Search results for: gradient boost
653 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting
Procedia PDF Downloads 454652 The Research of Industrial Space Characteristics, Layout, and Strategy in Metropolitan Area in China: In Case of Wuhan
Authors: Min Zhou, Kaixuan Lin, Yaping Huang
Abstract:
In this paper, the industrial space of metropolitan area in Wuhan is taken as a sample. First of all, it puts forward that the structure of service economy, circle gradient relocation and high degree of regional collaboration are the rules of industrial spatial development in the modern world cities. Secondly, using the economic statistics and land use vector data (1993, 2004, 2010, and 2013) of Wuhan, it analyzes the present situation of industry development and the characteristics of industrial space layout from three aspects of the industrial economic structure, industrial layout, and industrial regional synergy. Then, based on the industrial development regularity of world cities, it puts forward to construct the industrial spatial level of ‘complex industrial concentration area + modular industry unit’ and the industrial spatial structure of ‘13525’. Finally, it comes up with the optimization tactics of the industrial space’s transformation in the future under the background of new economic era.Keywords: big city of metropolitan area, industrial space, characteristics, layout, strategy
Procedia PDF Downloads 381651 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations
Authors: Tushar K. Routh
Abstract:
If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.Keywords: DNN robustness, decision boundary, local curvature, network complexity
Procedia PDF Downloads 81650 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0
Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang
Abstract:
This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.Keywords: drift, electrical, and cooling calculation, integrated field, magnetic field gradient, multipole errors, quadrupole
Procedia PDF Downloads 148649 Using Electro-Biogrouting to Stabilize of Soft Soil
Authors: Hamed A. Keykha, Hadi Miri
Abstract:
This paper describes a new method of soil stabilisation, electro-biogrouting (EBM), for improvement of soft soil with low hydraulic conductivity. This method uses an applied voltage gradient across the soil to induce the ions and bacteria cells through the soil matrix, resulting in CaCO3 precipitation and an increase of the soil shear strength in the process. The EBM were used effectively with two injection methods; bacteria injection and products of bacteria injection. The bacteria cells, calcium ions and urea were moved across the soil by electromigration and electro osmotic flow respectively. The products of bacteria (CO3-2) were moved by electromigration. The results showed that the undrained shear strength of the soil increased from 6 to 65 and 70 kPa for first and second injection method respectively. The injection of carbonate solution and calcium could be effectively flowed in the clay soil compare to injection of bacteria cells. The detection of CaCO3 percentage and its corresponding water content across the specimen showed that the increase of undrained shear strength relates to the deposit of calcite crystals between soil particles.Keywords: Sporosarcina pasteurii, electrophoresis, electromigration, electroosmosis, biocement
Procedia PDF Downloads 531648 First-Principles Modeling of Nanoparticle Magnetization, Chaining, and Motion
Authors: Pierce Radecki, Pulkit Malik, Bharath Ramaswamy, Ben Shapiro
Abstract:
The ability to effectively design and test magnetic nanoparticles for controlled movement has been an elusive goal in the design of these particles. Magnetic nanoparticles of various characteristics have been created for use towards therapeutic effects, however the challenge of designing for controlled movement remains unmet. A step towards design in this aspect is a first principles model that captures and predicts the behaviors of particles in a magnetic field. The model is governed by four forces acting on the particles, the magnetic gradient, the dipole-dipole forces, the steric forces, and the viscous drag force. The particles are multi-core or single core, and incorporate a preferred magnetization axis. Particles exhibit behaviors, such as chaining, in simulations that are similar to those witnessed through experimentation. Currently, experimental results are being compared to the modeling results for verification of the model, through the analysis of chaining behaviors. This modeling system will be used in designing magnetic nanoparticles for specific chaining and movement behaviors.Keywords: controlled movement, modeling, magnetic nanoparticles, nanoparticle design
Procedia PDF Downloads 310647 Genetic Diversity Analysis in Triticum Aestivum Using Microsatellite Markers
Authors: Prachi Sharma, Mukesh Kumar Rana
Abstract:
In the present study, the simple sequence repeat(SSR) markers have been used in analysis of genetic diversity of 37 genotypes of Triticum aestivum. The DNA was extracted using cTAB method. The DNA was quantified using the fluorimeter. The annealing temperatures for 27 primer pairs were standardized using gradient PCR, out of which 16 primers gave satisfactory amplification at temperature ranging from 50-62⁰ C. Out of 16 polymorphic SSR markers only 10 SSR primer pairs were used in the study generating 34 reproducible amplicons among 37 genotypes out of which 30 were polymorphic. Primer pairs Xgwm533, Xgwm 160, Xgwm 408, Xgwm 120, Xgwm 186, Xgwm 261 produced maximum percent of polymorphic bands (100%). The bands ranged on an average of 3.4 bands per primer. The genetic relationship was determined using Jaccard pair wise similarity co-efficient and UPGMA cluster analysis with NTSYS Pc.2 software. The values of similarity index range from 0-1. The similarity coefficient ranged from 0.13 to 0.97. A minimum genetic similarity (0.13) was observed between VL 804 and HPW 288, meaning they are only 13% similar. More number of available SSR markers can be useful for supporting the genetic diversity analysis in the above wheat genotypes.Keywords: wheat, genetic diversity, microsatellite, polymorphism
Procedia PDF Downloads 617646 Financial Risk Tolerance and Its Impact on Terrorism-Tourism Relation in Pakistan
Authors: Sania Sana, Afnan Nasim, Usman Malik, Maroof Tahir
Abstract:
The aim of this research is to scrutinize the interdependent relationship between terrorism and behavioral changes in the tourism activities in Pakistan with the moderating impact of a unique variable titled 'Financial Risk Tolerance'. The article looks at the inter-reliant relationship with the alleged political and economic aspects and behavioral changes in the tourists and the consumers by these variables over time. The researchers used many underlying theories like the catastrophe theory by (Svyantek, Deshon and Siler 1991), information integration theory (Anderson 1981, 1982) and prospect theory (Kahneman and Tversky 1979) to shape the study’s framework as per tourist decision making model. A sample of around 110 locals was used for this purpose and the data was gathered by convenience sampling. The responses were analyzed using regression analysis. The results exhibited how terrorism along with the influence of financial risk tolerance had inclined a behavioral shift in the travelling patterns and vacation destination choice of the local tourists. Lastly, the paper proposes a number of suggestive measures for the tourism industry and the legislative bodies to ensure the safety of travelers and to boost the tourist activities in the vacation industry of Pakistan.Keywords: terrorism, tourism, financial risk tolerance, tourist decision-making, destination choice
Procedia PDF Downloads 240645 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units
Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz
Abstract:
Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting
Procedia PDF Downloads 226644 Cardiovascular Disease Data Analysis Using Machine Learning Models
Authors: Ranveet Saggu, Saad Bin Ahmed
Abstract:
Cardiovascular Disease (CVD) is the leading cause of death worldwide. One of its main manifestations, myocardial infarction (commonly known as a heart attack), occurs about 750,000 times a year, caused by insufficient blood flow to a portion of the heart muscle. A quick and accurate diagnosis of a heart attack or heart failure is crucial in the treatment of the patient. The aim of this research project is to improve the prediction of cardiovascular diseases by automating risk assessment using binary classifiers. The methodology includes Exploratory Data Analysis (EDA), which helps to obtain information about the dataset with the help of visualizations and metrics. Additionally, Feature Engineering techniques is employed to address missing values, outliers, feature extraction, and normalizing the dataset. Subsequently, various classification machine learning algorithms are trained, and their accuracy along with other metrics are evaluated to identify the most efficient model in terms of processing time and predictive performance.Keywords: cardiovascular disease, machine learning, deci- sion trees, logistic regression, k-nearest neighbor, xgboost, random forest, gradient boosting
Procedia PDF Downloads 14643 Pressure Losses on Realistic Geometry of Tracheobronchial Tree
Authors: Michaela Chovancova, Jakub Elcner
Abstract:
Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculating the pressure losses in the real lungs is due to its complexity and diversity lengthy and inefficient process. For these calculations is necessary the lungs to slightly simplify (same cross-section over the length of individual generation) or use one of the models of lungs. The simplification could cause deviations from real values. The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli equation and continuity equation. Then, evaluate the desirability of using this formula to determine the pressure loss across the bronchial tree.Keywords: pressure gradient, airways resistance, real geometry of bronchial tree, breathing
Procedia PDF Downloads 327642 Health Outcomes and Economic Growth Nexus: Testing for Long-run Relationships and Causal Links in Nigeria
Authors: Haruna Modibbo Usman, Mustapha Muktar, Nasiru Inuwa
Abstract:
This paper examined the long run relationship between health outcomes and economic growth in Nigeria from 1961 to 2012. Using annual time series data, Augmented Dickey-Fuller (ADF) test is conducted to check the stochastic properties of the variables. Also, the long run relationship among the variables is confirmed based on Johansen Multivariate Cointegration approach whereas the long run and short run dynamics are observed using Vector Error Correction Mechanism (VECM). In addition, VEC Granger causality test is employed to examine the direction of causality among the variables. On the whole, the results obtained revealed the existence of a long run relationship between health outcomes and economic growth in Nigeria and that both life expectancy and crude death rate as measures of health are found to have a long run negative and statistically significant impact on the economic growth over the study period. This is further buttressed by the results of Granger causality test which indicated the existence of unidirectional causality running from life expectancy and crude death rate to economic growth. The study therefore, calls for governments at various levels to create preconditions for health improvements in Nigeria in order to boost the level of health outcomes.Keywords: cointegration, economic growth, Granger causality, health outcomes, VECM
Procedia PDF Downloads 495641 Electronic and Optical Properties of Orthorhombic NdMnO3 with the Modified Becke-Johnson Potential
Authors: B. Bouadjemi, S. Bentata, T. Lantri, A. Abbad, W. Benstaali, A. Zitouni, S. Cherid
Abstract:
We investigate the electronic structure, magnetic and optical properties of the orthorhombic NdMnO3 through density-functional-theory (DFT) calculations using both generalized gradient approximation GGA and GGA+U approaches, the exchange and correlation effects are taken into account by an orbital independent modified Becke Johnson (MBJ). The predicted band gaps using the MBJ exchange approximation show a significant improvement over previous theoretical work with the common GGA and GGA+U very closer to the experimental results. Band gap dependent optical parameters like dielectric constant, index of refraction, absorption coefficient, reflectivity and conductivity are calculated and analyzed. We find that when using MBJ we have obtained better results for band gap of NdMnO3 than in the case of GGA and GGA+U. The values of band gap founded in this work by MBJ are in a very good agreement with corresponding experimental values compared to other calculations. This comprehensive theoretical study of the optoelectronic properties predicts that this material can be effectively used in optical devices.Keywords: DFT, optical properties, absorption coefficient, strong correlation, MBJ, orthorhombic NdMnO3, optoelectronic
Procedia PDF Downloads 914640 Simulation to Detect Virtual Fractional Flow Reserve in Coronary Artery Idealized Models
Authors: Nabila Jaman, K. E. Hoque, S. Sawall, M. Ferdows
Abstract:
Coronary artery disease (CAD) is one of the most lethal diseases of the cardiovascular diseases. Coronary arteries stenosis and bifurcation angles closely interact for myocardial infarction. We want to use computer-aided design model coupled with computational hemodynamics (CHD) simulation for detecting several types of coronary artery stenosis with different locations in an idealized model for identifying virtual fractional flow reserve (vFFR). The vFFR provides us the information about the severity of stenosis in the computational models. Another goal is that we want to imitate patient-specific computed tomography coronary artery angiography model for constructing our idealized models with different left anterior descending (LAD) and left circumflex (LCx) bifurcation angles. Further, we want to analyze whether the bifurcation angles has an impact on the creation of narrowness in coronary arteries or not. The numerical simulation provides the CHD parameters such as wall shear stress (WSS), velocity magnitude and pressure gradient (PGD) that allow us the information of stenosis condition in the computational domain.Keywords: CAD, CHD, vFFR, bifurcation angles, coronary stenosis
Procedia PDF Downloads 160639 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 80638 Non-Signaling Chemokine Receptor CCRL1 and Its Active Counterpart CCR7 in Prostate Cancer
Authors: Yiding Qu, Svetlana V. Komarova
Abstract:
Chemokines acting through their cognate chemokine receptors guide the directional migration of the cell along the chemokine gradient. Several chemokine receptors were recently identified as non-signaling (decoy), based on their ability to bind the chemokine but produce no measurable signal in the cell. The function of these decoy receptors is not well understood. We examined the expression of a decoy receptor CCRL1 and a signaling receptor that binds to the same ligands, CCR7, in prostate cancer using publically available microarray data (www.oncomine.org). The expression of both CCRL1 and CCR7 increased in an approximately half of prostate carcinoma samples and the majority of metastatic cancer samples compared to normal prostate. Moreover, the expression of CCRL1 positively correlated with the expression of CCR7. These data suggest that CCR7 and CCRL1 can be used as clinical markers for the early detection of transformation from carcinoma to metastatic cancer. In addition, these data support our hypothesis that the non-signaling chemokine receptors actively stimulate cell migration.Keywords: bioinformatics, cell migration, decoy receptor, meta-analysis, prostate cancer
Procedia PDF Downloads 475637 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3
Authors: Meriem Harmel, Houari Khachai
Abstract:
We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.Keywords: DFT, fluoroperovskite, electronic structure, optical properties
Procedia PDF Downloads 483636 Ab Initio Studies of Structural and Thermal Properties of Aluminum Alloys
Authors: M. Saadi, S. E. H. Abaidia, M. Y. Mokeddem.
Abstract:
We present the results of a systematic and comparative study of the bulk, the structural properties, and phonon calculations of aluminum alloys using several exchange–correlations functional theory (DFT) with different plane-wave basis pseudo potential techniques. Density functional theory implemented by the Vienna Ab Initio Simulation Package (VASP) technique is applied to calculate the bulk and the structural properties of several structures. The calculations were performed for within several exchange–correlation functional and pseudo pententials available in this code (local density approximation (LDA), generalized gradient approximation (GGA), projector augmented wave (PAW)). The lattice dynamic code “PHON” developed by Dario Alfè was used to calculate some thermodynamics properties and phonon dispersion relation frequency distribution of Aluminium alloys using the VASP LDA PAW and GGA PAW results. The bulk and structural properties of the calculated structures were compared to different experimental and calculated works.Keywords: DFT, exchange-correlation functional, LDA, GGA, pseudopotential, PAW, VASP, PHON, phonon dispersion
Procedia PDF Downloads 489635 Temperature Distribution Inside Hybrid photovoltaic-Thermoelectric Generator Systems and their Dependency on Exposition Angles
Authors: Slawomir Wnuk
Abstract:
Due to widespread implementation of the renewable energy development programs the, solar energy use increasing constantlyacross the world. Accordingly to REN21, in 2020, both on-grid and off-grid solar photovoltaic systems installed capacity reached 760 GWDCand increased by 139 GWDC compared to previous year capacity. However, the photovoltaic solar cells used for primary solar energy conversion into electrical energy has exhibited significant drawbacks. The fundamentaldownside is unstable andlow efficiencythe energy conversion being negatively affected by a rangeof factors. To neutralise or minimise the impact of those factors causing energy losses, researchers have come out withvariedideas. One ofpromising technological solutionsoffered by researchers is PV-MTEG multilayer hybrid system combiningboth photovoltaic cells and thermoelectric generators advantages. A series of experiments was performed on Glasgow Caledonian University laboratory to investigate such a system in operation. In the experiments, the solar simulator Sol3A series was employed as a stable solar irradiation source, and multichannel voltage and temperature data loggers were utilised for measurements. The two layer proposed hybrid systemsimulation model was built up and tested for its energy conversion capability under a variety of the exposure angles to the solar irradiation with a concurrent examination of the temperature distribution inside proposed PV-MTEG structure. The same series of laboratory tests were carried out for a range of various loads, with the temperature and voltage generated being measured and recordedfor each exposure angle and load combination. It was found that increase of the exposure angle of the PV-MTEG structure to an irradiation source causes the decrease of the temperature gradient ΔT between the system layers as well as reduces overall system heating. The temperature gradient’s reduction influences negatively the voltage generation process. The experiments showed that for the exposureangles in the range from 0° to 45°, the ‘generated voltage – exposure angle’ dependence is reflected closely by the linear characteristics. It was also found that the voltage generated by MTEG structures working with the optimal load determined and applied would drop by approximately 0.82% per each 1° degree of the exposure angle increase. This voltage drop occurs at the higher loads applied, getting more steep with increasing the load over the optimal value, however, the difference isn’t significant. Despite of linear character of the generated by MTEG voltage-angle dependence, the temperature reduction between the system structure layers andat tested points on its surface was not linear. In conclusion, the PV-MTEG exposure angle appears to be important parameter affecting efficiency of the energy generation by thermo-electrical generators incorporated inside those hybrid structures. The research revealedgreat potential of the proposed hybrid system. The experiments indicated interesting behaviour of the tested structures, and the results appear to provide valuable contribution into thedevelopment and technological design process for large energy conversion systems utilising similar structural solutions.Keywords: photovoltaic solar systems, hybrid systems, thermo-electrical generators, renewable energy
Procedia PDF Downloads 93634 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 46633 Characterization of Nickel Based Metallic Superconducting Materials
Authors: Y. Benmalem , A. Abbad, W. Benstaali, T. Lantri
Abstract:
Density functional theory is used to investigate the.the structural, electronic, and magnetic properties of the cubic anti-perovskites InNNi3 and ZnNNi3. The structure of antiperovskite also called (perovskite-inverse) identical to the perovskite structure of the general formula ABX3, where A is a main group (III–V) element or a metallic element, B is carbon or nitrogen, and X is a transition metal, displays a wide range of interesting physical properties, such as giant magnetoresistance. Elastic and electronic properties were determined using generalized gradient approximation (GGA), and local spin density approximation (LSDA) approaches, ), as implemented in the Wien2k computer package. The results show that the two compounds are strong ductile and satisfy the Born-Huang criteria, so they are mechanically stable at normal conditions. Electronic properties show that the two compounds studied are metallic and non-magnetic. The studies of these compounds have confirmed the effectiveness of the two approximations and the ground-state properties are in good agreement with experimental data and theoretical results available.Keywords: anti-perovskites, elastic anisotropy, electronic band structure, first-principles calculations
Procedia PDF Downloads 289632 University Lecturers' Attitudes towards Learner Autonomy in the EFL Context in Vietnam
Authors: Nhung T. Bui
Abstract:
Part of the dilemma facing educational reforms in Vietnam as in other Asian contexts is how to encourage more independence in students’ learning approaches. Since 2005, the Ministry of Education and Training of Vietnam has included the students’ ability to learn independently in its national education objectives. While learner autonomy has been viewed as a goal in the teaching and learning English as a foreign language (EFL) and there has been a considerable literature on strategies to stimulate autonomy in learners, teachers’ voices have rarely been heard. Given that teachers play a central role in helping their students to be more autonomous, especially in an inherent Confucian heritage culture like Vietnam, their attitudes towards learner autonomy should be investigated before any practical implementations could be undertaken. This paper reports significant findings of a survey questionnaire with 262 lecturers of English from 5 universities in Hanoi, Vietnam giving opinions regarding the practices and prospects of learner autonomy in their classrooms. The study reveals that lecturers perceive they should be more responsible than their students in all class-related activities; they most appreciate their students’ ability to learn cooperatively and that they consider stimulating students’ interest as the most important teaching strategy to promote learner autonomy. Lecturers, then, are strongly suggested to gradually ‘empower’ their students through the application of out-of-classroom activities; of learning activities which requires collaboration and team spirit; and of activities which could boost students’ interest in learning English.Keywords: English as a foreign language, higher education, learner autonomy, Vietnam
Procedia PDF Downloads 269631 Investigating Convective Boiling Heat Transfer Characteristics of R-1234ze and R-134a Refrigerants in a Microfin and Smooth Tube
Authors: Kaggwa Abdul, Chi-Chuan Wang
Abstract:
This research is based on R-1234ze that is considered to substitute R-134a due to its low global warming potential in a microfin tube with outer diameter 9.52 mm, number of fins 70, and fin height 0.17 mm. In comparison, a smooth tube with similar geometries was used to study pressure drop and heat transfer coefficients related to the two fluids. The microfin tube was brazed inside a stainless steel tube and heated electrically. T-type thermocouples used to measure the temperature distribution during the phase change process. The experimental saturation temperatures and refrigerant mass velocities varied from 10 – 20°C and 50 – 300 kg/m2s respectively. The vapor quality from 0.1 to 0.9, and heat flux ranged from 5 – 11kW/m2. The results showed that heat transfer performance of R-134a in both microfin and smooth tube was better than R-1234ze especially at mass velocities above G = 50 kg/m2s. However, at low mass velocities below G = 100 kg/m2s R-1234ze yield better heat transfer coefficients than R-134a. The pressure gradient of R-1234ze was markedly higher than that of R-134a at all mass flow rates.Keywords: R-1234ze and R-134a, horizontal flow boiling, pressure drop, heat transfer coefficients, micro-fin and smooth tubes
Procedia PDF Downloads 284630 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection
Procedia PDF Downloads 174629 Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma
Authors: Sandeep Kumar, Naveen Gupta
Abstract:
Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation.Keywords: rippled collisionless plasma, cosh-gaussian laser beam, ponderomotive force, variational technique, nonlinear current density
Procedia PDF Downloads 206628 Investigation of Magnetic and Magneto-Optical Properties of Copper Cobalt Ferrite Nanoparticles
Authors: Mohammad Moradi
Abstract:
In this study, copper cobalt ferrite nanoparticles were synthesized by the chemical formula Co1- xCuxFe2O4 and (x = 0, 0.2, 0.4, 0.6, 0.8, 1) by co-precipitation method. The X-ray diffraction pattern of the samples confirmed the single-phase spinel structure of the fabricated nanoparticles, and the average size of the crystals was calculated from the entire width of the diffraction peak with the highest intensity and Scherrer’s equation. Using transmission electron microscope images, the nanoparticle size was about 10 nm. The magnetic properties of copper cobalt ferrite nanoparticles were measured by Alternative Gradient Force Magnetometer (AGFM), and it was seen that with increasing substitution of copper Cations instead of cobalt Cations in the samples, the amount of induction decreased and the saturation magnetization first increased and then decreased. In order to investigate Faraday’s effect on copper-cobalt ferrite nanoparticles, the transmittance values were measured using a laboratory experiment and their graphs were plotted in terms of the applied magnetic field, all of which were in agreement with the theory. In addition, transmittance was investigated for two angular positions of the analyzer at -45˚ and +45˚ in different fields.Keywords: magnetic nanoparticles, Ferrite co-precipitation, Faraday rotation, magneto- optical property
Procedia PDF Downloads 7627 Spatial Spillovers in Forecasting Market Diffusion of Electric Mobility
Authors: Reinhold Kosfeld, Andreas Gohs
Abstract:
In the reduction of CO₂ emissions, the transition to environmentally friendly transport modes has a high significance. In Germany, the climate protection programme 2030 includes various measures for promoting electromobility. Although electric cars at present hold a market share of just over one percent, its stock more than doubled in the past two years. Special measures like tax incentives and a buyer’s premium have been put in place to promote the shift towards electric cars and boost their diffusion. Knowledge of the future expansion of electric cars is required for planning purposes and adaptation measures. With a view of these objectives, we particularly investigate the effect of spatial spillovers on forecasting performance. For this purpose, time series econometrics and panel econometric models are designed for pure electric cars and hybrid cars for Germany. Regional forecasting models with spatial interactions are consistently estimated by using spatial econometric techniques. Regional data on the stocks of electric cars and their determinants at the district level (NUTS 3 regions) are available from the Federal Motor Transport Authority (Kraftfahrt-Bundesamt) for the period 2017 - 2019. A comparative examination of aggregated regional and national predictions provides quantitative information on accuracy gains by allowing for spatial spillovers in forecasting electric mobility.Keywords: electric mobility, forecasting market diffusion, regional panel data model, spatial interaction
Procedia PDF Downloads 178626 Strategies for Student Recruitment in Civil Engineering
Authors: Diogo Ribeiro, Teresa Neto, Ricardo Santos, Maria Portela, Alexandra Trincão
Abstract:
This article describes a set of innovating student recruitment strategies in a 1st cycle course of Civil Engineering, in particular the Civil Engineering Degree from the School of Engineering - Polytechnic of Porto (ISEP-PP). The strategies described were two-fold, targeting, for one, the increment on the number of admissions for the degree’s first year and two, promoting the re-entry of students who, for whatever reason, interrupted their studies. For the first objective, teacher-student binomials were set, whilst for the second, personalized contacts and assistance were provided. The main initiatives were promoted by the team of degree directors and were upheld with the participation and in consonance with the School’s external relations office. These initiatives were put forward as an attempt to minimize the impact of a national and international crisis on the AEC industry when the sustainability of the course was at risk. The implementation of these strategies was assessed on basis of a statistical analysis of the data collected from official sources and by surveys promoted. The results showed that the re-entry boost of former students, attending classes scattered on the three curricular years, secured registrations on some Curricular Units (UC’s) which more than doubled their numbers. Accompanied by a still incipient but regained interest on Civil Engineering it was possible in the short span of three years to reset the number of new students from less than 10 to the currently maximum allowed of 75, and so invert the tendency of an abrupt decline on the total number of students enrolled on the degree.Keywords: civil engineering, monitoring, performance indicators, strategies, student recruitment
Procedia PDF Downloads 221625 Social Media Retailing in the Creator Economy
Authors: Julianne Cai, Weili Xue, Yibin Wu
Abstract:
Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.Keywords: content creation, creator economy, incentive strategy, platform retailing
Procedia PDF Downloads 121624 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms
Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias
Abstract:
High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.Keywords: hybrid meta-heuristic methods, substation construction, resource allocation, time-cost efficiency
Procedia PDF Downloads 157