Search results for: fuzzy object
1340 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification
Procedia PDF Downloads 2381339 Mobile Traffic Management in Congested Cells using Fuzzy Logic
Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh
Abstract:
To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells
Procedia PDF Downloads 1211338 Fuzzy Logic-Based Approach to Predict Fault in Transformer Oil Based on Health Index Using Dissolved Gas Analysis
Authors: Kharisma Utomo Mulyodinoto, Suwarno, Ahmed Abu-Siada
Abstract:
Transformer insulating oil is a key component that can be utilized to detect incipient faults within operating transformers without taking them out of service. Dissolved gas-in-oil analysis has been widely accepted as a powerful technique to detect such incipient faults. While the measurement of dissolved gases within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straightforward as it depends on personnel expertise more than mathematical formulas. In analyzing such data, the generation rate of each dissolved gas is of more concern than the absolute value of the gas. As such, history of dissolved gases within a particular transformer should be archived for future comparison. Lack of such history may lead to misinterpretation of the obtained results. IEEE C57.104-2008 standards have classified the health condition of the transformer based on the absolute value of individual dissolved gases along with the total dissolved combustible gas (TDCG) within transformer oil into 4 conditions. While the technique is easy to implement, it is considered as a very conservative technique and is not widely accepted as a reliable interpretation tool. Moreover, measured gases for the same oil sample can be within various conditions limits and hence, misinterpretation of the data is expected. To overcome this limitation, this paper introduces a fuzzy logic approach to predict the health condition of the transformer oil based on IEEE C57.104-2008 standards along with Roger ratio and IEC ratio-based methods. DGA results of 31 chosen oil samples from 469 transformer oil samples of normal transformers and pre-known fault-type transformers that were collected from Indonesia Electrical Utility Company, PT. PLN (Persero), from different voltage rating: 500/150 kV, 150/20 kV, and 70/20 kV; different capacity: 500 MVA, 60 MVA, 50 MVA, 30 MVA, 20 MVA, 15 MVA, and 10 MVA; and different lifespan, are used to test and establish the fuzzy logic model. Results show that the proposed approach is of good accuracy and can be considered as a platform toward the standardization of the dissolved gas interpretation process.Keywords: dissolved gas analysis, fuzzy logic, health index, IEEE C57.104-2008, IEC ratio method, Roger ratio method
Procedia PDF Downloads 1601337 Models Development of Graphical Human Interface Using Fuzzy Logic
Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares
Abstract:
Graphical Human Interface, also known as supervision software, are increasingly present in industrial processes supported by Supervisory Control and Data Acquisition (SCADA) systems and so it is evident the need for qualified developers. In order to make engineering students able to produce high quality supervision software, method for the development must be created. In this paper we propose model, based on the international standards ISO/IEC 25010 and ISO/IEC 25040, for the development of graphical human interface. When compared with to other methods through experiments, the model here presented leads to improved quality indexes, therefore help guiding the decisions of programmers. Results show the efficiency of the models and the contribution to student learning. Students assessed the training they have received and considered it satisfactory.Keywords: software development models, software quality, supervision software, fuzzy logic
Procedia PDF Downloads 3731336 Block Matching Based Stereo Correspondence for Depth Calculation
Authors: G. Balakrishnan
Abstract:
Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.Keywords: stereo matching, filters, energy matrix, disparity
Procedia PDF Downloads 2151335 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking
Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser
Abstract:
The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC
Procedia PDF Downloads 4291334 MapReduce Algorithm for Geometric and Topological Information Extraction from 3D CAD Models
Authors: Ahmed Fradi
Abstract:
In a digital world in perpetual evolution and acceleration, data more and more voluminous, rich and varied, the new software solutions emerged with the Big Data phenomenon offer new opportunities to the company enabling it not only to optimize its business and to evolve its production model, but also to reorganize itself to increase competitiveness and to identify new strategic axes. Design and manufacturing industrial companies, like the others, face these challenges, data represent a major asset, provided that they know how to capture, refine, combine and analyze them. The objective of our paper is to propose a solution allowing geometric and topological information extraction from 3D CAD model (precisely STEP files) databases, with specific algorithm based on the programming paradigm MapReduce. Our proposal is the first step of our future approach to 3D CAD object retrieval.Keywords: Big Data, MapReduce, 3D object retrieval, CAD, STEP format
Procedia PDF Downloads 5411333 An Application of Fuzzy Analytical Network Process to Select a New Production Base: An AEC Perspective
Authors: Walailak Atthirawong
Abstract:
By the end of 2015, the Association of Southeast Asian Nations (ASEAN) countries proclaim to transform into the next stage of an economic era by having a single market and production base called ASEAN Economic Community (AEC). One objective of the AEC is to establish ASEAN as a single market and one production base making ASEAN highly competitive economic region and competitive with new mechanisms. As a result, it will open more opportunities to enterprises in both trade and investment, which offering a competitive market of US$ 2.6 trillion and over 622 million people. Location decision plays a key role in achieving corporate competitiveness. Hence, it may be necessary for enterprises to redesign their supply chains via enlarging a new production base which has low labor cost, high labor skill and numerous of labor available. This strategy will help companies especially for apparel industry in order to maintain a competitive position in the global market. Therefore, in this paper a generic model for location selection decision for Thai apparel industry using Fuzzy Analytical Network Process (FANP) is proposed. Myanmar, Vietnam and Cambodia are referred for alternative location decision from interviewing expert persons in this industry who have planned to enlarge their businesses in AEC countries. The contribution of this paper lies in proposing an approach model that is more practical and trustworthy to top management in making a decision on location selection.Keywords: apparel industry, ASEAN Economic Community (AEC), Fuzzy Analytical Network Process (FANP), location decision
Procedia PDF Downloads 2371332 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 1911331 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite
Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy
Abstract:
This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite
Procedia PDF Downloads 1551330 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse
Procedia PDF Downloads 4121329 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP
Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost
Abstract:
The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)
Procedia PDF Downloads 4281328 Risk Assessment of Building Information Modelling Adoption in Construction Projects
Authors: Amirhossein Karamoozian, Desheng Wu, Behzad Abbasnejad
Abstract:
Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.Keywords: risk, BIM, fuzzy TOPSIS, construction projects
Procedia PDF Downloads 2311327 The Trajectory of the Ball in Football Game
Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar
Abstract:
Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter
Procedia PDF Downloads 4611326 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects
Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang
Abstract:
As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.Keywords: 4D, 5D, 6D, active BIM
Procedia PDF Downloads 2781325 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).Keywords: motion detection, motion tracking, trajectory analysis, video surveillance
Procedia PDF Downloads 5481324 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes
Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi
Abstract:
The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm
Procedia PDF Downloads 3051323 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture
Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira
Abstract:
This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.Keywords: BNF Syntax, model driven architecture, model-view-controller, transformation, UML
Procedia PDF Downloads 3951322 Bi-Criteria Vehicle Routing Problem for Possibility Environment
Authors: Bezhan Ghvaberidze
Abstract:
A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads.Keywords: combinatorial optimization, Fuzzy Vehicle routing problem, multiple objective programming, possibility theory
Procedia PDF Downloads 4881321 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1491320 Risk Analysis of Leaks from a Subsea Oil Facility Based on Fuzzy Logic Techniques
Authors: Belén Vinaixa Kinnear, Arturo Hidalgo López, Bernardo Elembo Wilasi, Pablo Fernández Pérez, Cecilia Hernández Fuentealba
Abstract:
The expanded use of risk assessment in legislative and corporate decision-making has increased the role of expert judgement in giving data for security-related decision-making. Expert judgements are required in most steps of risk assessment: danger recognizable proof, hazard estimation, risk evaluation, and examination of choices. This paper presents a fault tree analysis (FTA), which implies a probabilistic failure analysis applied to leakage of oil in a subsea production system. In standard FTA, the failure probabilities of items of a framework are treated as exact values while evaluating the failure probability of the top event. There is continuously insufficiency of data for calculating the failure estimation of components within the drilling industry. Therefore, fuzzy hypothesis can be used as a solution to solve the issue. The aim of this paper is to examine the leaks from the Zafiro West subsea oil facility by using fuzzy fault tree analysis (FFTA). As a result, the research has given theoretical and practical contributions to maritime safety and environmental protection. It has been also an effective strategy used traditionally in identifying hazards in nuclear installations and power industries.Keywords: expert judgment, probability assessment, fault tree analysis, risk analysis, oil pipelines, subsea production system, drilling, quantitative risk analysis, leakage failure, top event, off-shore industry
Procedia PDF Downloads 1911319 Developing a Spatial Decision Support System for Rationality Assessment of Land Use Planning Locations in Thai Binh Province, Vietnam
Authors: Xuan Linh Nguyen, Tien Yin Chou, Yao Min Fang, Feng Cheng Lin, Thanh Van Hoang, Yin Min Huang
Abstract:
In Vietnam, land use planning is the most important and powerful tool of the government for sustainable land use and land management. Nevertheless, many of land use planning locations are facing protests from surrounding households due to environmental impacts. In addition, locations are planned completely based on the subjective decisions of planners who are unsupported by tools or scientific methods. Hence, this research aims to assist the decision-makers in evaluating the rationality of planning locations by developing a Spatial Decision Support System (SDSS) using approaches of Geographic Information System (GIS)-based technology, Analytic Hierarchy Process (AHP) multi-criteria-based technique and Fuzzy set theory. An ArcGIS Desktop add-ins named SDSS-LUPA was developed to support users analyzing data and presenting results in friendly format. The Fuzzy-AHP method has been utilized as analytic model for this SDSS. There are 18 planned locations in Hung Ha district (Thai Binh province, Vietnam) as a case study. The experimental results indicated that the assessment threshold higher than 0.65 while the 18 planned locations were irrational because of close to residential areas or close to water sources. Some potential sites were also proposed to the authorities for consideration of land use planning changes.Keywords: analytic hierarchy process, fuzzy set theory, land use planning, spatial decision support system
Procedia PDF Downloads 3811318 Three-Dimensional Computer Graphical Demonstration of Calcified Tissue and Its Clinical Significance
Authors: Itsuo Yokoyama, Rikako Kikuti, Miti Sekikawa, Tosinori Asai, Sarai Tsuyoshi
Abstract:
Introduction: Vascular access for hemodialysis therapy is often difficult, even for experienced medical personnel. Ultrasound guided needle placement have been performed occasionally but is not always helpful in certain cases with complicated vascular anatomy. Obtaining precise anatomical knowledge of the vascular structure is important to prevent access-related complications. With augmented reality (AR) device such as AR glasses, the virtual vascular structure is shown superimposed on the actual patient vessels, thus enabling the operator to maneuver catheter placement easily with free both hands. We herein report our method of AR guided vascular access method in dialysis treatment Methods: Three dimensional (3D) object of the arm with arteriovenous fistula is computer graphically created with 3D software from the data obtained by computer tomography, ultrasound echogram, and image scanner. The 3D vascular object thus created is viewed on the screen of the AR digital display device (such as AR glass or iPad). The picture of the vascular anatomical structure becomes visible, which is superimposed over the real patient’s arm, thereby the needle insertion be performed under the guidance of AR visualization with ease. By this method, technical difficulty in catheter placement for dialysis can be lessened and performed safely. Considerations: Virtual reality technology has been applied in various fields and medical use is not an exception. Yet AR devices have not been widely used among medical professions. Visualization of the virtual vascular object can be achieved by creation of accurate three dimensional object with the help of computer graphical technique. Although our experience is limited, this method is applicable with relative easiness and our accumulating evidence has suggested that our method of vascular access with the use of AR can be promising.Keywords: abdominal-aorta, calcification, extraskeletal, dialysis, computer graphics, 3DCG, CT, calcium, phosphorus
Procedia PDF Downloads 1661317 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6271316 A Case Study of the Digital Translation of the Lucy Lloyd and Wilhelm Bleek |Xam and !Kun Notebooks into The Digital Bleek and Lloyd
Authors: F. Saptouw
Abstract:
This paper will examine the digitization process of the |Xam and !Kun notebooks, authored by Lucy Lloyd, Dorothea Bleek and Wilhelm Bleek, and their collaborators |a!kunta, ||kabbo, ≠kasin, Dia!kwain, !kweiten ta ||ken, |han≠kass'o, !nanni, Tamme, |uma, and Da during the 19th century. Detail will be provided about the status of the archive, the creation of the digital archive and selected research projects linked to the archive. The Digital Bleek and Lloyd project is an example of institutional collaboration by the University of Cape Town, University of South Africa, Iziko South African Museum, the National Library of South Africa and the Western Cape Provincial Archives and Records Service. The contemporary value of the archive will be discussed in relation to its current manifestation as a collection of archival and digital objects, each with its own set of properties and archival risk factors. This tension between the two ways to access the archive will be interrogated to shed light on the slippages between the digital object and the archival object. The primary argument is that the process of digitization generates an ontological shift in the status of the archival object. The secondary argument is an engagement with practices to curate the encounters with these ontologically shifted objects and how to relate to each as a contemporary viewer. In conclusion this paper will argue for regarding these archival objects according to the interpretive framework utilized to engage secular relics.Keywords: archive, curatorship, digitization, museum practice
Procedia PDF Downloads 1411315 Efficient Passenger Counting in Public Transport Based on Machine Learning
Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa
Abstract:
Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.Keywords: computer vision, object detection, passenger counting, public transportation
Procedia PDF Downloads 1561314 Ramification of Oil Prices on Renewable Energy Deployment
Authors: Osamah A. Alsayegh
Abstract:
This paper contributes to the literature by updating the analysis of the impact of the recent oil prices fall on the renewable energy (RE) industry and deployment. The research analysis uses the Renewable Energy Industrial Index (RENIXX), which tracks the world’s 30 largest publicly traded companies and oil prices daily data from January 2003 to March 2016. RENIXX represents RE industries developing solar, wind, geothermal, bioenergy, hydropower and fuel cells technologies. This paper tests the hypothesis that claims high oil prices encourage the substitution of alternate energy sources for conventional energy sources. Furthermore, it discusses RENIXX performance behavior with respect to the governments’ policies factor that investors should take into account. Moreover, the paper proposes a theoretical model that relates RE industry progress with oil prices and policies through the fuzzy logic system.Keywords: Fuzzy logic, investment, policy, stock exchange index
Procedia PDF Downloads 2391313 Employee Happiness: The Influence of Providing Consumers with an Experience versus an Object
Authors: Wilson Bastos, Sigal G. Barsade
Abstract:
Much of what happens in the marketplace revolves around the provision and consumption of goods. Recent research has advanced a useful categorization of these goods—as experiential versus material—and shown that, from the consumers’ perspective, experiences (e.g., a theater performance) are superior to objects (e.g., an electronic gadget) in offering various social and psychological benefits. A common finding in this growing research stream is that consumers gain more happiness from the experiences they have than the objects they own. By focusing solely on those acquiring the experiential or material goods (the consumers), prior research has remained silent regarding another important group of individuals—those providing the goods (the employees). Do employees whose jobs are primarily focused on offering consumers an experience (vs. object) also gain more happiness from their occupation? We report evidence from four experiments supporting an experiential-employee advantage. Further, we use mediation and moderation tests to unearth the mechanism responsible for this effect. Results reveal that work meaningfulness is the primary driver of the experiential-employee advantage. Overall, our findings suggest that employees find it more meaningful to provide people with an experience as compared to a material object, which in turn shapes the happiness they derive from their jobs. We expect this finding to have implications on human development, and to be of relevance to researchers and practitioners interested in how to advance human condition in the workplace.Keywords: employee happiness, experiential versus material jobs, work meaningfulness
Procedia PDF Downloads 2721312 Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)
Authors: Bencherif Kada
Abstract:
In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, biodiversity, shrublands
Procedia PDF Downloads 331311 Effect of Punch Diameter on Optimal Loading Profiles in Hydromechanical Deep Drawing Process
Authors: Mehmet Halkaci, Ekrem Öztürk, Mevlüt Türköz, H. Selçuk Halkacı
Abstract:
Hydromechanical deep drawing (HMD) process is an advanced manufacturing process used to form deep parts with only one forming step. In this process, sheet metal blank can be drawn deeper by means of fluid pressure acting on sheet surface in the opposite direction of punch movement. High limiting drawing ratio, good surface quality, less springback characteristic and high dimensional accuracy are some of the advantages of this process. The performance of the HMD process is affected by various process parameters such as fluid pressure, blank holder force, punch-die radius, pre-bulging pressure and height, punch diameter, friction between sheet-die and sheet-punch. The fluid pressure and bank older force are the main loading parameters and affect the formability of HMD process significantly. The punch diameter also influences the limiting drawing ratio (the ratio of initial sheet diameter to punch diameter) of the sheet metal blank. In this research, optimal loading (fluid pressure and blank holder force) profiles were determined for AA 5754-O sheet material through fuzzy control algorithm developed in previous study using LS-DYNA finite element analysis (FEA) software. In the preceding study, the fuzzy control algorithm was developed utilizing geometrical criteria such as thinning and wrinkling. In order to obtain the final desired part with the developed algorithm in terms of the punch diameter requested, the effect of punch diameter, which is the one of the process parameters, on loading profiles was investigated separately using blank thickness of 1 mm. Thus, the practicality of the previously developed fuzzy control algorithm with different punch diameters was clarified. Also, thickness distributions of the sheet metal blank along a curvilinear distance were compared for the FEA in which different punch diameters were used. Consequently, it was found that the use of different punch diameters did not affect the optimal loading profiles too much.Keywords: Finite Element Analysis (FEA), fuzzy control, hydromechanical deep drawing, optimal loading profiles, punch diameter
Procedia PDF Downloads 432