Search results for: speech recognition library
2365 Haiti and Power Symbolic: An Analysis Understanding of the Impact of the Presidential Political Speeches
Authors: Marc Arthur Bien Aimé, Julio da Silveira Moreira
Abstract:
This study examines the political speech in Haiti over the course of the decade 2011-2021, focusing on the speeches of the presidents Michel J. Martelly and Jovenel Moïse and their impacts on their awareness collective. In using a qualitative approach, we have analyzed the speech of the president pronounced in response to the political instability of countries, as well as interviews with a group of 20 Haitians living in Port- Au-Prince. Our results put in evidence their complex relationship between politics, awareness collective, and the influence of the powers imperialists. We show that the situation in Haiti's disastrous social and political situation is driven by personal political interests and the absence of a state political project. Moreover, the speeches of the president’s analysis are meaningless, transforming concepts such as social progress and justice in simple words. This political rhetoric contributes to the domination symbolic of the population of Haitian. This study is also linked to the theme “Constitutions, processes democratic and critical of the state in Latin America,” emphasizing the importance of analysis of political speech to understand the complexities of the democratic process and criticism of the State in their Latin American region. We suggest future research to deepen our understanding of these political dynamics and their impact on public policies and developments of the constitutions throughout Latin America.Keywords: political discourse, conscience collective, inequality social, democratic processes, constitutions, Haiti
Procedia PDF Downloads 612364 Phonological Variation in the Speech of Grade 1 Teachers in Select Public Elementary Schools in the Philippines
Authors: M. Leonora D. Guerrero
Abstract:
The study attempted to uncover the most and least frequent phonological variation evident in the speech patterns of grade 1 teachers in select public elementary schools in the Philippines. It also determined the lectal description of the participants based on Tayao’s consonant charts for American and Philippine English. Descriptive method was utilized. A total of 24 grade 1 teachers participated in the study. The instrument used was word list. Each column in the word list is represented by words with the target consonant phonemes: labiodental fricatives f/ and /v/ and lingua-alveolar fricative /z/. These phonemes were in the initial, medial, and final positions, respectively. Findings of the study revealed that the most frequent variation happened when the participants read words with /z/ in the final position while the least frequent variation happened when the participants read words with /z/ in the initial position. The study likewise proved that the grade 1 teachers exhibited the segmental features of both the mesolect and basilect. Based on these results, it is suggested that teachers of English in the Philippines must aspire to manifest the features of the mesolect, if not, the acrolect since it is expected of the academicians not to be displaying the phonological features of the acrolects since this variety is only used by the 'uneducated.' This is especially so with grade 1 teachers who are often mimicked by their students who classify their speech as the 'standard.'Keywords: consonant phonemes, lectal description, Philippine English, phonological variation
Procedia PDF Downloads 2132363 Face Recognition Using Eigen Faces Algorithm
Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale
Abstract:
Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.Keywords: face detection, face recognition, eigen faces, algorithm
Procedia PDF Downloads 3612362 Pragmatic Competence of Jordanian EFL Learners
Authors: Dina Mahmoud Hammouri
Abstract:
The study investigates the Jordanian EFL learners’ pragmatic competence through their production of the speech acts of responding to requests, making suggestions, making threats and expressing farewells. The sample of the study consists of 130 Jordanian EFL learners and native speakers. 2600 responses were collected through a Discourse Completion Test (DCT). The findings of the study revealed that the tested students showed similarities and differences in performing the strategies of four speech acts. Differences in the students’ performances led to pragmatic failure instances. The pragmatic failure committed by students refers to a lack of linguistic competence (i.e., pragmalinguistic failure), sociocultural differences and pragmatic transfer (i.e., sociopragmatic failure). EFL learners employed many mechanisms to maintain their communicative competence; the analysis of the test on speech acts showed learners’ tendency towards using particular strategies, resorting to modify strategies and relating them to their grammatical competence, prefabrication, performing long forms, buffing and transfer. The results were also suggestive of the learners’ lack of pragmalinguistic and sociopragmatic knowledge. The implications of this study are for language teachers to teach interlanguage pragmatics explicitly in EFL contexts to draw learners’ attention to both pragmalinguistic and sociopragmatic features, pay more attention to these areas and allocate more time and practice to solve learners’ problems in these areas. The implication of this study is also for pedagogical material designers to provide sufficient and well-organized pragmatic input.Keywords: pragmatic failure, Jordanian EFL learner, sociopragmatic competence, pragmalinguistic competence
Procedia PDF Downloads 802361 Problems in English into Thai Translation Normally Found in Thai University Students
Authors: Anochao Phetcharat
Abstract:
This research aims to study problems of translation basic knowledge, particularly from English into Thai. The researcher used 38 2nd-year non-English speaking students of Suratthani Rajabhat University as samples. The samples were required to translate an A4-sized article from English into Thai assigned as a part of BEN0202 Translation for Business, a requirement subject for Business English Department, which was also taught by the researcher. After completion of the translation, numerous problems were found and the research grouped them into 4 major types. The normally occurred problems in English-Thai translation works are the lack of knowledge in terms of parts of speech, word-by-word translation employment, misspellings as well as the poor knowledge in English language structure. However, this research is currently under the process of data analysis and shall be completed by the beginning of August. The researcher, nevertheless, predicts that all the above-mentioned problems, will support the researcher’s hypothesizes, that are; 1) the lack of knowledge in terms of parts of speech causes the mistranslation problem; 2) employing word-by-word translation technique hugely results in the mistranslation problem; 3) misspellings yields the mistranslation problem; and 4) the poor knowledge in English language structure also brings about translation errors. The research also predicts that, of all the aforementioned problems, the following ones are found the most, respectively: the poor knowledge in English language structure, word-by-word translation employment, the lack of knowledge in terms of parts of speech, and misspellings.Keywords: problem, student, Thai, translation
Procedia PDF Downloads 4362360 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses
Authors: El Sayed A. Sharara, A. Tsuji, K. Terada
Abstract:
Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.Keywords: call center agents, fatigue, skin color detection, face recognition
Procedia PDF Downloads 2932359 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 1052358 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification
Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.
Abstract:
Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet
Procedia PDF Downloads 742357 Extracting Actions with Improved Part of Speech Tagging for Social Networking Texts
Authors: Yassine Jamoussi, Ameni Youssfi, Henda Ben Ghezala
Abstract:
With the growing interest in social networking, the interaction of social actors evolved to a source of knowledge in which it becomes possible to perform context aware-reasoning. The information extraction from social networking especially Twitter and Facebook is one of the problems in this area. To extract text from social networking, we need several lexical features and large scale word clustering. We attempt to expand existing tokenizer and to develop our own tagger in order to support the incorrect words currently in existence in Facebook and Twitter. Our goal in this work is to benefit from the lexical features developed for Twitter and online conversational text in previous works, and to develop an extraction model for constructing a huge knowledge based on actionsKeywords: social networking, information extraction, part-of-speech tagging, natural language processing
Procedia PDF Downloads 3052356 Freedom of Information and Freedom of Expression
Authors: Amin Pashaye Amiri
Abstract:
Freedom of information, according to which the public has a right to have access to government-held information, is largely considered as a tool for improving transparency and accountability in governments, and as a requirement of self-governance and good governance. So far, more than ninety countries have recognized citizens’ right to have access to public information. This recognition often took place through the adoption of an act referred to as “freedom of information act”, “access to public records act”, and so on. A freedom of information act typically imposes a positive obligation on a government to initially and regularly release certain public information, and also obliges it to provide individuals with information they request. Such an act usually allows governmental bodies to withhold information only when it falls within a limited number of exemptions enumerated in the act such as exemptions for protecting privacy of individuals and protecting national security. Some steps have been taken at the national and international level towards the recognition of freedom of information as a human right. Freedom of information was recognized in a few countries as a part of freedom of expression, and therefore, as a human right. Freedom of information was also recognized by some international bodies as a human right. The Inter-American Court of Human Rights ruled in 2006 that Article 13 of the American Convention on Human Rights, which concerns the human right to freedom of expression, protects the right of all people to request access to government information. The European Court of Human Rights has recently taken a considerable step towards recognizing freedom of information as a human right. However, in spite of the measures that have been taken, public access to government information is not yet widely accepted as an international human right. The paper will consider the degree to which freedom of information has been recognized as a human right, and study the possibility of widespread recognition of such a human right in the future. It will also examine the possible benefits of such recognition for the development of the human right to free expression.Keywords: freedom of information, freedom of expression, human rights, government information
Procedia PDF Downloads 5472355 Formation of an Artificial Cultural and Language Environment When Teaching a Foreign Language in the Material of Original Films
Authors: Konysbek Aksaule
Abstract:
The purpose of this work is to explore new and effective ways of teaching English to students who are studying a foreign language since the timeliness of the problem disclosed in this article is due to the high level of English proficiency that potential specialists must have due to high competition in the context of global globalization. The article presents an analysis of the feasibility and effectiveness of using an authentic feature film in teaching English to students. The methodological basis of the study includes an assessment of the level of students' proficiency in a foreign language, the stage of evaluating the film, and the method of selecting the film for certain categories of students. The study also contains a list of practical tasks that can be applied in the process of viewing and perception of an original feature film in a foreign language, and which are aimed at developing language skills such as speaking and listening. The results of this study proved that teaching English to students through watching an original film is one of the most effective methods because it improves speech perception, speech reproduction ability, and also expands the vocabulary of students and makes their speech fluent. In addition, learning English through watching foreign films has a huge impact on the cultural views and knowledge of students about the country of the language being studied and the world in general. Thus, this study demonstrates the high potential of using authentic feature film in English lessons for pedagogical science and methods of teaching English in general.Keywords: university, education, students, foreign language, feature film
Procedia PDF Downloads 1482354 Preservice EFL Teachers in a Blended Professional Development Program: Learning to Teach Speech Acts
Authors: Mei-Hui Liu
Abstract:
This study examines the effectiveness of a blended professional development program on preservice EFL (English as a foreign language) teachers’ learning to teach speech acts with the advent of Information and Communication Technology, researchers and scholars underscore the significance of integrating online and face-to-face learning opportunities in the teacher education field. Yet, a paucity of evidence has been documented to investigate the extent to which such a blended professional learning model may impact real classroom practice and student learning outcome. This yearlong project involves various stakeholders, including 25 preservice teachers, 5 English professionals, and 45 secondary school students. Multiple data sources collected are surveys, interviews, reflection journals, online discussion messages, artifacts, and discourse completion tests. Relying on the theoretical lenses of Community of Inquiry, data analysis depicts the nature and process of preservice teachers’ professional development in this blended learning community, which triggers and fosters both face-to-face and synchronous/asynchronous online interactions among preservice teachers and English professionals (i.e., university faculty and in-service teachers). Also included is the student learning outcome after preservice teachers put what they learn from the support community into instructional practice. Pedagogical implications and research suggestions are further provided based on the research findings and limitations.Keywords: blended professional development, preservice EFL teachers, speech act instruction, student learning outcome
Procedia PDF Downloads 2252353 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 1862352 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1012351 Research Development on the Role of Libraries and Librarians during COVID-19: A Scientometric Study
Authors: Saeed Ullah Jan, Muhammad Zahid
Abstract:
Purpose of study: The main theme of this study is to scrutinize and evaluate the available research on “role of libraries and librarians during COVID-19”. Design/Methodology/Approach: The quantitative research tool Bibliometric was used for the analysis of collected data. All the retrieved articles have been analyzed through MS office, MS Excel. Findings: It was depicted that 48 papers were published in 2021. The researchers from international countries have been published 45 and Pakistani researchers published only3 research papers on the subject cited above. Delimitations of the study: This study is delimited to the research articles published on the role of libraries and librarians during COVID-19. Practical implications: The findings of this study will be guideline for policy makers, higher ups and authorities of various facets of the libraries to revisit their priorities and work for the betterment of effective library culture in the country. Contribution to the knowledge: To the best of author's knowledge, no significant study has been done on this important topic of Library and Information Science research in Pakistan. This study will. add valuable literature the available literary world related to research development on the role of libraries and librarians during COVID-19.Keywords: role of libraries, COVID-19, libraries, librarians, Pakistan
Procedia PDF Downloads 1072350 Library on the Cloud: Universalizing Libraries Based on Virtual Space
Authors: S. Vanaja, P. Panneerselvam, S. Santhanakarthikeyan
Abstract:
Cloud Computing is a latest trend in Libraries. Entering in to cloud services, Librarians can suit the present information handling and they are able to satisfy needs of the knowledge society. Libraries are now in the platform of universalizing all its information to users and they focus towards clouds which gives easiest access to data and application. Cloud computing is a highly scalable platform promising quick access to hardware and software over the internet, in addition to easy management and access by non-expert users. In this paper, we discuss the cloud’s features and its potential applications in the library and information centers, how cloud computing actually works is illustrated in this communication and how it will be implemented. It discuss about what are the needs to move to cloud, process of migration to cloud. In addition to that this paper assessed the practical problems during migration in libraries, advantages of migration process and what are the measures that Libraries should follow during migration in to cloud. This paper highlights the benefits and some concerns regarding data ownership and data security on the cloud computing.Keywords: cloud computing, cloud-service, cloud based-ILS, cloud-providers, discovery service, IaaS, PaaS, SaaS, virtualization, Web scale access
Procedia PDF Downloads 6612349 Analysis of Speaking Skills in Turkish Language Acquisition as a Foreign Language
Authors: Lokman Gozcu, Sule Deniz Gozcu
Abstract:
This study aims to analyze the skills of speaking in the acquisition of Turkish as a foreign language. One of the most important things for the individual who learns a foreign language is to be successful in the oral communication (speaking) skills and to interact in an understandable way. Speech skill requires much more time and effort than other language skills. In this direction, it is necessary to make an analysis of these oral communication skills, which is important in Turkish language acquisition as a foreign language and to draw out a road map according to the result. The aim of this study is to determine the competence and attitudes of speaking competence according to the individuals who learn Turkish as a foreign language and to be considered as speaking skill elements; Grammar, emphasis, intonation, body language, speed, ranking, accuracy, fluency, pronunciation, etc. and the results and suggestions based on these determinations. A mixed method has been chosen for data collection and analysis. A Likert scale (for competence and attitude) was applied to 190 individuals who were interviewed face-to-face (for speech skills) with a semi-structured interview form about 22 participants randomly selected. In addition, the observation form related to the 22 participants interviewed were completed by the researcher during the interview, and after the completion of the collection of all the voice recordings, analyses of voice recordings with the speech skills evaluation scale was made. The results of the research revealed that the speech skills of the individuals who learned Turkish as a foreign language have various perspectives. According to the results, the most inadequate aspects of the participants' ability to speak in Turkish include vocabulary, using humorous elements while speaking Turkish, being able to include items such as idioms and proverbs while speaking Turkish, Turkish fluency respectively. In addition, the participants were found not to feel comfortable while speaking Turkish, to feel ridiculous and to be nervous while speaking in formal settings. There are conclusions and suggestions for the situations that arise after the have been analyses made.Keywords: learning Turkish as a foreign language, proficiency criteria, phonetic (modalities), speaking skills
Procedia PDF Downloads 2412348 Thoughts Regarding Interprofessional Work between Nurses and Speech-Language-Hearing Therapists in Cancer Rehabilitation: An Approach for Dysphagia
Authors: Akemi Nasu, Keiko Matsumoto
Abstract:
Rehabilitation for cancer requires setting up individual goals for each patient and an approach that properly fits the stage of cancer when putting into practice. In order to cope with the daily changes in the patients' condition, the establishment of a good cooperative relationship between the nurses and the physiotherapists, occupational therapists, and speech-language-hearing therapists (therapists) becomes essential. This study will focus on the present situation of the cooperation between nurses and therapists, especially the speech-language-hearing therapists, and aim to elucidate what develops there. A semi-structured interview was conducted targeted at a physical therapist having practical experience in working in collaboration with nurses. The contents of the interview were transcribed and converted to data, and the data was encoded and categorized with sequentially increasing degrees of abstraction to conduct a qualitative explorative factor analysis of the data. When providing ethical explanations, particular care was taken to ensure that participants would not be subjected to any disadvantages as a result of participating in the study. In addition, they were also informed that their privacy would be ensured and that they have the right to decline to participate in the study. In addition, they were also informed that the results of the study would be announced publicly at an applicable nursing academic conference. This study has been approved following application to the ethical committee of the university with which the researchers are affiliated. The survey participant is a female speech-language-hearing therapist in her forties. As a result of the analysis, 6 categories were extracted consisting of 'measures to address appetite and aspiration pneumonia prevention', 'limitation of the care a therapist alone could provide', 'the all-inclusive patient- supportive care provided by nurses', 'expand the beneficial cooperation with nurses', 'providing education for nurses on the swallowing function utilizing videofluoroscopic examination of swallowing', 'enhancement of communication including conferences'. In order to improve the team performance, and for the teamwork competency necessary for the provision of safer care, mutual support is essential. As for the cooperation between nurses and therapists, this survey indicates that the maturing of the cooperation between professionals in order to improve nursing professionals' knowledge and enhance communication will lead to an improvement in the quality of the rehabilitation for cancer.Keywords: cancer rehabilitation, nurses, speech-language-hearing therapists, interprofessional work
Procedia PDF Downloads 1332347 The Integration and Automation of EDA Tools in an Integrated Circuit Design Environment
Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Rozaimah Baharim, M. Hanif M. Nasir
Abstract:
This paper will discuss how EDA tools are integrated and automated in an Integrated Circuit Design Environment. Some of the problems face in our current environment is that users need to configure manually on the library paths, start-up files and project directories. Certain manual processes that happen between the users and applications can be automated but they must be transparent to the users. For example, the users can run the applications directly after login without knowing the library paths and start-up files locations. The solution to these problems is to automate the processes using standard configuration files which will benefit the users and EDA support. This paper will discuss how the implementation is done to automate the process using scripting languages such as Perl, Tcl, Scheme and Shell Script. These scripting tools are great assets for design engineers to build a robust and powerful design flow and this technique is widely used to integrate all the tools together.Keywords: EDA tools, Integrated Circuits, scripting, integration, automation
Procedia PDF Downloads 3242346 Behavioral and EEG Reactions in Children during Recognition of Emotionally Colored Sentences That Describe the Choice Situation
Authors: Tuiana A. Aiusheeva, Sergey S. Tamozhnikov, Alexander E. Saprygin, Arina A. Antonenko, Valentina V. Stepanova, Natalia N. Tolstykh, Alexander N. Savostyanov
Abstract:
Situation of choice is an important condition for the formation of essential character qualities of a child, such as being initiative, responsible, hard-working. We have studied the behavioral and EEG reactions in Russian schoolchildren during recognition of syntactic errors in emotionally colored sentences that describe the choice situation. Twenty healthy children (mean age 9,0±0,3 years, 12 boys, 8 girls) were examined. Forty sentences were selected for the experiment; the half of them contained a syntactic error. The experiment additionally had the hidden condition: 50% of the sentences described the children's own choice and were emotionally colored (positive or negative). The other 50% of the sentences described the forced-choice situation, also with positive or negative coloring. EEG were recorded during execution of error-recognition task. Reaction time and quality of syntactic error detection were chosen as behavioral measures. Event-related spectral perturbation (ERSP) was applied to characterize the oscillatory brain activity of children. There were two time-frequency intervals in EEG reactions: (1) 500-800 ms in the 3-7 Hz frequency range (theta synchronization) and (2) 500-1000 ms in the 8-12 Hz range (alpha desynchronization). We found out that behavioral and brain reactions in child brain during recognition of positive and negative sentences describing forced-choice situation did not have significant differences. Theta synchronization and alpha desynchronization were stronger during recognition of sentences with children's own choice, especially with negative coloring. Also, the quality and execution time of the task were higher for this types of sentences. The results of our study will be useful for improvement of teaching methods and diagnostics of children affective disorders.Keywords: choice situation, electroencephalogram (EEG), emotionally colored sentences, schoolchildren
Procedia PDF Downloads 2682345 Improving Second Language Speaking Skills via Video Exchange
Authors: Nami Takase
Abstract:
Computer-mediated-communication allows people to connect and interact with each other as if they were sharing the same space. The current study examined the effects of using video letters (VLs) on the development of second language speaking skills of Common European Framework of Reference for Languages (CEFR) A1 and CEFR B2 level learners of English as a foreign language. Two groups were formed to measure the impact of VLs. The experimental and control groups were given the same topic, and both groups worked with a native English-speaking university student from the United States of America. Students in the experimental group exchanged VLs, and students in the control group used video conferencing. Pre- and post-tests were conducted to examine the effects of each practice mode. The transcribed speech-text data showed that the VL group had improved speech accuracy scores, while the video conferencing group had increased sentence complexity scores. The use of VLs may be more effective for beginner-level learners because they are able to notice their own errors and replay videos to better understand the native speaker’s speech at their own pace. Both the VL and video conferencing groups provided positive feedback regarding their interactions with native speakers. The results showed how different types of computer-mediated communication impacts different areas of language learning and speaking practice and how each of these types of online communication tool is suited to different teaching objectives.Keywords: computer-assisted-language-learning, computer-mediated-communication, english as a foreign language, speaking
Procedia PDF Downloads 992344 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data
Authors: Fanqiang Kong, Chending Bian
Abstract:
Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means
Procedia PDF Downloads 2452343 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 1532342 The Code-Mixing of Japanese, English, and Thai in Line Chat
Authors: Premvadee Na Nakornpanom
Abstract:
Language mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study was an attempt to explore the characteristics of the mixing of Japanese, English and Thai in a mobile chat room by students with their background of Japanese, English, and Thai. The result found that Insertion of Thai and English content words was a very common linguistic phenomenon embedded in the utterances. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotional-related. A Japanese sentence-final question particle“か”(ka) was added to the end of the sentence based on Thai grammar rule. Moreover, some unique characteristics were created. The non-verbal cues were represented in personal, Thai styles by inserting textual representations of images or feelings available on the websites into streams of conversations.Keywords: code-mixing, Japanese, English, Thai, line chat
Procedia PDF Downloads 6522341 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 1192340 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection
Procedia PDF Downloads 1692339 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph
Authors: Youhang Zhou, Weimin Zeng, Qi Xie
Abstract:
Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.Keywords: guide surface, wear defects, feature extraction, data visualization
Procedia PDF Downloads 5192338 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study
Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal
Abstract:
Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue
Procedia PDF Downloads 1132337 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System
Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli
Abstract:
This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.Keywords: feature selection, genetic algorithm, optimization, wood recognition system
Procedia PDF Downloads 5452336 Impact of Culture and Religion on Disability and the Health Care Seeking Practices of the Shona People
Authors: Mafunda Esther
Abstract:
The paper seeks to find out and document the impact of culture and religion on disability, specifically language impairment and health care seeking practices of the Shona people. Its main objectives are to explore the cultural and religious beliefs that affect the utilization of rehabilitation services in a rural community in Zimbabwe. The other objective of the paper is to describe how language impairment is presented and understood by people living in a Zimbabwean rural area. The research is qualitative interpretive phenomenological research, and it utilizes the case study approach using semi structured interviews and focus group discussions. Results from the research established that religious and cultural beliefs determine how the Shona people view disability, and this guides their health care seeking practices. The research is important since communication disorders occur in populations worldwide though they are not always recognized as such. The lack of recognition of and the attitudes toward speech and languages disorders, as well as the beliefs about the causes of such disorders, affect people's attitudes toward the treatment of the disorders.Keywords: culture, religion, disability, language impairment
Procedia PDF Downloads 98