Search results for: highly scalable programming model
20519 World Agricultural Commodities Prices Dynamics and Volatilities Impacts on Commodities Importation and Food Security in West African Economic and Monetary Union Countries
Authors: Baoubadi Atozou, Koffi Akakpo
Abstract:
Since the decade 2000, the use of foodstuffs such as corn, wheat, and soybeans in biofuel production has been growing sharply in the United States, Canada, and Europe. Thus, prices for these agricultural products are rising in the world market. These cereals are the most important source of calorific energy for West African Economic and Monetary Union (WAEMU) countries members’ population. These countries are highly dependent on imports of most of these products. Thereby, rising prices can have an important impact on import levels and consequently on food security in these countries. This study aims to analyze the interrelationship between the prices of these commodities and their volatilities, and their effects on imports of these agricultural products by each WAEMU ’country member. The Autoregressive Distributed Lag (ARDL) model, the GARCH Multivariate model, and the Granger Causality Test are used in this investigation. The results show that import levels are highly and significantly sensitive to price changes as well as their volatility. In the short term as well as in the long term, there is a significant relationship between the prices of these products. There is a positive relationship in general between price volatility. And these volatilities have negative effects on the level of imports. The market characteristics affect food security in these countries, especially access to food for vulnerable and low-income populations. The policies makers must adopt viable strategies to increase agricultural production and limit their dependence on imports.Keywords: price volatility, import of agricultural products, food safety, WAEMU
Procedia PDF Downloads 19120518 Model Averaging for Poisson Regression
Authors: Zhou Jianhong
Abstract:
Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again.Keywords: model averaging, poission regression, Kullback-Leibler distance, statistics
Procedia PDF Downloads 52020517 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method
Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang
Abstract:
Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series
Procedia PDF Downloads 27420516 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation
Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes
Abstract:
The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization
Procedia PDF Downloads 31520515 Electrospun Zinc Oxide Nanowires as Highly Sensitive Piezoelectric Transduction Elements for Nano-Scale Devices
Authors: K. Brince Paul, Nagendra Pratap Singh, Shiv Govind Singh, Siva Rama Krishna Vanjari
Abstract:
In this paper, we report optimized procedure for synthesizing highly oriented, horizontally aligned, Zinc oxide (ZnO) nanowires targeted towards developing highly sensitive piezoelectric transduction elements. The synthesis was carried out using Electrospinning technique, a facile, robust, low cost technique for producing nanowires. The as-synthesized ZnO nanowires were characterized by X-ray powder diffraction (XRD), Field Emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX).The Piezoelectric behavior of these nanowires was characterized using Peizoelectric Force microscopy (PFM). A very high d33 coefficient of 23.1 pm/V obtained through the PFM measurements is an indicative of its potential application towards developing miniaturized piezoelectric transduction elements for nanoscale devices.Keywords: electrospinning, piezoelectric, technique, zinc oxide
Procedia PDF Downloads 40520514 Conducting Computational Physics Laboratory Course Using Cloud Storage Space
Authors: Ajay Wadhwa
Abstract:
A Laboratory course on computational physics is different from the conventional lab course on other topics of physics like Mechanics, Heat, Optics, etc. because it involves active participation of the teacher as well as one-to-one interaction between teacher and the student. The course content requires the teacher to teach programming language as well as numerical methods along with their applications in physics. The task becomes more daunting when about 90% of the students in the class have no previous experience of any programming language. In the presented work, we have described a methodology for conducting the computational physics course by using the Google Drive and Dropitto.me cloud storage services. We have evaluated the performance in a class of sixty students by dividing them equally into four groups. One of the groups was made the peer group on whom the presented methodology was tested. The other groups were taught by using conventional method of classroom lectures. In order to assess our methodology, we analyzed the performance of students in four class tests. A study of certain statistical parameters like the mean, standard deviation, and Z-test hypothesis revealed that the cyber methodology based on cloud storage is more efficient than the conventional method of teaching.Keywords: computational Physics, Z-test hypothesis, cloud storage, Google drive
Procedia PDF Downloads 30020513 Skills Needed Amongst Secondary School Students for Artificial Intelligence Development in Southeast Nigeria
Authors: Chukwuma Mgboji
Abstract:
Since the advent of Artificial Intelligence, robots have become a major stay in developing societies. Robots are deployed in Education, Health, Food and in other spheres of life. Nigeria a country in West Africa has a very low profile in the advancement of Artificial Intelligence especially in the grass roots. The benefits of Artificial intelligence are not fully maximised and harnessed. Advances in artificial intelligence are perceived as impossible or observed as irrelevant. This study seeks to ascertain the needed skills for the development of artificialintelligence amongst secondary schools in Nigeria. The study focused on South East Nigeria with Five states namely Imo, Abia, Ebonyi, Anambra and Enugu. The sample size is 1000 students drawn from Five Government owned Universities offering Computer Science, Computer Education, Electronics Engineering across the Five South East states. Survey method was used to solicit responses from respondents. The findings from the study identified mathematical skills, analytical skills, problem solving skills, computing skills, programming skills, algorithm skills amongst others. The result of this study to the best of the author’s knowledge will be highly beneficial to all stakeholders involved in the advancements and development of artificial intelligence.Keywords: artificial intelligence, secondary school, robotics, skills
Procedia PDF Downloads 15520512 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling
Procedia PDF Downloads 29820511 Fault Prognostic and Prediction Based on the Importance Degree of Test Point
Authors: Junfeng Yan, Wenkui Hou
Abstract:
Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate
Procedia PDF Downloads 37720510 Synchrotron Radiation and Inverse Compton Scattering in Astrophysical Plasma
Authors: S. S. Sathiesh
Abstract:
The aim of this project is to study the radiation mechanism synchrotron and Inverse Compton scattering. Theoretically, we discussed spectral energy distribution for both. Programming is done for plotting the graph of Power-law spectrum for synchrotron Radiation using fortran90. The importance of power law spectrum was discussed and studied to infer its physical parameters from the model fitting. We also discussed how to infer the physical parameters from the theoretically drawn graph, we have seen how one can infer B (magnetic field of the source), γ min, γ max, spectral indices (p1, p2) while fitting the curve to the observed data.Keywords: blazars/quasars, beaming, synchrotron radiation, Synchrotron Self Compton, inverse Compton scattering, mrk421
Procedia PDF Downloads 41320509 Implementing a Database from a Requirement Specification
Abstract:
Creating a database scheme is essentially a manual process. From a requirement specification, the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time-consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that the first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore, this method is a step forward in finding a solution that requires little or no user intervention.Keywords: information extraction, natural language processing, relation extraction
Procedia PDF Downloads 26120508 Wireless Backhauling for 5G Small Cell Networks
Authors: Abdullah A. Al Orainy
Abstract:
Small cell backhaul solutions need to be cost-effective, scalable, and easy to install. This paper presents an overview of small cell backhaul technologies. Wireless solutions including TV white space, satellite, sub-6 GHz radio wave, microwave and mmWave with their backhaul characteristics are discussed. Recent research on issues like beamforming, backhaul architecture, precoding and large antenna arrays, and energy efficiency for dense small cell backhaul with mmWave communications is reviewed. Recent trials of 5G technologies are summarized.Keywords: backhaul, small cells, wireless, 5G
Procedia PDF Downloads 51320507 Robustness Conditions for the Establishment of Stationary Patterns of Drosophila Segmentation Gene Expression
Authors: Ekaterina M. Myasnikova, Andrey A. Makashov, Alexander V. Spirov
Abstract:
First manifestation of a segmentation pattern in the early Drosophila development is the formation of expression domains (along with the main embryo axis) of genes belonging to the trunk gene class. Highly variable expression of genes from gap family in early Drosophila embryo is strongly reduced by the start of gastrulation due to the gene cross-regulation. The dynamics of gene expression is described by a gene circuit model for a system of four gap genes. It is shown that for the formation of a steep and stationary border by the model it is necessary that there existed a nucleus (modeling point) in which the gene expression level is constant in time and hence is described by a stationary equation. All the rest genes expressed in this nucleus are in a dynamic equilibrium. The mechanism of border formation associated with the existence of a stationary nucleus is also confirmed by the experiment. An important advantage of this approach is that properties of the system in a stationary nucleus are described by algebraic equations and can be easily handled analytically. Thus we explicitly characterize the cross-regulation properties necessary for the robustness and formulate the conditions providing this effect through the properties of the initial input data. It is shown that our formally derived conditions are satisfied for the previously published model solutions.Keywords: drosophila, gap genes, reaction-diffusion model, robustness
Procedia PDF Downloads 36620506 Acceleration of Lagrangian and Eulerian Flow Solvers via Graphics Processing Units
Authors: Pooya Niksiar, Ali Ashrafizadeh, Mehrzad Shams, Amir Hossein Madani
Abstract:
There are many computationally demanding applications in science and engineering which need efficient algorithms implemented on high performance computers. Recently, Graphics Processing Units (GPUs) have drawn much attention as compared to the traditional CPU-based hardware and have opened up new improvement venues in scientific computing. One particular application area is Computational Fluid Dynamics (CFD), in which mature CPU-based codes need to be converted to GPU-based algorithms to take advantage of this new technology. In this paper, numerical solutions of two classes of discrete fluid flow models via both CPU and GPU are discussed and compared. Test problems include an Eulerian model of a two-dimensional incompressible laminar flow case and a Lagrangian model of a two phase flow field. The CUDA programming standard is used to employ an NVIDIA GPU with 480 cores and a C++ serial code is run on a single core Intel quad-core CPU. Up to two orders of magnitude speed up is observed on GPU for a certain range of grid resolution or particle numbers. As expected, Lagrangian formulation is better suited for parallel computations on GPU although Eulerian formulation represents significant speed up too.Keywords: CFD, Eulerian formulation, graphics processing units, Lagrangian formulation
Procedia PDF Downloads 41720505 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics
Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou
Abstract:
Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle
Procedia PDF Downloads 32520504 The Suitability of Agile Practices in Healthcare Industry with Regard to Healthcare Regulations
Authors: Mahmood Alsaadi, Alexei Lisitsa
Abstract:
Nowadays, medical devices rely completely on software whether as whole software or as embedded software, therefore, the organization that develops medical device software can benefit from adopting agile practices. Using agile practices in healthcare software development industries would bring benefits such as producing a product of a high-quality with low cost and in short period. However, medical device software development companies faced challenges in adopting agile practices. These due to the gaps that exist between agile practices and the requirements of healthcare regulations such as documentation, traceability, and formality. This research paper will conduct a study to investigate the adoption rate of agile practice in medical device software development, and they will extract and outline the requirements of healthcare regulations such as Food and Drug Administration (FDA), Health Insurance Portability and Accountability Act (HIPAA), and Medical Device Directive (MDD) that affect directly or indirectly on software development life cycle. Moreover, this research paper will evaluate the suitability of using agile practices in healthcare industries by analyzing the most popular agile practices such as eXtream Programming (XP), Scrum, and Feature-Driven Development (FDD) from healthcare industry point of view and in comparison with the requirements of healthcare regulations. Finally, the authors propose an agile mixture model that consists of different practices from different agile methods. As result, the adoption rate of agile practices in healthcare industries still low and agile practices should enhance with regard to requirements of the healthcare regulations in order to be used in healthcare software development organizations. Therefore, the proposed agile mixture model may assist in minimizing the gaps existing between healthcare regulations and agile practices and increase the adoption rate in the healthcare industry. As this research paper part of the ongoing project, an evaluation of agile mixture model will be conducted in the near future.Keywords: adoption of agile, agile gaps, agile mixture model, agile practices, healthcare regulations
Procedia PDF Downloads 23620503 Comparative Study and Parallel Implementation of Stochastic Models for Pricing of European Options Portfolios using Monte Carlo Methods
Authors: Vinayak Bassi, Rajpreet Singh
Abstract:
Over the years, with the emergence of sophisticated computers and algorithms, finance has been quantified using computational prowess. Asset valuation has been one of the key components of quantitative finance. In fact, it has become one of the embryonic steps in determining risk related to a portfolio, the main goal of quantitative finance. This study comprises a drawing comparison between valuation output generated by two stochastic dynamic models, namely Black-Scholes and Dupire’s bi-dimensionality model. Both of these models are formulated for computing the valuation function for a portfolio of European options using Monte Carlo simulation methods. Although Monte Carlo algorithms have a slower convergence rate than calculus-based simulation techniques (like FDM), they work quite effectively over high-dimensional dynamic models. A fidelity gap is analyzed between the static (historical) and stochastic inputs for a sample portfolio of underlying assets. In order to enhance the performance efficiency of the model, the study emphasized the use of variable reduction methods and customizing random number generators to implement parallelization. An attempt has been made to further implement the Dupire’s model on a GPU to achieve higher computational performance. Furthermore, ideas have been discussed around the performance enhancement and bottleneck identification related to the implementation of options-pricing models on GPUs.Keywords: monte carlo, stochastic models, computational finance, parallel programming, scientific computing
Procedia PDF Downloads 16220502 Reverse Logistics End of Life Products Acquisition and Sorting
Authors: Badli Shah Mohd Yusoff, Khairur Rijal Jamaludin, Rozetta Dollah
Abstract:
The emerging of reverse logistics and product recovery management is an important concept in reconciling economic and environmental objectives through recapturing values of the end of life product returns. End of life products contains valuable modules, parts, residues and materials that can create value if recovered efficiently. The main objective of this study is to explore and develop a model to recover as much of the economic value as reasonably possible to find the optimality of return acquisition and sorting to meet demand and maximize profits over time. In this study, the benefits that can be obtained for remanufacturer is to develop demand forecasting of used products in the future with uncertainty of returns and quality of products. Formulated based on a generic disassembly tree, the proposed model focused on three reverse logistics activity, namely refurbish, remanufacture and disposal incorporating all plausible means quality levels of the returns. While stricter sorting policy, constitute to the decrease amount of products to be refurbished or remanufactured and increases the level of discarded products. Numerical experiments carried out to investigate the characteristics and behaviour of the proposed model with mathematical programming model using Lingo 16.0 for medium-term planning of return acquisition, disassembly (refurbish or remanufacture) and disposal activities. Moreover, the model seeks an analysis a number of decisions relating to trade off management system to maximize revenue from the collection of use products reverse logistics services through refurbish and remanufacture recovery options. The results showed that full utilization in the sorting process leads the system to obtain less quantity from acquisition with minimal overall cost. Further, sensitivity analysis provides a range of possible scenarios to consider in optimizing the overall cost of refurbished and remanufactured products.Keywords: core acquisition, end of life, reverse logistics, quality uncertainty
Procedia PDF Downloads 30320501 A Framework for Blockchain Vulnerability Detection and Cybersecurity Education
Authors: Hongmei Chi
Abstract:
The Blockchain has become a necessity for many different societal industries and ordinary lives including cryptocurrency technology, supply chain, health care, public safety, education, etc. Therefore, training our future blockchain developers to know blockchain programming vulnerability and I.T. students' cyber security is in high demand. In this work, we propose a framework including learning modules and hands-on labs to guide future I.T. professionals towards developing secure blockchain programming habits and mitigating source code vulnerabilities at the early stages of the software development lifecycle following the concept of Secure Software Development Life Cycle (SSDLC). In this research, our goal is to make blockchain programmers and I.T. students aware of the vulnerabilities of blockchains. In summary, we develop a framework that will (1) improve students' skills and awareness of blockchain source code vulnerabilities, detection tools, and mitigation techniques (2) integrate concepts of blockchain vulnerabilities for IT students, (3) improve future IT workers’ ability to master the concepts of blockchain attacks.Keywords: software vulnerability detection, hands-on lab, static analysis tools, vulnerabilities, blockchain, active learning
Procedia PDF Downloads 9920500 A New Reliability based Channel Allocation Model in Mobile Networks
Authors: Anujendra, Parag Kumar Guha Thakurta
Abstract:
The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. Thus, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non-dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.Keywords: base station, channel, GA, pareto-optimal, reliability
Procedia PDF Downloads 40820499 Optimal Planning of Transmission Line Charging Mode During Black Start of a Hydroelectric Unit
Authors: Mohammad Reza Esmaili
Abstract:
After the occurrence of blackouts, the most important subject is how fast the electric service is restored. Power system restoration is an immensely complex issue and there should be a plan to be executed within the shortest time period. This plan has three main stages of black start, network reconfiguration and load restoration. In the black start stage, operators and experts may face several problems, for instance, the unsuccessful connection of the long high-voltage transmission line connected to the electrical source. In this situation, the generator may be tripped because of the unsuitable setting of its line charging mode or high absorbed reactive power. In order to solve this problem, the line charging process is defined as a nonlinear programming problem, and it is optimized by using GAMS software in this paper. The optimized process is performed on a grid that includes a 250 MW hydroelectric unit and a 400 KV transmission system. Simulations and field test results show the effectiveness of optimal planning.Keywords: power system restoration, black start, line charging mode, nonlinear programming
Procedia PDF Downloads 8020498 Implementation and Validation of a Damage-Friction Constitutive Model for Concrete
Authors: L. Madouni, M. Ould Ouali, N. E. Hannachi
Abstract:
Two constitutive models for concrete are available in ABAQUS/Explicit, the Brittle Cracking Model and the Concrete Damaged Plasticity Model, and their suitability and limitations are well known. The aim of the present paper is to implement a damage-friction concrete constitutive model and to evaluate the performance of this model by comparing the predicted response with experimental data. The constitutive formulation of this material model is reviewed. In order to have consistent results, the parameter identification and calibration for the model have been performed. Several numerical simulations are presented in this paper, whose results allow for validating the capability of the proposed model for reproducing the typical nonlinear performances of concrete structures under different monotonic and cyclic load conditions. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated model.Keywords: Abaqus, concrete, constitutive model, numerical simulation
Procedia PDF Downloads 36520497 Investigation of Supply and Demand Trends in Diabetes Nutrition Counseling
Authors: Maedeh Gharazi
Abstract:
Distinguishing proof of entrepreneurial open doors in the field of nutrition counseling is a focal issue in utilizing nutrition experts and addressing the needs of patients with chronic diseases better. To this end, this review has been directed keeping in mind the end goal to investigate the supply and interest patterns of diabetes sustenance advising as a fundamental stride toward recognizing the entrepreneurial open doors for nutrition advisors in Tehran, Iran. To execute this expressive overview concentrate on, a survey in light of Likert scale was sent via email to 100 dynamic experts in the field of nutrition counseling services in Tehran, of whom 52 reacted to its inquiries. At that point, the mean estimations of members' reactions were ascertained utilizing SPSS programming and contrasted to each other. The outcome acquired in view of members' reactions uncovered that the requirement for "healthful guiding as a treatment group" was basically not met in diverse age, training and salary gatherings of diabetic patients. Along these lines, nutrition counseling as a treatment group can be considered as a suitable field for entrepreneurial exercises.Keywords: nutrition counseling, chronic diseases, diabetes, likert scale, SPSS programming
Procedia PDF Downloads 34320496 Numerical Study of Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade
Authors: Shidvash Vakilipour, Mehdi Habibnia, Rouzbeh Riazi, Masoud Mohammadi, Mohammad H. Sabour
Abstract:
The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. Firstly, the influences of grid resolution on the results of k-ε, k-ω, and LES turbulence models are investigated and compared with those of experimental measurements. A numerical pressure under-shoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on a coarse and fine grid resolutions. Secondly, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop is also been calculated at incidence angle between -20◦ and +8◦. The minimum total pressure drop is obtained by k-ω and LES at the design point.Keywords: low pressure turbine, off-design performance, openFOAM, turbulence modeling, flow separation
Procedia PDF Downloads 36220495 Advancing Sustainable Futures: A Study on Low Carbon Ventures
Authors: Gaurav Kumar Sinha
Abstract:
As the world grapples with climate challenges, this study highlights the instrumental role of AWS services in amplifying the impact of LCVs. Their ability to harness the cloud, data analytics, and scalable infrastructure offered by AWS empowers LCVs to innovate, scale, and drive meaningful change in the quest for a sustainable future. This study serves as a rallying cry, urging stakeholders to recognize, embrace, and maximize the potential of AWS-powered solutions in advancing sustainable and resilient global initiatives.Keywords: low carbon ventures, sustainability solutions, AWS services, data analytics
Procedia PDF Downloads 6520494 Auto Calibration and Optimization of Large-Scale Water Resources Systems
Authors: Arash Parehkar, S. Jamshid Mousavi, Shoubo Bayazidi, Vahid Karami, Laleh Shahidi, Arash Azaranfar, Ali Moridi, M. Shabakhti, Tayebeh Ariyan, Mitra Tofigh, Kaveh Masoumi, Alireza Motahari
Abstract:
Water resource systems modelling have constantly been a challenge through history for human being. As the innovative methodological development is evolving alongside computer sciences on one hand, researches are likely to confront more complex and larger water resources systems due to new challenges regarding increased water demands, climate change and human interventions, socio-economic concerns, and environment protection and sustainability. In this research, an automatic calibration scheme has been applied on the Gilan’s large-scale water resource model using mathematical programming. The water resource model’s calibration is developed in order to attune unknown water return flows from demand sites in the complex Sefidroud irrigation network and other related areas. The calibration procedure is validated by comparing several gauged river outflows from the system in the past with model results. The calibration results are pleasantly reasonable presenting a rational insight of the system. Subsequently, the unknown optimized parameters were used in a basin-scale linear optimization model with the ability to evaluate the system’s performance against a reduced inflow scenario in future. Results showed an acceptable match between predicted and observed outflows from the system at selected hydrometric stations. Moreover, an efficient operating policy was determined for Sefidroud dam leading to a minimum water shortage in the reduced inflow scenario.Keywords: auto-calibration, Gilan, large-scale water resources, simulation
Procedia PDF Downloads 33520493 Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II
Authors: Tao Yin, Zeqiang Zhang, Wei Liang, Yanqing Zeng, Yu Zhang
Abstract:
To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.Keywords: waste disposal, disassembly line balancing, multi-robot station, robotic efficiency difference, HNSGA-II
Procedia PDF Downloads 23720492 Modeling Operating Theater Scheduling and Configuration: An Integrated Model in Health-Care Logistics
Authors: Sina Keyhanian, Abbas Ahmadi, Behrooz Karimi
Abstract:
We present a multi-objective binary programming model which considers surgical cases are scheduling among operating rooms and the configuration of surgical instruments in limited capacity hospital trays, simultaneously. Many mathematical models have been developed previously in the literature addressing different challenges in health-care logistics such as assigning operating rooms, leveling beds, etc. But what happens inside the operating rooms along with the inventory management of required instruments for various operations, and also their integration with surgical scheduling have been poorly discussed. Our model considers the minimization of movements between trays during a surgery which recalls the famous cell formation problem in group technology. This assumption can also provide a major potential contribution to robotic surgeries. The tray configuration problem which consumes surgical instruments requirement plan (SIRP) and sequence of surgical procedures based on required instruments (SIRO) is nested inside the bin packing problem. This modeling approach helps us understand that most of the same-output solutions will not be necessarily identical when it comes to the rearrangement of surgeries among rooms. A numerical example has been dealt with via a proposed nested simulated annealing (SA) optimization approach which provides insights about how various configurations inside a solution can alter the optimal condition.Keywords: health-care logistics, hospital tray configuration, off-line bin packing, simulated annealing optimization, surgical case scheduling
Procedia PDF Downloads 28220491 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal
Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik
Abstract:
Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system
Procedia PDF Downloads 23720490 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)
Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos
Abstract:
The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.Keywords: rotor noise, acoustic tool, GPU Programming, UAV noise
Procedia PDF Downloads 401