Search results for: statistical techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10349

Search results for: statistical techniques

9779 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk

Procedia PDF Downloads 434
9778 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 330
9777 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 290
9776 A Survey of Feature-Based Steganalysis for JPEG Images

Authors: Syeda Mainaaz Unnisa, Deepa Suresh

Abstract:

Due to the increase in usage of public domain channels, such as the internet, and communication technology, there is a concern about the protection of intellectual property and security threats. This interest has led to growth in researching and implementing techniques for information hiding. Steganography is the art and science of hiding information in a private manner such that its existence cannot be recognized. Communication using steganographic techniques makes not only the secret message but also the presence of hidden communication, invisible. Steganalysis is the art of detecting the presence of this hidden communication. Parallel to steganography, steganalysis is also gaining prominence, since the detection of hidden messages can prevent catastrophic security incidents from occurring. Steganalysis can also be incredibly helpful in identifying and revealing holes with the current steganographic techniques, which makes them vulnerable to attacks. Through the formulation of new effective steganalysis methods, further research to improve the resistance of tested steganography techniques can be developed. Feature-based steganalysis method for JPEG images calculates the features of an image using the L1 norm of the difference between a stego image and the calibrated version of the image. This calibration can help retrieve some of the parameters of the cover image, revealing the variations between the cover and stego image and enabling a more accurate detection. Applying this method to various steganographic schemes, experimental results were compared and evaluated to derive conclusions and principles for more protected JPEG steganography.

Keywords: cover image, feature-based steganalysis, information hiding, steganalysis, steganography

Procedia PDF Downloads 217
9775 Multi-Objective Optimization (Pareto Sets) and Multi-Response Optimization (Desirability Function) of Microencapsulation of Emamectin

Authors: Victoria Molina, Wendy Franco, Sergio Benavides, José M. Troncoso, Ricardo Luna, Jose R. PéRez-Correa

Abstract:

Emamectin Benzoate (EB) is a crystal antiparasitic that belongs to the avermectin family. It is one of the most common treatments used in Chile to control Caligus rogercresseyi in Atlantic salmon. However, the sea lice acquired resistance to EB when it is exposed at sublethal EB doses. The low solubility rate of EB and its degradation at the acidic pH in the fish digestive tract are the causes of the slow absorption of EB in the intestine. To protect EB from degradation and enhance its absorption, specific microencapsulation technologies must be developed. Amorphous Solid Dispersion techniques such as Spray Drying (SD) and Ionic Gelation (IG) seem adequate for this purpose. Recently, Soluplus® (SOL) has been used to increase the solubility rate of several drugs with similar characteristics than EB. In addition, alginate (ALG) is a widely used polymer in IG for biomedical applications. Regardless of the encapsulation technique, the quality of the obtained microparticles is evaluated with the following responses, yield (Y%), encapsulation efficiency (EE%) and loading capacity (LC%). In addition, it is important to know the percentage of EB released from the microparticles in gastric (GD%) and intestinal (ID%) digestions. In this work, we microencapsulated EB with SOL (EB-SD) and with ALG (EB-IG) using SD and IG, respectively. Quality microencapsulation responses and in vitro gastric and intestinal digestions at pH 3.35 and 7.8, respectively, were obtained. A central composite design was used to find the optimum microencapsulation variables (amount of EB, amount of polymer and feed flow). In each formulation, the behavior of these variables was predicted with statistical models. Then, the response surface methodology was used to find the best combination of the factors that allowed a lower EB release in gastric conditions, while permitting a major release at intestinal digestion. Two approaches were used to determine this. The desirability approach (DA) and multi-objective optimization (MOO) with multi-criteria decision making (MCDM). Both microencapsulation techniques allowed to maintain the integrity of EB in acid pH, given the small amount of EB released in gastric medium, while EB-IG microparticles showed greater EB release at intestinal digestion. For EB-SD, optimal conditions obtained with MOO plus MCDM yielded a good compromise among the microencapsulation responses. In addition, using these conditions, it is possible to reduce microparticles costs due to the reduction of 60% of BE regard the optimal BE proposed by (DA). For EB-GI, the optimization techniques used (DA and MOO) yielded solutions with different advantages and limitations. Applying DA costs can be reduced 21%, while Y, GD and ID showed 9.5%, 84.8% and 2.6% lower values than the best condition. In turn, MOO yielded better microencapsulation responses, but at a higher cost. Overall, EB-SD with operating conditions selected by MOO seems the best option, since a good compromise between costs and encapsulation responses was obtained.

Keywords: microencapsulation, multiple decision-making criteria, multi-objective optimization, Soluplus®

Procedia PDF Downloads 131
9774 Video Summarization: Techniques and Applications

Authors: Zaynab El Khattabi, Youness Tabii, Abdelhamid Benkaddour

Abstract:

Nowadays, huge amount of multimedia repositories make the browsing, retrieval and delivery of video contents very slow and even difficult tasks. Video summarization has been proposed to improve faster browsing of large video collections and more efficient content indexing and access. In this paper, we focus on approaches to video summarization. The video summaries can be generated in many different forms. However, two fundamentals ways to generate summaries are static and dynamic. We present different techniques for each mode in the literature and describe some features used for generating video summaries. We conclude with perspective for further research.

Keywords: video summarization, static summarization, video skimming, semantic features

Procedia PDF Downloads 404
9773 Investigating Real Ship Accidents with Descriptive Analysis in Turkey

Authors: İsmail Karaca, Ömer Söner

Abstract:

The use of advanced methods has been increasing day by day in the maritime sector, which is one of the sectors least affected by the COVID-19 pandemic. It is aimed to minimize accidents, especially by using advanced methods in the investigation of marine accidents. This research aimed to conduct an exploratory statistical analysis of particular ship accidents in the Transport Safety Investigation Center of Turkey database. 46 ship accidents, which occurred between 2010-2018, have been selected from the database. In addition to the availability of a reliable and comprehensive database, taking advantage of the robust statistical models for investigation is critical to improving the safety of ships. Thus, descriptive analysis has been used in the research to identify causes and conditional factors related to different types of ship accidents. The research outcomes underline the fact that environmental factors and day and night ratio have great influence on ship safety.

Keywords: descriptive analysis, maritime industry, maritime safety, ship accident statistics

Procedia PDF Downloads 139
9772 Some Statistical Properties of Residual Sea Level along the Coast of Vietnam

Authors: Doan Van Chinh, Bui Thi Kien Trinh

Abstract:

This paper outlines some statistical properties of residual sea level (RSL) at six representative tidal stations located along the coast of Vietnam. It was found that the positive RSL varied on average between 9.82 and 19.96cm and the negative RSL varied on average between -16.62 and -9.02cm. The maximum positive RSL varied on average between 102.8 and 265.5cm with the maximum negative RSL varied on average between -250.4 and -66.4cm. It is seen that the biggest positive RSL ere appeared in the summer months and the biggest negative RSL ere appeared in the winter months. The cumulative frequency of RSL less than 50 cm occurred between 95 and 99% of the times while the frequency of RSL higher than 100 cm accounted for between 0.01 and 0.2%. It also was found that the cumulative frequency of duration of RSL less than 24 hours occurred between 90 and 99% while the frequency of duration longer than 72 hours was in the order of 0.1 and 1%.

Keywords: coast of Vietnam, residual sea level, residual water, surge, cumulative frequency

Procedia PDF Downloads 291
9771 Controlling the Process of a Chicken Dressing Plant through Statistical Process Control

Authors: Jasper Kevin C. Dionisio, Denise Mae M. Unsay

Abstract:

In a manufacturing firm, controlling the process ensures that optimum efficiency, productivity, and quality in an organization are achieved. An operation with no standardized procedure yields a poor productivity, inefficiency, and an out of control process. This study focuses on controlling the small intestine processing of a chicken dressing plant through the use of Statistical Process Control (SPC). Since the operation does not employ a standard procedure and does not have an established standard time, the process through the assessment of the observed time of the overall operation of small intestine processing, through the use of X-Bar R Control Chart, is found to be out of control. In the solution of this problem, the researchers conduct a motion and time study aiming to establish a standard procedure for the operation. The normal operator was picked through the use of Westinghouse Rating System. Instead of utilizing the traditional motion and time study, the researchers used the X-Bar R Control Chart in determining the process average of the process that is used for establishing the standard time. The observed time of the normal operator was noted and plotted to the X-Bar R Control Chart. Out of control points that are due to assignable cause were removed and the process average, or the average time the normal operator conducted the process, which was already in control and free form any outliers, was obtained. The process average was then used in determining the standard time of small intestine processing. As a recommendation, the researchers suggest the implementation of the standard time established which is with consonance to the standard procedure which was adopted from the normal operator. With that recommendation, the whole operation will induce a 45.54 % increase in their productivity.

Keywords: motion and time study, process controlling, statistical process control, X-Bar R Control chart

Procedia PDF Downloads 217
9770 A Survey on Types of Noises and De-Noising Techniques

Authors: Amandeep Kaur

Abstract:

Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.

Keywords: de-noising techniques, edges, image, image processing

Procedia PDF Downloads 336
9769 Smokeless Tobacco Oral Manifestation and Inflammatory Biomarkers in Saliva

Authors: Sintija Miļuna, Ričards Melderis, Loreta Briuka, Dagnija Rostoka, Ingus Skadiņš, Juta Kroiča

Abstract:

Objectives Smokeless tobacco products in Latvia become more available and favorable to young adults, especially students and athletes like hockey and floorball players. The aim of the research was to detect visual mucosal changes in the oral cavity in smokeless tobacco users and to evaluate pro - inflammatory and anti - inflammatory cytokine (IL-6, IL-1, IL-8, TNF Alpha) levels in saliva from smokeless tobacco users. Methods A smokeless tobacco group (n=10) and a control group (non-tobacco users) (n=10) were intraorally examined for oral lesions and 5 ml of saliva were collected. Saliva was analysed for Il-6, IL-1, Il-8, TNF Alpha using ELISA Sigma-Aldrich. For statistical analysis IBM Statistics 27 was used (Mann - Whitney U test, Spearman’s Rank Correlation coefficient). This research was approved by the Ethics Committee of Rīga Stradiņš University No.22/28.01.2016. This research has been developed with financing from the European Social Fund and Latvian state budget within the project no. 8.2.2.0/20/I/004 “Support for involving doctoral students in scientific research and studies” at Rīga Stradiņš University. Results IL-1, IL-6, IL-8, TNF Alpha levels were higher in the smokeless tobacco group (IL-1 83.34 pg/ml vs. 74.26 pg/ml; IL-6 195.10 pg/ml vs. 6.16 pg/ml; IL-8 736.34 pg/ml vs. 285.26 pg/ml; TNF Alpha 489.27 pg/ml vs. 200.9 pg/ml), but statistically there is no difference between control group and smokeless tobacco group (IL1 p=0.190, IL6 p=0.052, IL8 p=0.165, TNF alpha p=0.089). There was statistical correlation between IL1 and IL6 (p=0.023), IL6 and TNF alpha (p=0.028), IL8 and IL6 (p=0.005). Conclusions White localized lesions were detected in places where smokeless tobacco users placed sachets. There is a statistical correlation between IL6 and IL1 levels, IL6 and TNF alpha levels, IL8 and IL6 levels in saliva. There are no differences in the inflammatory cytokine levels between control group and smokeless tobacco group.

Keywords: smokeless tobacco, Snus, inflammatory biomarkers, oral lesions, oral pathology

Procedia PDF Downloads 140
9768 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 592
9767 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values

Authors: Burçin Saltık, Levent Genç

Abstract:

In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.

Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice

Procedia PDF Downloads 228
9766 The Impact of Environmental Dynamism on Strategic Outsourcing Success

Authors: Mohamad Ghozali Hassan, Abdul Aziz Othman, Mohd Azril Ismail

Abstract:

Adapting quickly to environmental dynamism is essential for an organization to develop outsourcing strategic and management in order to sustain competitive advantage. This research used the Partial Least Squares Structural Equation Modeling (PLS-SEM) tool to investigate the factors of environmental dynamism impact on the strategic outsourcing success among electrical and electronic manufacturing industries in outsourcing management. Statistical results confirm that the inclusion of customer demand, technological change, and competition level as a new combination concept of environmental dynamism, has positive effects on outsourcing success. Additionally, this research demonstrates the acceptability of PLS-SEM as a statistical analysis to furnish a better understanding of environmental dynamism in outsourcing management in Malaysia. A practical finding contributes to academics and practitioners in the field of outsourcing management.

Keywords: environmental dynamism, customer demand, technological change, competition level, outsourcing success

Procedia PDF Downloads 503
9765 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production

Authors: Deepak Singh, Rail Kuliev

Abstract:

This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.

Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring

Procedia PDF Downloads 87
9764 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images

Authors: Suruchi

Abstract:

This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.

Keywords: pollution, GIS, FOG, satellie, atmospheric deposition

Procedia PDF Downloads 23
9763 Childhood Trauma and Identity in Adulthood

Authors: Aakriti Lohiya

Abstract:

This study examines the commonly recognised childhood trauma that can have a significant and enduring effect on a person's cognitive and psychological health. The purpose of this study was to look at the intricate interactions that exist between negative self-identity, cognitive distortions, and early trauma. For the study, a sample of (200 women were taken, who were socially active) was gathered. Standardised measures were utilised to evaluate the participants' experiences of childhood trauma, and validated psychological tools were employed to assess negative self-identity and cognitive distortions. The links and predicting correlations between childhood trauma, negative self-identity, and cognitive distortions were investigated using statistical techniques, such as correlation analysis and multiple regression modelling. The results demonstrated that there is no correlation between the degree of early trauma and the emergence of a negative self-identity and cognitive distortions. It examines whether cognitive distortion and events in childhood have any relationship with negative self-identity using various scales. Participants completed the Childhood Trauma Questionnaire, which assessed retrospective accounts of childhood trauma; the Cognitive Distortions Scale, which measured internal attributions and perceptions of controllability; and the attachment style questionnaire, which assessed the attachment attribute of their daily life, which will lead negative. The implications for therapy were also considered.

Keywords: cognitive distortion, therapy, childhood trauma, attachment

Procedia PDF Downloads 82
9762 Statistical Models and Time Series Forecasting on Crime Data in Nepal

Authors: Dila Ram Bhandari

Abstract:

Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.

Keywords: time series analysis, forecasting, ARIMA, machine learning

Procedia PDF Downloads 166
9761 A Comparison between Different Segmentation Techniques Used in Medical Imaging

Authors: Ibtihal D. Mustafa, Mawia A. Hassan

Abstract:

Tumor segmentation from MRI image is important part of medical images experts. This is particularly a challenging task because of the high assorting appearance of tumor tissue among different patients. MRI images are advance of medical imaging because it is give richer information about human soft tissue. There are different segmentation techniques to detect MRI brain tumor. In this paper, different procedure segmentation methods are used to segment brain tumors and compare the result of segmentations by using correlation and structural similarity index (SSIM) to analysis and see the best technique that could be applied to MRI image.

Keywords: MRI, segmentation, correlation, structural similarity

Procedia PDF Downloads 410
9760 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 446
9759 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011

Authors: S. Abera, T. Gidey, W. Terefe

Abstract:

Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.

Keywords: data mining, HIV, testing, ethiopia

Procedia PDF Downloads 499
9758 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 84
9757 User Modeling from the Perspective of Improvement in Search Results: A Survey of the State of the Art

Authors: Samira Karimi-Mansoub, Rahem Abri

Abstract:

Currently, users expect high quality and personalized information from search results. To satisfy user’s needs, personalized approaches to web search have been proposed. These approaches can provide the most appropriate answer for user’s needs by using user context and incorporating information about query provided by combining search technologies. To carry out personalized web search, there is a need to make different techniques on whole of user search process. There are the number of possible deployment of personalized approaches such as personalized web search, personalized recommendation, personalized summarization and filtering systems and etc. but the common feature of all approaches in various domains is that user modeling is utilized to provide personalized information from the Web. So the most important work in personalized approaches is user model mining. User modeling applications and technologies can be used in various domains depending on how the user collected information may be extracted. In addition to, the used techniques to create user model is also different in each of these applications. Since in the previous studies, there was not a complete survey in this field, our purpose is to present a survey on applications and techniques of user modeling from the viewpoint of improvement in search results by considering the existing literature and researches.

Keywords: filtering systems, personalized web search, user modeling, user search behavior

Procedia PDF Downloads 280
9756 Body Fat Assessment Between Inbody 770 and Skinfold Measurement Techniques in Older Males and Females

Authors: Rafael F. Escamilla, Kyle Yamashiro, Robert Asuncion, Daniel Maclean, Irwin S. Thompson, Michael McKeough

Abstract:

The purpose was to compare two body fat (BF) measurement techniques, Inbody 770 (IB770) and skinfold (SF), in healthy older (60-88 years old) males and females. Fifty healthy males (n = 25) and females (n = 25) had their BF assessed using two different measurement techniques: 1)Bioelectrical impedance Inbody 770 (IB770); and 2) Skinfold (SF). Paired t-tests (p < 0.05) were employed to assess differences between IB770 and SF for males and females, while an unpaired t-test was employed (p < 0.05) to assess differences in %BF between IB770 and SF for males compared to differences in %BF between IB770 and SF for females. In older males, the mean (±SD) percent BF was significantly less (p < 0.001) in SF (19.8% ± 4.1%) compared to IB770 (25.3% ± 6.4%). Similarly, in older females, the mean (±SD) percent BF was significantly less (p < 0.001) in SF (26.1% ± 4.0%) compared to IB770 (35.7% ± 5.5%). The difference in %BF between IB770 and SF was significantly greater (p < 0.001) in females (9.5%±3.9%) compared to men (5.5%±3.7%). While both IB770 and SF can easily and quickly assess %BF in clinical settings, %BF was underestimated using SF in both older males and older females. These findings help identify older males and females who may be at risk of cardiometabolic disease secondary to having excessive %BF.

Keywords: percent body fat, chronic diseases, cardiometabolic disease, Geriatrics

Procedia PDF Downloads 2
9755 The Effect of Acute Creatine Supplementation on Physiological Variables of Continuous and Intermittent Soccer Activities of Men Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The aim of this study was studying the effect of acute creatine supplementation on physiological variables of continuous and intermittent soccer activities of men soccer players. 32 soccer players from Tarbiat Moalem University aged (22/3+-1/6) volunteered for this research and were divided into two groups randomly. Both experimental and control groups after 6 days taking supplementation were tested. For measuring height and weight meter and balance were used. Questionnaire for health background, lactate electro, heart beat measuring polar electro, continuous and intermittent training program and time recorder were used for data collection. For data analysis descriptive statistical techniques, two-way ANOVA and F test were used. The result of this study showed increased significantly in heart rate in control group. For control group heart beat was (71/6 +- 3/5) and for experimental group it was (75/3 +- 4/9). No significant differences were observed in players weight after taking creatine.

Keywords: heartbeat, lactate Blood, creatine, soccer players of Tarbiat Moalem University

Procedia PDF Downloads 382
9754 Development of Polymeric Fluorescence Sensor for the Determination of Bisphenol-A

Authors: Neşe Taşci, Soner Çubuk, Ece Kök Yetimoğlu, M. Vezir Kahraman

Abstract:

Bisphenol-A (BPA), 2,2-bis(4-hydroxyphenly)propane, is one of the highest usage volume chemicals in the world. Studies showed that BPA maybe has negative effects on the central nervous system, immune and endocrine systems. Several of analytical methods for the analysis of BPA have been reported including electrochemical processes, chemical oxidation, ozonization, spectrophotometric, chromatographic techniques. Compared with other conventional analytical techniques, optic sensors are reliable, providing quick results, low cost, easy to use, stands out as a much more advantageous method because of the high precision and sensitivity. In this work, a new photocured polymeric fluorescence sensor was prepared and characterized for Bisphenol-A (BPA) analysis. Characterization of the membrane was carried out by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM) techniques. The response characteristics of the sensor including dynamic range, pH effect and response time were systematically investigated. Acknowledgment: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 115Y469.

Keywords: bisphenol-a, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 236
9753 Statistical Optimization and Production of Rhamnolipid by P. aeruginosa PAO1 Using Prickly Pear Peel as a Carbon Source

Authors: Mostafa M. Abo Elsoud, Heba I. Elkhouly, Nagwa M. Sidkey

Abstract:

Production of rhamnolipids by Pseudomonas aeruginosa has attracted a growing interest during the last few decades due to its high productivity compared with other microorganisms. In the current work, rhamnolipids production by P. aeruginosa PAO1 was statistically modeled using Taguchi orthogonal array, numerically optimized and validated. Prickly Pear Peel (Opuntia ficus-indica) has been used as a carbon source for production of rhamnolipid. Finally, the optimum conditions for rhamnolipid production were applied in 5L working volume bioreactors at different aerations, agitation and controlled pH for maximum rhamnolipid production. In addition, kinetic studies of rhamnolipids production have been reported. At the end of the batch bioreactor optimization process, rhamnolipids production by P. aeruginosa PAO1 has reached the worldwide levels and can be applied for its industrial production.

Keywords: rhamnolipids, pseudomonas aeruginosa, statistical optimization, tagushi, opuntia ficus-indica

Procedia PDF Downloads 182
9752 Factors Influencing the Enjoyment and Performance of Students in Statistics Service Courses: A Mixed-Method Study

Authors: Wilma Coetzee

Abstract:

Statistics lecturers experience that many students who are taking a service course in statistics do not like statistics. Students in these courses tend to struggle and do not perform well. This research takes a look at the student’s perspective, with the aim to determine how to change the teaching of statistics so that students will enjoy it more and perform better. Questionnaires were used to determine the perspectives of first year service statistics students at a South African university. Factors addressed included motivation to study, attitude toward statistics, statistical anxiety, mathematical abilities and tendency to procrastinate. Logistic regression was used to determine what contributes to students performing badly in statistics. The results show that the factors that contribute the most to students performing badly are: statistical anxiety, not being motivated and having had mathematical literacy instead of mathematics in secondary school. Two open ended questions were included in the questionnaire: 'I will enjoy statistics more if…' and 'I will perform better in statistics if…'. The answers to these questions were analyzed using qualitative methods. Frequent themes were identified for each of the questions. A simulation study incorporating bootstrapping was done to determine the saturation of the themes. The majority of the students indicated that they would perform better in statistics if they studied more, managed their time better, had a flare for mathematics and if the lecturer was able to explain difficult concepts better. They also want more active learning. To ensure that students enjoy statistics more, they want an active learning experience. They want fun activities, more interaction with the lecturer and with one another, more computer based problems, and more challenges. They want a better understanding of the subject, want to understand the relevance of statistics to their future career and want excellent lecturers. These findings can be used to direct the improvement of the tuition of statistics.

Keywords: active learning, performance in statistics, statistical anxiety, statistics education

Procedia PDF Downloads 148
9751 Improving Cost and Time Control of Construction Projects Management Practices in Nigeria

Authors: Mustapha Yakubu, Ahmed Usman, Hashim Ambursa

Abstract:

This paper presents the findings of a research which sought to investigate techniques used to improve cost and time control of construction projects management practice in Nigeria. However, there is limited research on issues surrounding the practical usage of these techniques. Data were collected through a questionnaire distributed to construction experts through a survey conducted on the 100 construction organisations and 50 construction consultancy firms in the Nigeria aimed at identifying common project cost and time control practices and factors inhibiting effective project control in practice. The study reveals that despite the vast application of control techniques a high proportion of respondents still experienced cost and time overruns on a significant proportion of their projects. Analysis of the survey results concluded that more effort should be geared at the management of the identified top project control inhibiting factors. This paper has outlined some measures for mitigating these inhibiting factors so that the outcome of project time and cost control can be improved in practice.

Keywords: construction project, cost control, Nigeria, time control

Procedia PDF Downloads 314
9750 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk in High-Speed Circuits

Authors: Loubna Tani, Nabih Elouzzani

Abstract:

Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in high-speed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.

Keywords: multiconductor transmission line, crosstalk, finite difference time domain (FDTD), printed-circuit board (PCB), rise time, statistical analysis

Procedia PDF Downloads 434