Search results for: rheological properties
8486 Transmission Loss Analysis for Panels Laminated with Felt and Film
Authors: Yoshio Kurosawa
Abstract:
To reduce the interior noise of cars in high-frequency region, sound proof materials are laminated with the body panels and the interior trims. Therefore, sound proof properties of the laminates play an important role for the efficient acoustical design. A program code which predicts both sound absorption properties and sound insulation properties of the laminates are developed. This program code is used for transfer matrix method by Biot theory. This report described the outline of this program code, and the calculation results almost agreed with the experimental results.Keywords: porous media, transmission loss, Biot theory, transfer matrix method
Procedia PDF Downloads 2738485 Symmetry Properties of Linear Algebraic Systems with Non-Canonical Scalar Multiplication
Authors: Krish Jhurani
Abstract:
The research paper presents an in-depth analysis of symmetry properties in linear algebraic systems under the operation of non-canonical scalar multiplication structures, specifically semirings, and near-rings. The objective is to unveil the profound alterations that occur in traditional linear algebraic structures when we replace conventional field multiplication with these non-canonical operations. In the methodology, we first establish the theoretical foundations of non-canonical scalar multiplication, followed by a meticulous investigation into the resulting symmetry properties, focusing on eigenvectors, eigenspaces, and invariant subspaces. The methodology involves a combination of rigorous mathematical proofs and derivations, supplemented by illustrative examples that exhibit these discovered symmetry properties in tangible mathematical scenarios. The core findings uncover unique symmetry attributes. For linear algebraic systems with semiring scalar multiplication, we reveal eigenvectors and eigenvalues. Systems operating under near-ring scalar multiplication disclose unique invariant subspaces. These discoveries drastically broaden the traditional landscape of symmetry properties in linear algebraic systems. With the application of these findings, potential practical implications span across various fields such as physics, coding theory, and cryptography. They could enhance error detection and correction codes, devise more secure cryptographic algorithms, and even influence theoretical physics. This expansion of applicability accentuates the significance of the presented research. The research paper thus contributes to the mathematical community by bringing forth perspectives on linear algebraic systems and their symmetry properties through the lens of non-canonical scalar multiplication, coupled with an exploration of practical applications.Keywords: eigenspaces, eigenvectors, invariant subspaces, near-rings, non-canonical scalar multiplication, semirings, symmetry properties
Procedia PDF Downloads 1228484 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir
Authors: Fengxia Li, Lufeng Zhang, Haibo Wang
Abstract:
The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties
Procedia PDF Downloads 738483 Mechanical Properties of Aspen Wood of Structural Dimensions
Authors: Barbora Herdová, Rastislav Lagaňa
Abstract:
The paper investigates the mechanical properties of European aspen (Populus tremula L.) as a potential replacement for load-bearing elements in historical structures. One of the main aims of the research has been the quantification of mechanical properties via destructive testing and the subsequent calculation of characteristic values of these properties. The research encompasses experimental testing of wood specimens for the determination of dynamic modulus of elasticity (MOEdyn), modulus of elasticity (MOE), modulus of rupture (MOR), and density. The results were analyzed and compared to established standards for structural timber. The results confirmed statistically significant dependence between MOR and MOEdyn. The correlation between the MOR and the dynamic MOEdyn enabled non-destructive strength grading using the Sylvatest Duo® system. The findings of this research contribute to the potential use of European aspen as a structural timber, which could have implications for the sustainable use of this abundant and renewable resource in the construction industry. They also show the usability of European aspen in the reconstruction of historical buildings.Keywords: populus tremula, MOE, MOR, sylvatest Duo®.
Procedia PDF Downloads 618482 The Study of Magnetic and Transport Properties in Normal State Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ
Authors: Risdiana, D. Suhendar, S. Pratiwi, W. A. Somantri, T. Saragi
Abstract:
Superconductor is a promising material for future applications especially for energy saving because of their advantages properties such as zero electrical resistivity when they are cooled down to sufficiently low temperatures. However, the mechanism describing the role of physical properties in superconductor is far from being understood clearly, so that the application of this material for wider benefit in various industries is very limited. Most of superconductors are cuprate compounds, which has CuO2 as a conducting plane in their crystal structures. The study of physical properties through the partially substitution of impurity for Cu in superconducting cuprates has been one of great interests in relation to the mechanism of superconductivity. Different behaviors between the substitution of nonmagnetic impurity and magnetic impurity for Cu are observed. For examples, the superconductivity and Cu-spin fluctuations in the electron-doped system are suppressed through the substitution of magnetic Ni for Cu more markedly than through the substitution of nonmagnetic Zn for Cu, which is contrary to the result in the hole-doped system. Here, we reported the effect of partially substitution of magnetic impurity Fe for Cu to the magnetic and transport properties in electron-doped superconducting cuprates of Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ (ECCFO) with y = 0.01, 0.02, and 0.05, in order to investigate the mechanism of magnetic and transport properties of ECCFO in normal-state. Magnetic properties are investigated by DC magnetic-susceptibility measurements that carried out at low temperatures down to 2 K using a standard SQUID magnetometer in a magnetic field of 5 Oe on field cooling. Transport properties addressed to electron mobility, are extracted from radius of electron localization calculated from temperature dependence of resistivity. For y = 0, temperature dependence of dc magnetic-susceptibility indicated the change of magnetic behavior from paramagnetic to diamagnetic below 15 K. Above 15 K, all samples show paramagnetic behavior with the values of magnetic moment in every volume unit increased with increasing y. Electron mobility decreased with increasing y. Some reasons for these results will be discussed.Keywords: DC magnetic-susceptibility, electron mobility, Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ, normal state
Procedia PDF Downloads 3468481 Structural and Magnetic Properties of Calcium Mixed Ferrites Prepared by Co-Precipitation Method
Authors: Sijo S. Thomas, S. Hridya, Manoj Mohan, Bibin Jacob, Hysen Thomas
Abstract:
Ferrites are iron based oxides with technologically significant magnetic properties and have widespread applications in medicine, technology, and industry. There has been a growing interest in the study of magnetic, electrical and structural properties of mixed ferrites. In the present work, structural and magnetic properties of Nickel and Calcium substituted Fe₃O₄ nanoparticles were investigated. NiₓCa₁₋ₓFe₂O₄ nanoparticles (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by chemical co-precipitation method and the samples were subsequently sintered at 900°C. The magnetic and structural properties of NiₓCa₁₋ₓFe₂O₄ were investigated using Vibrating Sample Magnetometer and X-Ray diffraction. The XRD results revealed that the synthesized particles have nanometer size and it varies from 46-72 nm as the calcium concentration diminishes. The variation is explained based on the increase in the reaction rate with Ni concentration which favors the formation of ultrafine particles of mixed ferrites. VSM results show pure CaFe₂O₄ exhibit paramagnetic behavior with low saturation value. As the concentration of Ca decreases, a transition occurs from paramagnetic state to ferromagnetic state. When the concentration of Ni becomes dominant, magnetic saturation, coercivity, and retentivity become high, indicating near ferromagnetic behavior of the compound.Keywords: co-precipitation, ferrites, magnetic behavior, structure
Procedia PDF Downloads 2478480 The Experimental and Modeling Adsorption Properties of Sr2+ on Raw and Purified Bentonite
Authors: A. A. Khodadadi, S. C. Ravaj, B. D. Tavildari, M. B. Abdolahi
Abstract:
The adsorption properties of local bentonite (Semnan Iran) and purified prepared from this bentonite towards Sr2+ adsorption, were investigated by batch equilibration. The influence of equilibration time, adsorption isotherms, kinetic adsorption, solution pH, and presence of EDTA and NaCl on these properties was studied and discussed. Kinetic data were found to be well fitted with a pseudo-second order kinetic model. Sr2+ is preferably adsorbed by bentonite and purified bentonite. The D-R isotherm model has the best fit with experimental data than other adsorption isotherm models. The maximum adsorption of Sr2+ representing the highest negative charge density on the surface of the adsorbent was seen at pH 12. Presence of EDTA and NaCl decreased the amount of Sr2+ adsorption.Keywords: bentonite, purified bentonite, Sr2+, equilibrium isotherm, kinetics
Procedia PDF Downloads 3748479 Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites
Authors: S. H. Rashmi, G. M. Madhu, A. A. Kittur, R. Suresh
Abstract:
Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.Keywords: glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide
Procedia PDF Downloads 2938478 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.Keywords: nanomaterials, SiO₂, carbon black, mechanical properties
Procedia PDF Downloads 1398477 Influence of Resin Finishes on Properties of Khadi Fabric
Authors: Shivi Rastogi, Suman Pant
Abstract:
Khadi is an Indian fabric and also known by another name “Khaddar”. During pre-independence era, the movement of khadi manufacturing gained momentum. Over the years, khadi fabrics that were generally considered as the “second skin” of the Swadesh revolutionists changed its uniqueness. It underwent a metamorphosis from that of a patriot’s fabric, and a farmer’s apparel, to become a “fashion fabric”. Drape of garment is governed by draping quality of fabric used. Drape is an essential parameter to decide both appearance and handle of fabric. It is also a secondary determinant of fabric mechanical properties as influenced by the low stress properties, like bending length, formability, tensile and shear properties and compressibility of the fabric. In finishing, fabric is treated to add something to coat the fabric or fiber and thereby temporarily or permanently fix. Film forming agents such as thermoplastic and thermosetting resins and other surface deposits alter hand. In this study, resins were used to modify fabric hand. Three types of resins have been applied on the khadi fabric at three concentration. The effect of these finishes on drapeability, crease recovery, stiffness, tearing strength and smoothness of khadi fabrics were assessed. Silicone gave good results in imparting properties specially drape, smoothness and softness and hand of cotton and khadi fabric. KES result also showed that silicone treated samples enhanced THV rating amongst all treated samples when compared to the control fabric.Keywords: crease recovery, drapeability, KES, silicone, THV
Procedia PDF Downloads 2278476 Proximate Composition, Colour and Sensory Properties of Akara egbe Prepared from Bambara Groundnut (Vigna subterranea)
Authors: Samson A. Oyeyinka, Taiwo Tijani, Adewumi T. Oyeyinka, Mutiat A. Balogun, Fausat L. Kolawole, John K. Joseph
Abstract:
Bambara groundnut is an underutilised leguminous crop that has a similar composition to cowpea. Hence, it could be used in making traditional snack usually produced from cowpea paste. In this study, akara egbe, a traditional snack was prepared from Bambara groundnut flour or paste. Cowpea was included as the reference sample. The proximate composition and functional properties of the flours were studies as well as the proximate composition and sensory properties of the resulting akara egbe. Protein and carbohydrate were the main components of Bambara groundnut and cowpea grains. Ash, fat and fiber contents were low. Bambara groundnut flour had higher protein content (23.71%) than cowpea (19.47%). In terms of functional properties, the oil absorption capacity (0.75 g oil/g flour) of Bambara groundnut flour was significantly (p ≤ 0.05) lower than that of the cowpea (0.92 g oil/g flour), whereas, Cowpea flour absorbed more water (1.59 g water/g flour) than Bambara groundnut flour (1.12 g/g). The packed bulk density (0.92 g/mL) of Bambara groundnut was significantly (p ≤ 0.05) higher than cowpea flour (0.82 g/mL). Akara egbe prepared from Bambara groundnut flour showed significantly (p ≤ 0.05) higher protein content (23.41%) than the sample made from Bambara groundnut paste (19.35%). Akara egbe prepared from cowpea paste had higher ratings in aroma, colour, taste, crunchiness and overall acceptability than those made from cowpea flour or Bambara groundnut paste or flour. Bambara groundnut can produce akara egbe with comparable nutritional and sensory properties to that made from cowpea.Keywords: Bambara groundnut, Cowpea, Snack, Sensory properties
Procedia PDF Downloads 2628475 Effect of Golden Oyster Mushroom (Pleurotus citrinopileatus) Powder on Physiochemical, Antioxidative, and Sensory Properties of Noodles
Authors: Giap Pham Ngoc Tram, Tran Hong Quan, Tran Tieu Yen, Nguyen Phung Tien
Abstract:
The use of natural ingredients to enhance the nutritional and sensory properties of food products has gained significant interest in recent years. This study focuses on the effect of Golden oyster mushroom powder (GOMP) on the physiochemical, antioxidative, and sensory properties of noodles. The aim of this study is to investigate the influence of GOMP on the nutritional, antioxidant, and sensory properties of noodles. The study determined the color, moisture, total ash, protein, total phenolic, flavonoid contents, water activity, and antioxidant activity of GOMP and noodles. The incorporation of GOMP at levels of 5-15% increased the ash, protein, flavonoid, and total phenolic contents of the noodles. It also enhanced their antioxidant activities, as evidenced by improved DPPH radical scavenging activity and metal chelating activity. However, the incorporation of GOMP resulted in a decrease in the L* and b* values of the noodles. Furthermore, the GOMP-enriched noodles exhibited a lower cutting force compared to the control. This study highlights the potential of GOMP as a nutritional and antioxidant ingredient in noodle preparation. It adds to the existing literature by providing evidence of the positive effects of GOMP on the nutritional and functional properties of noodles. The researchers collected data on the physiochemical properties, nutritional contents, and antioxidant activities of GOMP and noodles. Statistical analysis was then performed to assess the differences between the control and GOMP-enriched noodles. The results of this study demonstrate that the inclusion of GOMP at the amount of 5-15% can increase the nutritional and antioxidant properties of noodles without significantly impacting sensory attributes.Keywords: oyster mushroom, noodles, antioxidant activity, phytochemical, sensory property
Procedia PDF Downloads 638474 Experimental Study on Post-Fire Mechanical Properties of S235 Steel
Authors: Mahyar Maali, Merve Sagiroglu, Mahmut Kilic, Abdulkadir Cuneyt Aydin
Abstract:
In order to evaluate the residual strength of S235 (St37) steel structures after the fire, an experimental program was undertaken to investigate the post-fire mechanical properties. Tensile coupons taken from S235 sheets were exposed to varying temperatures as 200°C, 400°C, 600°C, and 800 °C. The samples were then allowed to cool down to ambient temperature before they were tested to failure. To obtain the mechanical properties of steels; tensile tests are performed, and the post-fire stress-strain curves are evaluated. The microstructures of the heat-treated specimens were examined by Scanning Electron Microscope (SEM). It is seen that morphology and size of the precipitates in the specimens change, as the heat increases. The modulus of elasticity decreases, and deformation increases with temperature. Energy dissipation decreases due to lower stress according to the stress-strain curves of the specimens. Especially, the mechanical properties were decreased compared with the pre-fire ones. As a result of the post-fire and pre-fire behavior of S235, a set of equations is evaluated to predict the mechanical properties after the fire. These types of equations may allow the structural and/or fire engineers to predict accurately the post-fire behavior of the buildings constructed with S235 type steel.Keywords: post-fire behavior, stress-strain curves, experimental study, S235 steel
Procedia PDF Downloads 3478473 Friction Stir Welding of Aluminum Alloys: A Review
Authors: S. K. Tiwari, Dinesh Kumar Shukla, R. Chandra
Abstract:
Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion-welded aluminum joints are poor. As friction stir welding occurs in the solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review, the process parameters, microstructural evolution and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.Keywords: aluminum alloys, friction stir welding (FSW), microstructure, Properties.
Procedia PDF Downloads 4138472 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic
Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh
Abstract:
Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability
Procedia PDF Downloads 2378471 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief
Authors: Rabah Younes
Abstract:
The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength.Keywords: clay, soil stabilization, naturaln pozzolana, atterberg limits, compaction, compressive strength shear strength, curing
Procedia PDF Downloads 3118470 A Proposal of Local Indentation Techniques for Mechanical Property Evaluation
Authors: G. B. Lim, C. H. Jeon, K. H. Jung
Abstract:
General light metal alloys are often developed in the material of transportation equipment such as automobiles and aircraft. Among the light metal alloys, magnesium is the lightest structural material with superior specific strength and many attractive physical and mechanical properties. However, magnesium alloys were difficult to obtain the mechanical properties at warm temperature. The aims of present work were to establish an analytical relation between mechanical properties and plastic flow induced by local indentation. An experimental investigation of the local strain distribution was carried out using a specially designed local indentation equipment in conjunction with ARAMIS based on digital image correlation method.Keywords: indentation, magnesium, mechanical property, lightweight material, ARAMIS
Procedia PDF Downloads 4908469 Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems
Authors: Yisau Adelaja Odusote, Olakanmi Felix Akinto
Abstract:
The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed.Keywords: homo-pairs, interchange energy, enthalpy, entropy, Cd-Ga, Cd-In
Procedia PDF Downloads 4358468 Calibration of Discrete Element Method Parameters for Modelling DRI Pellets Flow
Authors: A. Hossein Madadi-Najafabadi, Masoud Nasiri
Abstract:
The discrete element method is a powerful technique for numerical modeling the flow of granular materials such as direct reduced iron. It would enable us to study processes and equipment related to the production and handling of the material. However, the characteristics and properties of the granules have to be adjusted precisely to achieve reliable results in a DEM simulation. The main properties for DEM simulation are size distribution, density, Young's modulus, Poisson's ratio and the contact coefficients of restitution, rolling friction and sliding friction. In the present paper, the mentioned properties are determined for DEM simulation of DRI pellets. A reliable DEM simulation would contribute to optimizing the handling system of DRIs in an iron-making plant. Among the mentioned properties, Young's modulus is the most important parameter, which is usually hard to get for particulate solids. Here, an especial method is utilized to precisely determine this parameter for DRI.Keywords: discrete element method, direct reduced iron, simulation parameters, granular material
Procedia PDF Downloads 1798467 A Survey on Linear Time Invariant Multivariable Positive Real Systems
Authors: Mojtaba Hakimi-Moghaddam
Abstract:
Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties
Procedia PDF Downloads 2738466 Preparation and Properties of Gelatin-Bamboo Fibres Foams for Packaging Applications
Authors: Luo Guidong, Song Hang, Jim Song, Virginia Martin Torrejon
Abstract:
Due to their excellent properties, polymer packaging foams have become increasingly essential in our current lifestyles. They are cost-effective and lightweight, with excellent mechanical and thermal insulation properties. However, they constitute a major environmental and health concern due to litter generation, ocean pollution, and microplastic contamination of the food chain. In recent years, considerable efforts have been made to develop more sustainable alternatives to conventional polymer packaging foams. As a result, biobased and compostable foams are increasingly becoming commercially available, such as starch-based loose-fill or PLA trays. However, there is still a need for bulk manufacturing of bio-foams planks for packaging applications as a viable alternative to their fossil fuel counterparts (i.e., polystyrene, polyethylene, and polyurethane). Gelatin is a promising biopolymer for packaging applications due to its biodegradability, availability, and biocompatibility, but its mechanical properties are poor compared to conventional plastics. However, as widely reported for other biopolymers, such as starch, the mechanical properties of gelatin-based bioplastics can be enhanced by formulation optimization, such as the incorporation of fibres from different crops, such as bamboo. This research aimed to produce gelatin-bamboo fibre foams by mechanical foaming and to study the effect of fibre content on the foams' properties and structure. As a result, foams with virtually no shrinkage, low density (<40 kg/m³), low thermal conductivity (<0.044 W/m•K), and mechanical properties comparable to conventional plastics were produced. Further work should focus on developing formulations suitable for the packaging of water-sensitive products and processing optimization, especially the reduction of the drying time.Keywords: biobased and compostable foam, sustainable packaging, natural polymer hydrogel, cold chain packaging
Procedia PDF Downloads 1048465 Effect of Thermal Pretreatment on Functional Properties of Chicken Protein Hydrolysate
Authors: Nutnicha Wongpadungkiat, Suwit Siriwatanayotin, Aluck Thipayarat, Punchira Vongsawasdi, Chotika Viriyarattanasak
Abstract:
Chicken products are major export product of Thailand. With a dramatically increasing consumption of chicken product in the world, there are abundant wastes from chicken meat processing industry. Recently, much research in the development of value-added products from chicken meat industry has focused on the production of protein hydrolysate, utilized as food ingredients for human diet and animal feed. The present study aimed to determine the effect of thermal pre-treatment on functional properties of chicken protein hydrolysate. Chicken breasts were heated at 40, 60, 80 and 100ºC prior to hydrolysis by Alcalase at 60ºC, pH 8 for 4 hr. The hydrolysate was freeze-dried, and subsequently used for assessment of its functional properties molecular weight by gel electrophoresis (SDS-PAGE). The obtained results show that increasing the pre-treatment temperature increased oil holding capacity and emulsion stability while decreasing antioxidant activity and water holding capacity. The SDS-PAGE analysis showed the evidence of protein aggregation in the hydrolysate treated at the higher pre-treatment temperature. These results suggest the connection between molecular weight of the hydrolysate and its functional properties.Keywords: chicken protein hydrolysate, enzymatic hydrolysis, thermal pretreatment, functional properties
Procedia PDF Downloads 2698464 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition
Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla
Abstract:
This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.Keywords: characterization, DLC, mechanical properties, pulsed laser deposition
Procedia PDF Downloads 1518463 Preliminary Geotechnical Properties of Uncemented Sandstone Kati Formation
Authors: Nursyafiqah Abdul Kahar, Niraku Rosmawati Ahmad, Hisham Mohamad, Siti Nuruljannah Mohd Marzuki
Abstract:
Assessment of geotechnical properties of the subsoil is necessary for generating relevant input for the design and construction of a foundation. It is significant for the future development in the area. The focus of this research is to investigate the preliminary geotechnical properties of the uncemented sandstone from Kati formation at Puncak Iskandar, Seri Iskandar. A series of basic soil tests, oedometer and direct shear box tests were carried out to obtain the soil parameters. The uncemented sandstone of Kati Formation was found to have well-graded and poorly graded sand distribution, depending on the location where the samples were obtained. The sand grains distribution was in a range of 82%-100% while, the specific gravity of the uncemented sandstone is in the range 2.65-2.86. The preconsolidation pressure for USB3 was 990 kPa indicating that the sandstone at USB3 sample had undergone 990 kPa of overburden pressure. The angle of friction for uncemented sandstone was ranging between 23.34°-32.92°.Keywords: geotechnical properties, Kati formation, uncemented sandstone, oedometer test; shear box test
Procedia PDF Downloads 1548462 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites
Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa
Abstract:
The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.Keywords: Al6061, red mud, tensile strength, hardness and microstructures
Procedia PDF Downloads 5588461 Investigating Optical Properties of Unsaturated Polyurethane Matrix and Its Glass Fiber Composite Under Extreme Temperatures
Authors: Saad Ahmed, Sanjeev Khannaa
Abstract:
Glass fiber reinforced polymers are widely used in structural systems as load-bearing elements at both high and low temperatures. This investigation presents the evaluation of glass fiber reinforced unsaturated polyurethane under harsh conditions of changing temperature and moisture content. This study Explores how these parameters affect the optical properties of the polymer matrix and the composite. Using the hand layup method, the polyurethane resin was modified by E-glass fibers (15 vol. %) to manufacture fiber-reinforced composite. This work includes the preparation of glass-like polyurethane resin sheets and estimates all light transmittance properties at high and very low temperatures and wet conditions. All-optical properties were retested to evaluate the level of improvement or failure. The results found that when comprising reinforced composite fiber to the unreinforced specimens, the reinforced composite shows a fair optical property at high temperatures and good performance at low temperatures.Keywords: unsaturated polyurethane, extreme temperatures, light transmittance, haze number
Procedia PDF Downloads 1438460 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties
Procedia PDF Downloads 6918459 Structural, Magnetic and Electrical Properties of Gd3+ Doped CoFe2O4 Nanoparticles Synthesized by Sonochemical Method
Authors: Raghvendra Singh Yadav, Ivo Kuřitka
Abstract:
In this report, we studied the impact of Gd3+ substitution on structural, magnetic and electrical properties of CoFe2O4 nanoparticles synthesized by sonochemical method. X-ray diffraction pattern confirmed the formation of cubic spinel structure at low concentration of Gd3+ ions, however, GdFeO3 additional phase was observed at higher concentration of Gd3+ ions. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of Gd3+ substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed that Gd3+ substituted CoFe2O4 nanoparticles were in the range of 5-20 nm. The magnetic properties of Gd3+ substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with Gd3+ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied at room temperature.Keywords: spinel ferrites, nanoparticles, sonochemical method, magnetic properties
Procedia PDF Downloads 2918458 Computational Study on the Crystal Structure, Electronic and Optical Properties of Perovskites a2bx6 for Photovoltaic Applications
Authors: Harmel Meriem
Abstract:
The optoelectronic properties and high power conversion efficiency make lead halide perovskites ideal material for solar cell applications. However, the toxic nature of lead and the instability of organic cation are the two key challenges in the emerging perovskite solar cells. To overcome these challenges, we present our study about finding potential alternatives to lead in the form of A2BX6 perovskite using the first principles DFT-based calculations. The highly accurate modified Becke Johnson (mBJ) and hybrid functional (HSE06) have been used to investigate the Main Document Click here to view linked References to optoelectronic and thermoelectric properties of A2PdBr6 (A = K, Rb, and Cs) perovskite. The results indicate that different A-cations in A2PdBr6 can significantly alter their electronic and optical properties. Calculated band structures indicate semiconducting nature, with band gap values of 1.84, 1.53, and 1.54 eV for K2PdBr6, Rb2PdBr6, and Cs2PdBr6, respectively. We find strong optical absorption in the visible region with small effective masses for A2PdBr6. The ideal band gap and optimum light absorption suggest Rb2PdBr6 and Cs2PdBr6 potential candidates for the light absorption layer in perovskite solar cells. Additionally.Keywords: soler cell, double perovskite, optoelectronic properties, ab-inotio study
Procedia PDF Downloads 1268457 Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin
Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou
Abstract:
Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10 % of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.Keywords: calorimetry, cement, metakaolin fineness, rheology, strength
Procedia PDF Downloads 412