltage, current are being fluctuated due to abnormalities in power system. Most of the abnormalities cause fluctuation in system frequency and sometimes extreme abnormalities lead to system blackout. To protect the system from complete blackout planned and proper islanding plays a very important role even in case of extreme abnormalities. Islanding operation not only helps stabilizing a faulted system but also supports power supplies to critical and important loads, in extreme emergency. But the islanding systems are weaker than integrated system so the stability of islands is the prime concern when an integrated system is disintegrated. In this paper, different impacts on a load rich island have been studied and a frequency based auto-load shedding scheme has been developed for sudden load addition, generation outage and combined effect of both to the island. The developed scheme has been applied to Khulna-Barisal Island to validate the effectiveness of the developed technique. Various types of abnormalities to the test system have been simulated and for the simulation purpose CYME PSAF (Power System Analysis Framework) has been used.Keywords: auto load shedding, FS&FD relay, impact study, island, PSAF, ROCOF
Procedia PDF Downloads 45720491 Bee Colony Optimization Applied to the Bin Packing Problem
Authors: Kenza Aida Amara, Bachir Djebbar
Abstract:
We treat the two-dimensional bin packing problem which involves packing a given set of rectangles into a minimum number of larger identical rectangles called bins. This combinatorial problem is NP-hard. We propose a pretreatment for the oriented version of the problem that allows the valorization of the lost areas in the bins and the reduction of the size problem. A heuristic method based on the strategy first-fit adapted to this problem is presented. We present an approach of resolution by bee colony optimization. Computational results express a comparison of the number of bins used with and without pretreatment.Keywords: bee colony optimization, bin packing, heuristic algorithm, pretreatment
Procedia PDF Downloads 63420490 Quadrature Mirror Filter Bank Design Using Population Based Stochastic Optimization
Authors: Ju-Hong Lee, Ding-Chen Chung
Abstract:
The paper deals with the optimal design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using a metaheuristic based optimization technique. Based on the theory of two-channel QMF banks using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the group delay error of the designed QMF bank and the magnitude response error of the designed low-pass analysis filter. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a particle swarm optimization algorithm. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.Keywords: quadrature mirror filter bank, digital all-pass filter, weighted least squares algorithm, particle swarm optimization
Procedia PDF Downloads 52120489 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030
Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni
Abstract:
Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization
Procedia PDF Downloads 25220488 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel
Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren
Abstract:
Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.Keywords: flywheel energy storage, fuzzy, optimization, stress analysis
Procedia PDF Downloads 34720487 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers
Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho
Abstract:
In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modeling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.Keywords: plate heat exchanger, optimization, modeling, simulation
Procedia PDF Downloads 51820486 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company
Authors: Lokendra Kumar Devangan, Ajay Mishra
Abstract:
This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.Keywords: production planning, mixed integer optimization, network model, network optimization
Procedia PDF Downloads 6720485 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines
Authors: Liubov Magerramova, Mikhail Petrov, Vladimir Isakov, Liana Shcherbinina, Suren Gukasyan, Daniil Povalyukhin, Olga Klimova-Korsmik, Darya Volosevich
Abstract:
Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.Keywords: additive technologies, gas turbine engines, topological optimization, synthesis process
Procedia PDF Downloads 11620484 Improvement of the Reliability and the Availability of a Production System
Authors: Lakhoua Najeh
Abstract:
Aims of the work: The aim of this paper is to improve the reliability and the availability of a Packer production line of cigarettes based on two methods: The SADT method (Structured Analysis Design Technique) and the FMECA approach (Failure Mode Effects and Critically Analysis). The first method enables us to describe the functionality of the Packer production line of cigarettes and the second method enables us to establish an FMECA analysis. Methods: The methodology adopted in order to contribute to the improvement of the reliability and the availability of a Packer production line of cigarettes has been proposed in this paper, and it is based on the use of Structured Analysis Design Technique (SADT) and Failure mode, effects, and criticality analysis (FMECA) methods. This methodology consists of using a diagnosis of the existing of all of the equipment of a production line of a factory in order to determine the most critical machine. In fact, we use, on the one hand, a functional analysis based on the SADT method of the production line and on the other hand, a diagnosis and classification of mechanical and electrical failures of the line production by their criticality analysis based on the FMECA approach. Results: Based on the methodology adopted in this paper, the results are the creation and the launch of a preventive maintenance plan. They contain the different elements of a Packer production line of cigarettes; the list of the intervention preventive activities and their period of realization. Conclusion: The diagnosis of the existing state helped us to found that the machine of cigarettes used in the Packer production line of cigarettes is the most critical machine in the factory. Then this enables us in the one hand, to describe the functionality of the production line of cigarettes by SADT method and on the other hand, to study the FMECA machine in order to improve the availability and the performance of this machine.Keywords: production system, diagnosis, SADT method, FMECA method
Procedia PDF Downloads 14320483 A Robust PID Load Frequency Controller of Interconnected Power System Using SDO Software
Authors: Pasala Gopi, P. Linga Reddy
Abstract:
The response of the load frequency control problem in an multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load. This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively. The response of the load frequency control problem in an multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variationsKeywords: load frequency control, pid controller tuning, step load perturbations, inter connected power system
Procedia PDF Downloads 64420482 Model Predictive Control of Three Phase Inverter for PV Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink
Procedia PDF Downloads 59620481 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller
Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil
Abstract:
The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability
Procedia PDF Downloads 51620480 Real-time Rate and Rhythms Feedback Control System in Patients with Atrial Fibrillation
Authors: Mohammad A. Obeidat, Ayman M. Mansour
Abstract:
Capturing the dynamic behavior of the heart to improve control performance, enhance robustness, and support diagnosis is very important in establishing real time models for the heart. Control Techniques and strategies have been utilized to improve system costs, reliability, and estimation accuracy for different types of systems such as biomedical, industrial, and other systems that required tuning input/output relation and/or monitoring. Simulations are performed to illustrate potential applications of the technology. In this research, a new control technology scheme is used to enhance the performance of the Af system and meet the design specifications.Keywords: atrial fibrillation, dynamic behavior, closed loop, signal, filter
Procedia PDF Downloads 42120479 Multiple Winding Multiphase Motor for Electric Drive System
Authors: Zhao Tianxu, Cui Shumei
Abstract:
This paper proposes a novel multiphase motor structure. The armature winding consists of several independent multiphase windings that have different rating rotate speed and power. Compared to conventional motor, the novel motor structure has more operation mode and fault tolerance mode, which makes it adapt to high-reliability requirement situation such as electric vehicle, aircraft and ship. Performance of novel motor structure varies with winding match. In order to find optimum control strategy, motor torque character, efficiency performance and fault tolerance ability under different operation mode are analyzed in this paper, and torque distribution strategy for efficiency optimization is proposed. Simulation analyze is taken and the result shows that proposed structure has the same efficiency on heavy load and higher efficiency on light load operation points, which expands high efficiency area of motor and cruise range of vehicle. The proposed structure can improve motor highest speed.Keywords: multiphase motor, armature winding match, torque distribution strategy, efficiency
Procedia PDF Downloads 36020478 Developing a Multidimensional Adjustment Scale
Authors: Nadereh Sohrabi Shegefti, Siamak Samani
Abstract:
Level of adjustment is the first index to check mental health. The aim of this study was developing a valid and reliable Multidimensional Adjustment Scale (MAS). The sample consisted of 150 college students. Multidimensional adjustment scale and Depression, Anxiety, and stress scale (DASS) were used in this study. Principle factor analysis, Pearson correlation coefficient, and Cornbach's Alpha were used to check the validity and reliability of the MAS. Principle component factor analysis showed a 5 factor solution for the MAS. Alpha coefficients for the MAS sub scales were ranged between .69 to .83. Test-retest reliability for MAS was .88 and the mean of sub scales- total score correlation was .88. All these indexes revealed an acceptable reliability and validity for the MAS. The MAS is a short assessment instrument with good acceptable psychometric properties to use in clinical filed.Keywords: psychological adjustment, psychometric properties, validity, Pearson correlation
Procedia PDF Downloads 63420477 Spatial Optimization of Riverfront Street Based on Inclusive Design
Authors: Lianxue Shi
Abstract:
Riverfront street has the dual characteristics of street space and waterfront space, which is not only a vital place for residents to travel and communicate but also a high-frequency space for people's leisure and entertainment. However, under the development of cities and towns pursuing efficiency, riverfront streets appear to have a variety of problems, such as a lack of multifunctionality, insufficient facilities, and loss of characteristics, which fail to meet the needs of various groups of people, and their inclusiveness is facing a great challenge. It is, therefore, evident that the optimization of riverfront street space from an inclusivity perspective is important to the establishment of a human-centered, high-quality urban space. Therefore, this article starts by exploring the interactive relationship between inclusive design and street space. Based on the analysis of the characteristics of the riverfront street space and people's needs, it proposes the four inclusive design orientations of natural inclusion, group inclusion, spatial inclusion, and social inclusion. It then constructs a design framework for the inclusive optimization of riverfront street space, aiming to create streets that are “safe and accessible, diverse and shared, distinctive and friendly, green and sustainable”. Riverfront streets in Wansheng District, Chongqing, are selected as a practice case, and specific strategies are put forward in four aspects: the creation of an accessible slow-traffic system, the provision of diversified functional services, the reshaping of emotional bonds and the integration of ecological spaces.Keywords: inclusiveness design, riverfront street, spatial optimization, street spaces
Procedia PDF Downloads 3420476 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate
Authors: Andrey A. Chernousov, Ben Y. B. Chan
Abstract:
The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.Keywords: thermal performance, phase change material, energy efficiency, PCM optimization
Procedia PDF Downloads 40220475 Reliability Analysis of Soil Liquefaction Based on Standard Penetration: A Case Study in Babol City
Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty
Abstract:
There are more probabilistic and deterministic liquefaction evaluation procedures in order to judge whether liquefaction will occur or not. A review of this approach reveals that there is a need for a comprehensive procedure that accounts for different sources of uncertainty in liquefaction evaluation. In fact, for the same set of input parameters, different methods provide different factors of safety and/or probabilities of liquefaction. To account for the different uncertainties, including both the model and measurement uncertainties, reliability analysis is necessary. This paper has obtained information from Standard Penetration Test (SPT) and some empirical approaches such as: Seed et al, Highway bridge of Japan approach to soil liquefaction, The Overseas Coastal Area Development Institute of Japan (OCDI) and reliability method to studying potential of liquefaction in soil of Babol city in the north of Iran are compared. Evaluation potential of liquefaction in soil of Babol city is an important issue since the soil of some area contains sand, seismic area, increasing level of underground waters and consequently saturation of soil; therefore, one of the most important goals of this paper is to gain suitable recognition of liquefaction potential and find the most appropriate procedure of evaluation liquefaction potential to decrease related damages.Keywords: reliability analysis, liquefaction, Babol, civil, construction and geological engineering
Procedia PDF Downloads 49820474 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method
Authors: J. Satya Eswari, Ch. Venkateswarlu
Abstract:
The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization
Procedia PDF Downloads 40920473 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique
Authors: Guettal Djaouida, Ziadi Abdelkader
Abstract:
In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm
Procedia PDF Downloads 503