Search results for: neural stem/precursor cells
5118 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 3985117 Identification of Impact Load and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem
Procedia PDF Downloads 1235116 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 1645115 Sitagliptin-AntiCD4 Mab Conjugated T Cell Targeting Therapy for the Effective Treatment of Type I Diabetes
Authors: T. Mahesh, M. K. Samanta
Abstract:
Antibody dug conjugate (ADC’s) concept is a less explored and more trustable for the treatment of Type 1 diabetes (T1D). T1D is thought to arise from selective immunologically mediated destruction of the insulin- producing β-cells in the pancreatic islets of Langerhans with consequent insulin deficiency. It is evident that type 1 diabetes can be conquered, by 1) to stop immune destruction of βcells, 2) to replace or regenerate β-cells, and 3) to preserve β-cell function and mass. Many studies found that the regulatory T cells (Tregs) are crucial for the maintenance of immunological tolerance. Immune tolerance is liable for the activation of the Th1 response. The important role of Th1 response in pathology of T1D entails the depletion of CD4+ T cells, which initiated the use of anti-CD4 monoclonal antibodies (mAbs) against CD4+ T cells to interfere with induction of T1D.Insulin is regulated by Glucagon-Like Peptide-1 hormone (GLP-1) which also stimulates β-cells proliferation as the half-life of GLP-1 harmone is less due to rapid degradation by DPP-IV enzyme an alternative DPP-IV-inhibitors can increase the half-life of GLP-1 through which it conquers the replacement and reserve β-cells mass. Thus in the present study Anti-CD4 mAb was conjugated with Sitagliptin which is a DPP-IV inhibitor Drug loaded in Nanoparticles through Sulfo-MBS cross-linkers. The above study can be an effective approach for treatment to overcome the Passive subcutaneous insulin therapy.Keywords: antibody drug conjugates, anti-CD4 Mab, DPP IV inhibitors, GLP-1
Procedia PDF Downloads 3895114 A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water
Authors: Ximena Castillo, Jaime Pizarro
Abstract:
This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials.Keywords: fly ash, mesoporous materials, SAMMS, sulfate
Procedia PDF Downloads 1775113 Antimicrobial and Phytochemical Screening of Stem Bark Extracts of Lovoa trichiliodes (Harm) and Trichilia heudelotii Planc (Harm)
Authors: Benjamin O. Opawale, Anthony K. Onifade, Ayodele O. Ogundare
Abstract:
The phytochemical and antimicrobial activities of stem bark extracts (cold water, ethanol and acetone) of Lovoa trichiliodes and Trichilia heudelotii were investigated using standard methods. The percentage yield of the extracts ranged from 3.90 to 6.53% and 9.63 to 10.20% respectively for the plant materials. Phytochemical screening of the plant materials revealed the presence of alkaloids, saponins, tannins, phlobatanins, phenols, anthraquinones and glycosides. Terpenes, cardenolides and flavonoids were absent in the two plants. All the extracts remarkably inhibited the growth of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Salmonella typhii, Aspergillus flavus, Candida albicans and Candida glabrata. The mean diameter of the zone of inhibition exhibited by the extracts was between 8.00 and 22.33mm while the minimum inhibitory concentration (MIC) was between 2.5 and 200mg/ml. However, the cold water extracts of L. trichiliodes stem bark exhibited no inhibitory activity against the organisms. The results of this investigation confirmed the folkloric uses of these plants for the treatment of various infectious diseases.Keywords: antimicrobial, infectious diseases, phytochemical, T. heudelotii
Procedia PDF Downloads 2865112 Discover a New Technique for Cancer Recognition by Analysis and Determination of Fractal Dimension Images in Matlab Software
Authors: Saeedeh Shahbazkhany
Abstract:
Cancer is a terrible disease that, if not diagnosed early, therapy can be difficult while it is easily medicable if it is diagnosed in early stages. So it is very important for cancer diagnosis that medical procedures are performed. In this paper we introduce a new method. In this method, we only need pictures of healthy cells and cancer cells. In fact, where we suspect cancer, we take a picture of cells or tissue in that area, and then take some pictures of the surrounding tissues. Then, fractal dimension of images are calculated and compared. Cancer can be easily detected by comparing the fractal dimension of images. In this method, we use Matlab software.Keywords: Matlab software, fractal dimension, cancer, surrounding tissues, cells or tissue, new method
Procedia PDF Downloads 3545111 Genotoxic and Cytotoxic Effects of Methidathion Pesticide
Authors: Mohammad Y. Alfaifi
Abstract:
Methidathion (MTD) (Trade name Supracide®) is a non-systemic organophosphorus insecticide used intensively worldwide including Saudi Arabia. However, there is a lack in published studies about it's genotoxicity. In this study we evaluated MTD toxicity in rat bone marrow cells (in vivo) and in lymphocytes (in vitro) using different doses based on LD50. MNNCE (Micronucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index) and NDCI (nuclear division cytotoxicity index), necrotic and apoptotic cells were recorded in rat's bone marrow samples. CA, MI (number of cells undergoing mitosis) necrotic, and apoptotic cells recorded in lymphocytes. Results showed that there was a slight increase in the frequency of micronucleated bone marrow cells. However, no structural chromosomal aberrations were detected in vivo or in vitro. On the other hand, the results showed significant increase in necrotic and apoptotic cells following MTD administration in a dose-dependent manner comparing to positive and negative control groups. In light of these results, MTD can be considered highly cytotoxic and moderate genotoxic, and precaution should be taken when using MTD.Keywords: methidathion, micronucleus, NDI, NDCI, toxicity, chromosomal aberrations
Procedia PDF Downloads 4125110 Detecting Earnings Management via Statistical and Neural Networks Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange
Procedia PDF Downloads 4215109 Fluoride-Induced Stress and Its Association with Bone Developmental Pathway in Osteosarcoma Cells
Authors: Deepa Gandhi, Pravin K. Naoghare, Amit Bafana, Krishnamurthi Kannan, Saravanadevi Sivanesana
Abstract:
Oxidative stress is known to depreciate normal functioning of osteoblast cells. Present study reports oxidative/inflammatory signatures in fluoride exposed human osteosarcoma (HOS) cells and its possible association with the genes involved in bone developmental pathway. Microarray analysis was performed to understand the possible molecular mechanisms of stress-mediated bone lose in HOS cells. Cells were chronically exposed with sub-lethal concentration of fluoride. Global gene expression is profiling revealed 34 up regulated and 2598 down-regulated genes, which were associated with several biological processes including bone development, osteoblast differentiation, stress response, inflammatory response, apoptosis, regulation of cell proliferation. Microarray data were further validated through qRT-PCR and western blot analyses using key representative genes. Based on these findings, it can be proposed that chronic exposure of fluoride may impair bone development via oxidative and inflammatory stress. The present finding also provides important biological clues, which will be helpful for the development of therapeutic targets against diseases related bone.Keywords: bone, HOS cells, microarray, stress
Procedia PDF Downloads 3775108 Promoting Stem Education and a Cosmic Perspective by Using 21st Century Science of Learning
Authors: Rohan Roberts
Abstract:
The purpose of this project was to collaborate with a group of high-functioning, more-able students (aged 15-18) to promote STEM Education and a love for science by bringing a cosmic perspective into the classroom and high school environment. This was done using 21st century science of learning, a focus on the latest research on Neuroeducation, and modern pedagogical methods based on Howard Gardner's theory of Multiple Intelligences, Bill Lucas’ theory of New Smarts, and Sir Ken Robinson’s recommendations on encouraging creativity. The result was an increased sense of passion, excitement, and wonder about science in general, and about the marvels of space and the universe in particular. In addition to numerous unique and innovative science-based initiatives, clubs, workshops, and science trips, this project also saw a marked rise in student-teacher collaboration in science learning and in student engagement with the general public through the press, social media, and community-based initiatives. This paper also outlines the practical impact that bringing a cosmic perspective into the classroom has had on the lives, interests, and future career prospects of the students involved in this endeavour.Keywords: cosmic perspective, gifted and talented, neuro-education, STEM education
Procedia PDF Downloads 3345107 Enhancement in the Absorption Efficiency of Gaas/Inas Nanowire Solar Cells through a Decrease in Light Reflection
Authors: Latef M. Ali, Farah A. Abed
Abstract:
In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV.Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, fdtd simulation
Procedia PDF Downloads 725106 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 4165105 Relative Entropy Used to Determine the Divergence of Cells in Single Cell RNA Sequence Data Analysis
Authors: An Chengrui, Yin Zi, Wu Bingbing, Ma Yuanzhu, Jin Kaixiu, Chen Xiao, Ouyang Hongwei
Abstract:
Single cell RNA sequence (scRNA-seq) is one of the effective tools to study transcriptomics of biological processes. Recently, similarity measurement of cells is Euclidian distance or its derivatives. However, the process of scRNA-seq is a multi-variate Bernoulli event model, thus we hypothesize that it would be more efficient when the divergence between cells is valued with relative entropy than Euclidian distance. In this study, we compared the performances of Euclidian distance, Spearman correlation distance and Relative Entropy using scRNA-seq data of the early, medial and late stage of limb development generated in our lab. Relative Entropy is better than other methods according to cluster potential test. Furthermore, we developed KL-SNE, an algorithm modifying t-SNE whose definition of divergence between cells Euclidian distance to Kullback–Leibler divergence. Results showed that KL-SNE was more effective to dissect cell heterogeneity than t-SNE, indicating the better performance of relative entropy than Euclidian distance. Specifically, the chondrocyte expressing Comp was clustered together with KL-SNE but not with t-SNE. Surprisingly, cells in early stage were surrounded by cells in medial stage in the processing of KL-SNE while medial cells neighbored to late stage with the process of t-SNE. This results parallel to Heatmap which showed cells in medial stage were more heterogenic than cells in other stages. In addition, we also found that results of KL-SNE tend to follow Gaussian distribution compared with those of the t-SNE, which could also be verified with the analysis of scRNA-seq data from another study on human embryo development. Therefore, it is also an effective way to convert non-Gaussian distribution to Gaussian distribution and facilitate the subsequent statistic possesses. Thus, relative entropy is potentially a better way to determine the divergence of cells in scRNA-seq data analysis.Keywords: Single cell RNA sequence, Similarity measurement, Relative Entropy, KL-SNE, t-SNE
Procedia PDF Downloads 3405104 Effects of Phase and Morphology on the Electrochemical and Electrochromic Performances of Tungsten Oxide and Tungsten-Molybdenum Oxide Nanostructures
Authors: Jinjoo Jung, Hayeon Won, Doyeong Jeong, Do Hyung Kim
Abstract:
We present the electrochemical and electrochromic performance of the novel crystalline tungsten oxide and tungsten-molybdenum oxide nanostructures synthesized by utilizing solvo-thermal method with hexacarbonyl tungsten, hexacarbonyl molybdenum, and ethyl alcohol. The morphology and phase of the prepared products were highly dependent on the synthesis conditions such as synthesis and annealing temperature, synthesis time, and precursor ratio. The tungsten oxide nanostructures (TCNs) have urchin-like or spherical nanostructure with different phase of W18O49 and WO3. The morphology of tungsten-molybdenum oxide nanostructures (TMONs) is basically similar to that of TCNs. However, the morphology and phase of TMONs are more diverse and are strongly dependent on the composition ratios of W/Mo in the precursor. The electrochemical properties depending on their morphologies and phases of TCNs and TMONs are compared using cyclic voltammetry and galvanostatic charge/discharge tests. The relationship between the electrochromic performance and phase structures/morphologies of nanostructured TCNs and TMONs are systematically investigated.Keywords: electrochemical, electrochromic, tungsten oxide, tungsten-molybdenum oxide
Procedia PDF Downloads 5905103 Using Baculovirus Expression Vector System to Express Envelop Proteins of Chikungunya Virus in Insect Cells and Mammalian Cells
Authors: Tania Tzong, Chao-Yi Teng, Tzong-Yuan Wu
Abstract:
Currently, Chikungunya virus (CHIKV) transmitted to humans by Aedes mosquitoes has distributed from Africa to Southeast Asia, South America, and South Europe. However, little is known about the antigenic targets for immunity, and there are no licensed vaccines or specific antiviral treatments for the disease caused by CHIKV. Baculovirus has been recognized as a novel vaccine vector with attractive characteristic features of an optional vaccine delivery vehicle. This approach provides the safety and efficacy of CHIKV vaccine. In this study, bi-cistronic recombinant baculoviruses vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP were produced. Both recombinant baculovirus can express EGFP reporter gene in insect cells to facilitate the recombinant virus isolation and purification. Examination of vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP showed that this recombinant baculovirus could induce syncytium formation in insect cells. Unexpectedly, the immunofluorescence assay revealed the expression of E1 and E2 of CHIKV structural proteins in insect cells infected by vAc-CMV-CHIKV26S-Rhir-EGFP. This result may imply that the CMV promoter can induce the transcription of CHIKV26S in insect cells. There are also E1 and E2 expression in mammalian cells transduced by vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP. The expression of E1 and E2 proteins of insect and mammalian cells was validated again by Western blot analysis. The vector construction with dual tandem promoters, which is polyhedrin and CMV promoter, has higher expression of the E1 and E2 of CHIKV structural proteins than the vector construction with CMV promoter only. Most of the E1 and E2 proteins expressed in mammalian cells were glycosylated. In the future, the expression of structural proteins of CHIKV in mammalian cells is expected can form virus-like particle, so it could be used as a vaccine for chikungunya virus.Keywords: chikungunya virus, virus-like particle, vaccines, baculovirus expression vector system
Procedia PDF Downloads 4235102 Quantitative Analysis of Presence, Consciousness, Subconsciousness, and Unconsciousness
Authors: Hooshmand Kalayeh
Abstract:
The human brain consists of reptilian, mammalian, and thinking brain. And mind consists of conscious, subconscious, and unconscious parallel neural-net programs. The primary objective of this paper is to propose a methodology for quantitative analysis of neural-nets associated with these mental activities in the neocortex. The secondary objective of this paper is to suggest a methodology for quantitative analysis of presence; the proposed methodologies can be used as a first-step to measure, monitor, and understand consciousness and presence. This methodology is based on Neural-Networks (NN), number of neuron in each NN associated with consciousness, subconsciouness, and unconsciousness, and number of neurons in neocortex. It is assumed that the number of neurons in each NN is correlated with the associated area and volume. Therefore, online and offline visualization techniques can be used to identify these neural-networks, and online and offline measurement methods can be used to measure areas and volumes associated with these NNs. So, instead of the number of neurons in each NN, the associated area or volume also can be used in the proposed methodology. This quantitative analysis and associated online and offline measurements and visualizations of different Neural-Networks enable us to rewire the connections in our brain for a more balanced living.Keywords: brain, mind, consciousness, presence, sub-consciousness, unconsciousness, skills, concentrations, attention
Procedia PDF Downloads 3145101 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 1225100 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis
Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta
Abstract:
Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer
Procedia PDF Downloads 5365099 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1755098 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization
Procedia PDF Downloads 1695097 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior
Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj
Abstract:
New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.Keywords: CS pedagogy, student research, cluster computing, machine learning
Procedia PDF Downloads 1025096 Effect of Leaks in Solid Oxide Electrolysis Cells Tested for Durability under Co-Electrolysis Conditions
Authors: Megha Rao, Søren H. Jensen, Xiufu Sun, Anke Hagen, Mogens B. Mogensen
Abstract:
Solid oxide electrolysis cells have an immense potential in converting CO2 and H2O into syngas during co-electrolysis operation. The produced syngas can be further converted into hydrocarbons. This kind of technology is called power-to-gas or power-to-liquid. To produce hydrocarbons via this route, durability of the cells is still a challenge, which needs to be further investigated in order to improve the cells. In this work, various nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode supported or YSZ electrolyte supported cells, cerium gadolinium oxide (CGO) barrier layer, and an oxygen electrode are investigated for durability under co-electrolysis conditions in both galvanostatic and potentiostatic conditions. While changing the gas on the oxygen electrode, keeping the fuel electrode gas composition constant, a change in the gas concentration arc was observed by impedance spectroscopy. Measurements of open circuit potential revealed the presence of leaks in the setup. It is speculated that the change in concentration impedance may be related to the leaks. Furthermore, the cells were also tested under pressurized conditions to find an inter-play between the leak rate and the pressure. A mathematical modeling together with electrochemical and microscopy analysis is presented.Keywords: co-electrolysis, durability, leaks, gas concentration arc
Procedia PDF Downloads 1455095 Screening Active Components in YPFS for Regulating Initiative Key Factors in Allergic Inflammation
Authors: Dandan Shen, Hui-zhu Wang, Xi Yu, LiLi Gui, Xiao Wei, Xiao-yan Jiang, Da-wei Wang, Min Hong
Abstract:
Yu-ping-feng-san (YPFS) is a clinical medicine for asthma and other allergic diseases, but the mechanism of YPFS on relapse of allergy is unclear. Currently, people come to realize the epithelial cells(EC) play a key role in stimulating and regulating local immune response. The study of thymic stromal lymphopoietin(TSLP derived from EC provides an important evidence that the EC can regulate immune response to stimulate allergic response. In this study, we observed the effect of YPFS on TSLP in vivo and in vitro. We established a method by using bronchial epithelial cells (16HBE) for screening potential bioactive components by HPLC-MS in YPFS and then analyzed the components in serum containing YPFS by UPLC-MS. The results showed that YPFS could decrease TSLP protein level in OVA-sensitized mice and 16HBE cells. Five components combing with the 16HBE cells were both detected in the serum.Keywords: TSLP, bronchial epithelial cells, cell-binding, drug-containing serum
Procedia PDF Downloads 5125094 Formaldehyde Degradation from Indoor Air by Encapsulated Microbial Cells
Authors: C. C. Castro, T. Senechal, D. Lahem, A. L. Hantson
Abstract:
Formaldehyde is one of the most representative volatile organic compounds present in the indoor air of residential units and workplaces. Increased attention has been given to this toxic compound because of its carcinogenic effect in health. Biological or enzymatic transformation is being explored to degrade this pollutant. Pseudomonas putida is a bacteria able to synthesize formaldehyde dehydrogenase, an enzyme known to use formaldehyde as a substrate and transform it into less toxic compounds. The immobilization of bacterial cells in the surface of different supports through spraying or dip-coating is herein proposed. The determination of the enzymatic activity on the coated surfaces was performed as well as the study of its effect on formaldehyde degradation in an isolated chamber. Results show that the incorporation of microbial cells able to synthesize depolluting enzymes can be an innovative, low-cost, effective and environmentally friendly solution for indoor air depollution.Keywords: cells encapsulation, formaldehyde, formaldehyde dehydrogenase, indoor air depollution
Procedia PDF Downloads 1775093 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 4355092 Nyiragongo: An Active Volcano at Risk of Eruption without Precursor Signs
Authors: Emmanuel Havugimana
Abstract:
If there is a natural phenomenon that could endanger the lives of countless people in Central Africa, it is the possible eruption of the Nyiragongo Volcano. This one is 3,470 m above sea level and has a summit formed by a crater 1.2 km in diameter. Its composite is made up of many layers of lava and tephras from the Great Rift Valley located in the Democratic Republic of Congo. It is also located in the region of the volcanic mountains near the city of Goma in Congo and near the city of Gisenyi in Rwanda. Nyiragongo represents an imminent danger considering that its magma has a very low silica content and is thus quite fluid. Its slopes are also high and slippery, and the lava takes advantage of this to flow up to 100 km. Lately, its eruptions took place in May 2002, resumed in May 2021, and they were faster than before. The volcano remains active even today. All these factors make it among the most dangerous volcanoes in the world. On top of that, no one knows when the next eruption will take place, especially since it can also occur without any warning signs. Unfortunately, volcanological monitoring services in Congo are non-existent, and that is why this document concludes that Nyiragongo could if nothing is done in this regard, ravage the two neighboring towns: Goma in Congo and Gisenyi in Rwanda. It also proposes solutions that may contribute to preventing the expected dangers in this context.Keywords: Nyiragongo, volcanic eruption, precursor signs, active volcano
Procedia PDF Downloads 935091 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile
Procedia PDF Downloads 1525090 Environmental Restoration Science in New York Harbor - Community Based Restoration Science Hubs, or “STEM Hubs”
Authors: Lauren B. Birney
Abstract:
The project utilizes the Billion Oyster Project (BOP-CCERS) place-based “restoration through education” model to promote computational thinking in NYC high school teachers and their students. Key learning standards such as Next Generation Science Standards and the NYC CS4All Equity and Excellence initiative are used to develop a computer science curriculum that connects students to their Harbor through hands-on activities based on BOP field science and educational programming. Project curriculum development is grounded in BOP-CCERS restoration science activities and data collection, which are enacted by students and educators at two Restoration Science STEM Hubs or conveyed through virtual materials. New York City Public School teachers with relevant experience are recruited as consultants to provide curriculum assessment and design feedback. The completed curriculum units are then conveyed to NYC high school teachers through professional learning events held at the Pace University campus and led by BOP educators. In addition, Pace University educators execute the Summer STEM Institute, an intensive two-week computational thinking camp centered on applying data analysis tools and methods to BOP-CCERS data. Both qualitative and quantitative analyses were performed throughout the five-year study. STEM+C – Community Based Restoration STEM Hubs. STEM Hubs are active scientific restoration sites capable of hosting school and community groups of all grade levels and professional scientists and researchers conducting long-term restoration ecology research. The STEM Hubs program has grown to include 14 STEM Hubs across all five boroughs of New York City and focuses on bringing in-field monitoring experience as well as coastal classroom experience to students. Restoration Science STEM Hubs activities resulted in: the recruitment of 11 public schools, 6 community groups, 12 teachers, and over 120 students receiving exposure to BOP activities. Field science protocols were designed exclusively around the use of the Oyster Restoration Station (ORS), a small-scale in situ experimental platforms which are suspended from a dock or pier. The ORS is intended to be used and “owned” by an individual school, teacher, class, or group of students, whereas the STEM Hub is explicitly designed as a collaborative space for large-scale community-driven restoration work and in-situ experiments. The ORS is also an essential tool in gathering Harbor data from disparate locations and instilling ownership of the research process amongst students. As such, it will continue to be used in that way. New and previously participating students will continue to deploy and monitor their own ORS, uploading data to the digital platform and conducting analysis of their own harbor-wide datasets. Programming the STEM Hub will necessitate establishing working relationships between schools and local research institutions. NYHF will provide introductions and the facilitation of initial workshops in school classrooms. However, once a particular STEM Hub has been established as a space for collaboration, each partner group, school, university, or CBO will schedule its own events at the site using the digital platform’s scheduling and registration tool. Monitoring of research collaborations will be accomplished through the platform’s research publication tool and has thus far provided valuable information on the projects’ trajectory, strategic plan, and pathway.Keywords: environmental science, citizen science, STEM, technology
Procedia PDF Downloads 965089 Breast Cancer Cellular Immunotherapies
Authors: Zahra Shokrolahi, Mohammad Reza Atashzar
Abstract:
The goals of treating patients with breast cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. The term of cellular immunotherapy refers to the administration of living cells to a patient; this type of immunotherapy can be active, such as a dendritic cell (DC) vaccine, in that the cells can stimulate an anti-tumour response in the patient, or the therapy can be passive, whereby the cells have intrinsic anti-tumour activity; this is known as adoptive cell transfer (ACT) and includes the use of autologous or allogeneic lymphocytes that may, or may not, be modified. The most important breast cancer cellular immunotherapies involving the use of T cells and natural killer (NK) cells in adoptive cell transfer, as well as dendritic cells vaccines. T cell-based therapies including tumour-infiltrating lymphocytes (TILs), engineered TCR-T cells, chimeric antigen receptor (CAR T cell), Gamma-delta (γδ) T cells, natural killer T (NKT) cells. NK cell-based therapies including lymphokine-activated killers (LAK), cytokine-induced killer (CIK) cells, CAR-NK cells. Adoptive cell therapy has some advantages and disadvantages some. TILs cell strictly directed against tumor-specific antigens but are inactive against tumor changes due to immunoediting. CIK cell have MHC-independent cytotoxic effect and also need concurrent high dose IL-2 administration. CAR T cell are MHC-independent; overcome tumor MHC molecule downregulation; potent in recognizing any cell surface antigen (protein, carbohydrate or glycolipid); applicable to a broad range of patients and T cell populations; production of large numbers of tumor-specific cells in a moderately short period of time. Meanwhile CAR T cells capable of targeting only cell surface antigens; lethal toxicity due to cytokine storm reported. Here we present the most popular cancer cellular immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials .To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.Keywords: breast cancer , cell therapy , CAR T cell , CIK cells
Procedia PDF Downloads 130