Search results for: optimum signal approximation
3302 The Utilization of Recycled Construction and Demolition Waste Aggregate in Asphaltic Concrete
Authors: Inas Kamel, Noor Z. Habib
Abstract:
Utilizing construction and demolition wastes in hotmix asphalt (HMA) pavement construction can reduce the adverse environmental effect of its inadequate disposal and reduce the pressure of extracting and processing mineral aggregates (MA). This study aims to examine the viability of replacing MA by recycled construction and demolition waste aggregates (RCDWA) in the wearing course of asphaltic concrete (AC) pavements without compromising its loadbearing capacity. The Marshall Method was used to evaluate the performance of AC wearing course specimens by replacing MA by 10%, 20% and 30% RCDWA. Grade 60/70 bitumen was used in the range 3.0-5.5%, with 05% increments, to generate the optimum bitumen content (OBC). From the volumetric analysis and test property curves, the mixture containing 20% RCDWA was chosen as the preferred mix at 5.1% OBC. It possessed a 10% increase in Marshall Stability compared to the reference specimen, containing 100% MA, and a 6% increase in Marshall flow.Keywords: aggregate, asphaltic concrete, Marshall method, optimum bitumen content, recycled construction and demolition waste
Procedia PDF Downloads 1563301 Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method
Authors: Gamze Karanfil Celep, Kevser Dincer
Abstract:
The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated.Keywords: nanofiber, electrospinning, polyacrylonitrile, Taguchi method
Procedia PDF Downloads 2063300 Compilation of Load Spectrum of Loader Drive Axle
Authors: Wei Yongxiang, Zhu Haoyue, Tang Heng, Yuan Qunwei
Abstract:
In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.Keywords: load spectrum, axle, torque, rain-flow counting method, extrapolation
Procedia PDF Downloads 3643299 Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry
Authors: Chukwuemeka Daniel Ezeliora, Chukwuebuka Lawrence Ezeliora
Abstract:
The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study.Keywords: mild steel, impact strength, response surface, bead geometry, welding
Procedia PDF Downloads 1193298 Nonlinear Finite Element Analysis of Optimally Designed Steel Angelina™ Beams
Authors: Ferhat Erdal, Osman Tunca, Serkan Tas, Serdar Carbas
Abstract:
Web-expanded steel beams provide an easy and economical solution for the systems having longer structural members. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. Until recently, there were two common types of open web-expanded beams: with hexagonal openings, also called castellated beams, and beams with circular openings referred to as cellular beams, until the generation of sinusoidal web-expanded beams. In the present research, the optimum design of a new generation beams, namely sinusoidal web-expanded beams, will be carried out and the design results will be compared with castellated and cellular beam solutions. Thanks to a reduced fabrication process and substantial material savings, the web-expanded beam with sinusoidal holes (Angelina™ Beam) meets the economic requirements of steel design problems while ensuring optimum safety. The objective of this research is to carry out non-linear finite element analysis (FEA) of the web-expanded beam with sinusoidal holes. The FE method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify of test results and to investigate the non-linear behavior of failure modes such as web-post buckling, shear buckling and vierendeel bending of beams.Keywords: steel structures, web-expanded beams, angelina beam, optimum design, failure modes, finite element analysis
Procedia PDF Downloads 2813297 Efficient Alias-Free Level Crossing Sampling
Authors: Negar Riazifar, Nigel G. Stocks
Abstract:
This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to an alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm.Keywords: alias-free, level crossing sampling, spectrum, trigonometric polynomial
Procedia PDF Downloads 2093296 Magnetic and Optical Properties of Quaternary GaFeMnN
Authors: B. Bouadjemi, S. Bentata, A. Abbad, W.Benstaali
Abstract:
The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties.Keywords: optical properties, DFT, Spintronic, wave
Procedia PDF Downloads 5513295 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization
Procedia PDF Downloads 3543294 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing
Authors: Carolina Gouveia, José Vieira, Pedro Pinho
Abstract:
The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR
Procedia PDF Downloads 1413293 Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Pseudoplastic Material
Authors: Muhammad Zahid
Abstract:
The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders, a term derived from kylindros the Greek word for the cylinder. It infects the finishing process used on cloth, paper, textiles, leather cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in the tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.Keywords: calendering, exact solutions, lubrication approximation theory, numerical solutions, pseudoplastic material
Procedia PDF Downloads 1483292 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs
Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou
Abstract:
We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties
Procedia PDF Downloads 4353291 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study
Authors: Ana Serafimovic, Karthik Devarajan
Abstract:
Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence
Procedia PDF Downloads 2463290 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration
Authors: Soltani Amir, Hu Jiaxin
Abstract:
Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.Keywords: passive control system, damping devices, viscous dampers, control algorithm
Procedia PDF Downloads 4703289 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach
Authors: Rama Bhargava, Surabhi Nishad
Abstract:
The infusion of nanofluids has dramatically enhanced the heat-carrying capacity of the fluids, applicable to many engineering and medical process where the temperature below freezing is required. Cryosurgery is an efficient therapy for the treatment of cancer, but sometimes the excessive cooling may harm the nearby healthy cells. Efforts are therefore done to develop a model which can cause to generate the low temperature as required. In the present study, a mathematical model is developed based on the bioheat transfer equation to simulate the heat transfer from the probe on a tumor (with irregular domain) using the hybrid technique consisting of element free Galerkin method with αα-family of approximation. The probe is loaded will nano-particles. The effects of different nanoparticles, namely Al₂O₃, Fe₃O₄, Au on the heat-producing rate, is obtained. It is observed that the temperature can be brought to (60°C)-(-30°C) at a faster freezing rate on the infusion of different nanoparticles. Besides increasing the freezing rate, the volume of the nanoparticle can also control the size and growth of ice crystals formed during the freezing process. The study is also made to find the time required to achieve the desired temperature. The problem is further extended for multi tumors of different shapes and sizes. The irregular shape of the frozen domain and the direction of ice growth are very sensitive issues, posing a challenge for simulation. The Meshfree method has been one of the accurate methods in such problems as a domain is naturally irregular. The discretization is done using the nodes only. MLS approximation is taken in order to generate the shape functions. Sufficiently accurate results are obtained.Keywords: cryosurgery, EFGM, hybrid, nanoparticles
Procedia PDF Downloads 1233288 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number
Authors: N. Dahraoui, M. Boulakroune, D. Benatia
Abstract:
In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov-Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage
Procedia PDF Downloads 4183287 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm
Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović
Abstract:
This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.Keywords: genetic algorithms, machining parameters, response surface methodology, turning process
Procedia PDF Downloads 1883286 Identification of the Relationship Between Signals in Continuous Monitoring of Production Systems
Authors: Maciej Zaręba, Sławomir Lasota
Abstract:
Understanding the dependencies between the input signal, that controls the production system and signals, that capture its output, is of a great importance in intelligent systems. The method for identification of the relationship between signals in continuous monitoring of production systems is described in the paper. The method discovers the correlation between changes in the states derived from input signals and resulting changes in the states of output signals of the production system. The method is able to handle system inertia, which determines the time shift of the relationship between the input and output.Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems
Procedia PDF Downloads 933285 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform
Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier
Abstract:
The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing
Procedia PDF Downloads 1963284 Separate Production of Hydrogen and Methane from Ethanol Wastewater Using Two-Stage UASB: Micronutrient Transportation
Authors: S. Jaikeaw, S. Chavadej
Abstract:
The objective of this study was to determine the effects of COD loading rate on hydrogen and methane production and micronutrient transportation using a two-stage upflow anaerobic sludge blanket (UASB) system under mesophilic temperature (37°C) with a constant recycle ratio of 1:1 (final effluent flow rate: feed flow rate). The first (hydrogen) UASB unit having 4 L liquid holding volume was controlled at pH 5.5 but the second (methane) UASB unit having 24 L liquid holding volume had no pH control. The two-stage UASB system operated at different COD loading rates from 8 to 20 kg/m³d based on total UASB working volume. The results showed that, at the optimum COD loading rate of 13 kg/m³d, the produced gas from the hydrogen UASB unit contained 1.5% H₂, 16.5% CH₄, and 82% CO₂ with H₂S of 252 ppm and also provided a hydrogen yield of 1.66 mL/g COD removed (or 0.56 mL/g COD applied) and a specific hydrogen production rate of 156.85 ml H₂/LRd (or 5.12 ml H₂/g MLVSS d). Under the optimum COD loading rate, the produced gas from the methane UASB unit mainly contained methane and carbon dioxide without hydrogen of 74 and 26%, respectively with hydrogen sulfide of 287 ppm and the system also provided a maximum methane yield of 407.00 mL/g COD removed (or 263.23 mL/g COD applied) and a specific methane production rate of 2081.44 ml CH₄/LRd (or 99.75 ml CH₄/g MLVSS d). Under the optimum COD loading rate, all micronutrients markedly dropped by the sulfide precipitation reactions. The reduction of micronutrients mostly appeared in the methane UASB unit. Under the studied conditions, both Co and Ni were found to be greatly precipitated out, causing the deficiency to microbial activity. It is hypothesized that an addition of both Co and Ni can improve the methanogenic activity.Keywords: hydrogen and methane production, ethanol wastewater, a two-stage upflow anaerobic blanket (UASB) system, mesophillic temperature, microbial concentration (MLVSS), micronutrients
Procedia PDF Downloads 2873283 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 3893282 Influence of Optical Fluence Distribution on Photoacoustic Imaging
Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim
Abstract:
Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging
Procedia PDF Downloads 3783281 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition
Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon
Abstract:
This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery
Procedia PDF Downloads 3493280 Research on the Dynamic Characteristics of Multi-Condition Penetration of Concrete by Warhead-Fuze Systems
Authors: Shaoxiang Wang, Xiangjin Zhang
Abstract:
This study focuses on the overload environment and dynamic response of the core components (i.e., sensors) within the fuze of a warhead-fuze system during penetration of typical targets. Considering the connection structure between the warhead and the fuze, as well as the internal structure of the fuze, a finite element model of the warhead-fuze system penetrating a semi-infinite thick concrete target was constructed using the finite element analysis software LS-DYNA for numerical simulation. The results reveal that the response signal of the sensors inside the warhead-fuze system is larger in magnitude and exhibits greater vibration disturbances compared to the acceleration signal of the warhead. Moreover, the study uncovers the dynamic response characteristics of the sensors within the warhead-fuze system under multi-condition scenarios involving different target strengths and penetration angles. The research findings provide a sound basis for the rapid and effective prediction of the dynamic response and overload characteristics of critical modules within the fuze under different working conditions, offering technical references for the integrated design of warhead-fuze systems.Keywords: penetration, warhead-fuze system, multi-condition, acceleration overload signal, numerical simulation
Procedia PDF Downloads 263279 Characteristics of Tremella fuciformis and Annulohypoxylon stygium for Optimal Cultivation Conditions
Authors: Eun-Ji Lee, Hye-Sung Park, Chan-Jung Lee, Won-Sik Kong
Abstract:
We analyzed the DNA sequence of the ITS (Internal Transcribed Spacer) region of the 18S ribosomal gene and compared it with the gene sequence of T. fuciformis and Hypoxylon sp. in the BLAST database. The sequences of collected T. fuciformis and Hypoxylon sp. have over 99% homology in the T. fuciformis and Hypoxylon sp. sequence BLAST database. In order to select the optimal medium for T. fuciformis, five kinds of a medium such as Potato Dextrose Agar (PDA), Mushroom Complete Medium (MCM), Malt Extract Agar (MEA), Yeast extract (YM), and Compost Extract Dextrose Agar (CDA) were used. T. fuciformis showed the best growth on PDA medium, and Hypoxylon sp. showed the best growth on MCM. So as to investigate the optimum pH and temperature, the pH range was set to pH4 to pH8 and the temperature range was set to 15℃ to 35℃ (5℃ degree intervals). Optimum culture conditions for the T. fuciformis growth were pH5 at 25℃. Hypoxylon sp. were pH6 at 25°C. In order to confirm the most suitable carbon source, we used fructose, galactose, saccharose, soluble starch, inositol, glycerol, xylose, dextrose, lactose, dextrin, Na-CMC, adonitol. Mannitol, mannose, maltose, raffinose, cellobiose, ethanol, salicine, glucose, arabinose. In the optimum carbon source, T. fuciformis is xylose and Hypoxylon sp. is arabinose. Using the column test, we confirmed sawdust a suitable for T. fuciformis, since the composition of sawdust affects the growth of fruiting bodies of T. fuciformis. The sawdust we used is oak tree, pine tree, poplar, birch, cottonseed meal, cottonseed hull. In artificial cultivation of T. fuciformis with sawdust medium, T. fuciformis and Hypoxylon sp. showed fast mycelial growth on mixture of oak tree sawdust, cottonseed hull, and wheat bran.Keywords: cultivation, optimal condition, tremella fuciformis, nutritional source
Procedia PDF Downloads 2103278 Cognitive SATP for Airborne Radar Based on Slow-Time Coding
Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu
Abstract:
Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.Keywords: space-time adaptive processing (STAP), airborne radar, signal-to-clutter ratio, slow-time coding
Procedia PDF Downloads 2733277 Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture
Authors: T. S. Ramesh Babu, D. Neeraja
Abstract:
This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage.Keywords: Class F fly ash, compressive strength, modulus of elasticity, natural admixture, splitting tensile strength, unit weight
Procedia PDF Downloads 2893276 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks
Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi
Abstract:
In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward
Procedia PDF Downloads 5813275 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames
Procedia PDF Downloads 3753274 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal
Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik
Abstract:
Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system
Procedia PDF Downloads 2373273 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test
Authors: Amritanshu Sandilya, M. V. Shah
Abstract:
Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer
Procedia PDF Downloads 92