Search results for: fault injection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1465

Search results for: fault injection

895 Lack of Functional Interaction between Nitric Oxide and ET-A Receptors in Cisplatin-Induced Acute Renal Failure

Authors: Mai M. Helmy

Abstract:

Although the role of either nitric oxide (NO) or endothelin receptors modulation in the severity of cisplatin-induced nephrotoxicity has been recognized in previous studies including our own, the possible interaction between the two pathways remains obscure. In this study, we tested the possible interaction between the nitrergic and endothelin pathways in cisplatin-induced nephrotoxicity in male rats. Sprague Dawley male rats (200 to 250 g) were divided into four groups: Control (given a single dose of normal saline, i.p.), cisplatin (6 mg/kg, i.p.), cisplatin+Sildenafil (2 mg/kg, i.p.), cisplatin+Sildenafil+BQ-123 (1 mg/kg, i.p.). Each of the co-administered drugs was given in two doses; one hour before and one day after the cisplatin dose. Acute cisplatin administration resulted in significant increases in BUN and serum creatinine levels at 96 h following cisplatin injection. Increased levels of MDA, TNF-α and caspase-3, decreased nitrite/nitrate level and SOD activity in kidney homogenates were also observed following cisplatin injection. According to the obtained results, the co-adminstration of sildenafil alone with cisplatin offered a reno-protective effect comparable to that obtained following the concurrent administration of both sildenafil and the selective ETAR antagonist BQ-123. Thus, the current study is the first to reveal that the presence of an intact NO/cGMP system may offer a moderate reno-protective effect against cisplatin-induced nephrotoxicity even in the presence of ETAR-mediated vasoconstriction, suggesting the absence of obvious functional interaction between the nitrergic and endothelin pathways in cisplatin-induced nephrotoxicity in male rats.

Keywords: BQ-123, cisplatin, endothelin-1, nephrotoxicity, sildenafil

Procedia PDF Downloads 447
894 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 164
893 Waterless Fracking: An Alternative to Conventional Fracking

Authors: Shubham Damke, Md Imtiaz, Sanchita Dei

Abstract:

To stimulate the well and to enhance the production from the shaly formations, fracturing is essential. Presently the chiefly employed technology is Hydraulic Fracturing. However Hydraulic Fracturing accompanies itself with problems like disposing large volumes of fracturing wastewater, removal of water from the pores, formation damage due to injection of large amount of chemicals into underground formations and many more. Therefore embarking on the path of innovation new techniques have been developed which uses different gases such as Nitrogen, Carbon dioxide, Frac Oil, LPG, etc. are used as a base fluid for fracturing formation. However LPG proves to be the most favorable of them which eliminates the use of water and chemicals. When using it as a fracturing fluid, within the surface equipment, it is stored, gelled, and proppant blended at a constant pressure. It is then pressurized with high pressure pumps to the required surface injection pressure With lowering the total cost and increasing the productivity, LPG is also very noteworthy for fracturing shale, where if the hydraulic fracturing is done the water ‘swells’ the formation and creates surface tension, both of which inhibit the flow of oil and gas. Also fracturing with LPG increases the effective fracture length and since propane, butane and pentane is used which are already present in the natural gas therefore there is no problem of back flow because these gases get mixed with the natural gas. LPG Fracturing technology can be a promising substitute of the Hydraulic Fracturing, which could substantially reduce the capital cost of fracturing shale and will also restrict the problems with the disposal of water and on the same hand increasing the fracture length and the productivity from the shale.

Keywords: Fracking, Shale, Surface Tension, Viscosity

Procedia PDF Downloads 426
892 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique

Authors: Yogish Huchaiah, Chandrashekara Krishnappa

Abstract:

This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.

Keywords: COME, IP, MFCT, optimization, PI, PN, PV

Procedia PDF Downloads 211
891 Implementation of Cord- Blood Derived Stem Cells in the Regeneration of Two Experimental Models: Carbon Tetrachloride and S. Mansoni Induced Liver Fibrosis

Authors: Manal M. Kame, Zeinab A. Demerdash, Hanan G. El-Baz, Salwa M. Hassan, Faten M. Salah, Wafaa Mansour, Olfat Hammam

Abstract:

Cord blood (CB) derived Unrestricted Somatic Stem Cells (USSCs) with their multipotentiality hold great promise in liver regeneration. This work aims at evaluation of the therapeutic potentiality of USSCs in two experimental models of chronic liver injury induced either by S. mansoni infection in balb/c mice or CCL4 injection in hamsters. Isolation, propagation, and characterization of USSCs from CB samples were performed. USSCs were induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. Cells of the third passage were transplanted in two models of liver fibrosis: (1) Twenty hamsters were induced to liver fibrosis by repeated i. p. injection of 100 μl CCl4 /hamster for 8 weeks. This model was designed as; 10 hamsters with liver fibrosis and treated with i.h. injection of 3x106 USSCs (USSCs transplanted group), 10 hamsters with liver fibrosis (pathological control group), and 10 hamsters with healthy livers (normal control group). (2) Murine chronics S.mansoni model: twenty mice were induced to liver fibrosis with S. mansoni ceracariae (60 cercariae/ mouse) using the tail immersion method and left for 12 weeks. This model was designed as; 10 mice with liver fibrosis were transplanted with i. v. injection of 1×106 USCCs (USSCs transplanted group). Other 2 groups were designed as in hamsters model. Animals were sacrificed 12 weeks after USSCs transplantation, and their liver sections were examined for detection of human hepatocyte-like cells by immunohistochemistry staining. Moreover, liver sections were examined for fibrosis level, and fibrotic indices were calculated. Sera of sacrificed animals were tested for liver functions. CB USSCs, with fibroblast-like morphology, expressed high levels of CD44, CD90, CD73 and CD105 and were negative for CD34, CD45, and HLA-DR. USSCs showed high expression of transcripts for Oct4 and Sox2 and were in vitro differentiated into osteoblasts, adipocytes. In both animal models, in vitro induced hepatocyte-like cells were confirmed by cytoplasmic expression of glycogen, alpha-fetoprotein, and cytokeratin18. Livers of USSCs transplanted group showed engraftment with human hepatocyte-like cells as proved by cytoplasmic expression of human alpha-fetoprotein, cytokeratin18, and OV6. In addition, livers of this group showed less fibrosis than the pathological control group. Liver functions in the form of serum AST & ALT level and serum total bilirubin level were significantly lowered in USSCs transplanted group than pathological control group (p < 0.001). Moreover, the fibrotic index was significantly lower (p< 0.001) in USSCs transplanted group than pathological control group. In addition liver sections, of i. v. injection of 1×106 USCCs of mice, stained with either H&E or sirius red showed diminished granuloma size and a relative decrease in hepatic fibrosis. Our experimental liver fibrosis models transplanted with CB-USSCs showed liver engraftment with human hepatocyte-like cells as well as signs of liver regeneration in the form of improvement in liver function assays and fibrosis level. These data provide hope that human CB- derived USSCs are introduced as multipotent stem cells with great potentiality in regenerative medicine & strengthens the concept of cellular therapy for the treatment of liver fibrosis.

Keywords: cord blood, liver fibrosis, stem cells, transplantation

Procedia PDF Downloads 309
890 Hepatitis B, Hepatitis C and HIV Infections and Associated Risk Factors among Substance Abusers in Mekelle Substance Users Treatment and Rehabilitation Centers, Tigrai, Northern Ethiopia

Authors: Tadele Araya, Tsehaye Asmelash, Girmatsion Fiseha

Abstract:

Background: Hepatitis B virus (HBV), Hepatitis C virus (HCV) and Human Immunodeficiency Virus (HIV) constitute serious healthcare problems worldwide. Blood-borne pathogens HBV, HCV and HIV are commonly associated with infections among substance or Injection Drug Users (IDUs). The objective of this study was to determine the prevalence of HBV, HCV, and HIV infections among substance users in Mekelle Substance users Treatment and Rehabilitation Centers. Methods: A cross-sectional study design was used from Dec 2020 to Sep / 2021 to conduct the study. A total of 600 substance users were included. Data regarding the socio-demographic, clinical and sexual behaviors of the substance users were collected using a structured questionnaire. For laboratory analysis, 5-10 ml of venous blood was taken from the substance users. The laboratory analysis was performed by Enzyme-Linked Immunosorbent Assay (ELISA) at Mekelle University, Department of Medical Microbiology and Immunology Research Laboratory. The Data was analyzed using SPSS and Epi-data. The association of variables with HBV, HCV and HIV infections was determined using multivariate analysis and a P value < 0.05 was considered statistically significant. Result: The overall prevalence rate of HBV, HCV and HIV infections were 10%, 6.6%, and 7.5%, respectively. The mean age of the study participants was 28.12 ± 6.9. A higher prevalence of HBV infection was seen in participants who were users of drug injections and in those who were infected with HIV. HCV was comparatively higher in those who had a previous history of unsafe surgical procedures than their counterparts. Homeless participants were highly exposed to HCV and HIV infections than their counterparts. The HBV/HIV Co-infection prevalence was 3.5%. Those doing unprotected sexual practices [P= 0.03], Injection Drug users [P= 0.03], those who had an HBV-infected person in their family [P=0.02], infected with HIV [P= 0.025] were statistically associated with HBV infection. HCV was significantly associated with Substance users and previous history of unsafe surgical procedures [p=0.03, p=0.04), respectively. HIV was significantly associated with unprotected sexual practices and being homeless [p=0.045, p=0.05) respectively. Conclusion-The highly prevalent viral infection was HBV compared to others. There was a High prevalence of HBV/HIV co-infection. The presence of HBV-infected persons in a family, unprotected sexual practices and sharing of needles for drug injection were the risk factors associated with HBV, HIV, and HCV. Continuous health education and screening of the viral infection coupled with medical and psychological treatment is mandatory for the prevention and control of the infections.

Keywords: hepatitis b virus, hepatitis c virus, HIV, substance users

Procedia PDF Downloads 85
889 Benefits of The ALIAmide Palmitoyl-Glucosamine Co-Micronized with Curcumin for Osteoarthritis Pain: A Preclinical Study

Authors: Enrico Gugliandolo, Salvatore Cuzzocrea, Rosalia Crupi

Abstract:

Osteoarthritis (OA) is one of the most common chronic pain conditions in dogs and cats. OA pain is currently viewed as a mixed phenomenon involving both inflammatory and neuropathic mechanisms at the peripheral (joint) and central (spinal and supraspinal) levels. Oxidative stress has been implicated in OA pain. Although nonsteroidal anti-inflammatory drugs are commonly prescribed for OA pain, they should be used with caution in pets because of adverse effects in the long term and controversial efficacy on neuropathic pain. An unmet need remains for safe and effective long-term treatments for OA pain. Palmitoyl-glucosamine (PGA) is an analogue of the ALIAamide palmitoylethanolamide, i.e., a body’s own endocannabinoid-like compound playing a sentinel role in nociception. PGA, especially in the micronized formulation, was shown safe and effective in OA pain. The aim of this study was to investigate the effect of a co-micronized formulation of PGA with the natural antioxidant curcumin (PGA-cur) on OA pain. Ten Sprague-Dawley male rats were used for each treatment group. The University of Messina Review Board for the care and use of animals authorized the study. On day 0, rats were anesthetized (5.0% isoflurane in 100% O2) and received intra-articular injection of MIA (3 mg in 25 μl saline) in the right knee joint, with the left being injected an equal volume of saline. Starting the third day after MIA injection, treatments were administered orally three times per week for 21 days, at the following doses: PGA 20 mg/kg, curcumin 10 mg/kg, PGA-cur (2:1 ratio) 30 mg/kg. On day 0 and 3, 7, 14 and 21 days post-injection, mechanical allodynia was measured using a dynamic plantar Von Frey hair aesthesiometer and expressed as paw withdrawal threshold (PWT) and latency (PWL). Motor functional recovery of the rear limb was evaluated on the same time points by walking track analysis using the sciatic functional index. On day 21 post-MIA injection, the concentration of the following inflammatory and nociceptive mediators was measured in serum using commercial ELISA kits: tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), nerve growth factor (NGF) and matrix metalloproteinase-1-3-9 (MMP-1, MMP-3, MMP-9). The results were analyzed by ANOVA followed by Bonferroni post-hoc test for multiple comparisons. Micronized PGA reduced neuropathic pain, as shown by the significant higher PWT and PWL values compared to vehicle group (p < 0.0001 for all the evaluated time points). The effect of PGA-cur was superior at all time points (p < 0.005). PGA-cur restored motor function already on day 14 (p < 0.005), while micronized PGA was effective a week later (D21). MIA-induced increase in the serum levels of all the investigated mediators was inhibited by PGA-cur (p < 0.01). PGA was also effective, except on IL-1 and MMP-3. Curcumin alone was inactive in all the experiments at any time point. The encouraging results suggest that PGA-cur may represent a valuable option in OA pain management and warrant further confirmation in well-powered clinical trials.

Keywords: ALIAmides, curcumin, osteoarthritis, palmitoyl-glucosamine

Procedia PDF Downloads 115
888 Structural-Lithological Conditions of Formation of Epithermal Gold Sulphide Satellite Deposits in the North Part of Chovdar Ore Area

Authors: Nabat Gojaeva, Mikayil Naghiyev, Sultan Jafarov, Gular Mikayilova

Abstract:

Chovdar ore area is located in the contact of Dashkesan caldera and Shamkir horst-graben uplift, which comprises the central part of Lok-Karabakh Island arcs of South Caucasus metallogenic province in terms of regional tectonics. One of the main structural features of formation of the Mereh and Aghyokhush group of low sulfidation epithermal gold deposits, locating in the north peripheric part of the ore area, is involving the crossing areas of ore-hosting and ore-forming Pan-Caucasian-direction structurally-compound faults with the meridional, rhombically shaped faults. In addition, another significant feature is the temporally two- or three-stage ore formation. In the first stage -an early phase of Upper Bathonian age, sulfides are the dominant minerals, in the second stage- late ‘productive’ phase of Upper Bathonian age, mainly gold mineralization is formed. Also, in the Upper Jurassic – Lower Cretaceous ages, rarely-encountered Cu-polymetallic ore formations are documented. Finally, in the last stage, the re-dislocation of ore-formation is foreseen in the previously-formed mineralization areas. The faults in the strike and dip directions formed shearing, brecciation, sulfide mineralization aureoles, and hydrothermal alteration zones in the wall rocks along with the local depression blocks. The geological-structural analysis of the area shows that multiple and various morphogenetic volcano-tectonically fault systems have developed in the area. These fault systems have played a trap role for ore-formation in the intersected parts of faults mentioned above. Thus, in the referred parts, mostly predominance of felsic volcanism and metasomatic alteration (silicification, argillitic, etc.) of wall rocks, as well as the products of this volcanism, account for the inclusion of hydrothermal ore-forming fluids along these faults. It is possible to determine temporally and lithological-structural connection between the ore-formation along with local depression blocks and faults as borders for products of felsic volcanism of Upper Cretaceous-Lesser Jurassic ages, in the results of the replacement of hydrothermal alteration zones with relatively low-temperature metasomatic alterations while moving from the felsic parts to the margins, and due to being non-ore bearing intermediate and intermediate-felsic magmatic facies.

Keywords: Aghyokhush, fault, gold deposit, Mereh

Procedia PDF Downloads 216
887 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis

Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat

Abstract:

Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.

Keywords: controlled release, drug delivery system, glucosamine, pluronic, thermoreversible hydrogel

Procedia PDF Downloads 270
886 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials

Authors: Ariadna Manresa, Ines Ferrer

Abstract:

Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.

Keywords: biomaterial, biopolymer, micro injection molding, ultrasound

Procedia PDF Downloads 284
885 Central Line Stock and Use Audit in Adult Patients: A Quality Improvement Project on Central Venous Catheter Standardisation Across Hospital Departments

Authors: Gregor Moncrieff, Ursula Bahlmann

Abstract:

A number of incident reports were filed from the intensive care unit with regards to adult patients admitted following operations who had a central venous catheter inserted of the incorrect length for the relevant anatomical site and catheters not compatible with pressurised injection inserted whilst in theatre. Incorrect catheter length can lead to a variety of complications and pressurised injection is a requirement for contrast enhanced computerised tomography scans. This led to several patients having a repeat procedure to insert a catheter of the correct length and also compatible with pressurised injection. This project aimed to identify the types of central venous catheters used in theatres and ensure the correct equipment would be stocked and used in future cases in accordance the existing Association of Anaesthetics of Great Britain and Northern Ireland guidelines. A questionnaire was sent out to all of the anaesthetic department in our hospital aiming to determine what types of central venous catheters were preferably used by anaesthetists and why these had been chosen. We also explored any concerns regarding introduction of standardised, pressure injectable central venous catheters to the theatre department which were already in use in other parts of the hospital and in keeping with national guidance. A total of 56 responses were collected. 64% of respondents routinely used a central venous catheter which was significantly shorter than the national recommended guidance with a further 4 different types of central venous catheters used which were different to other areas of the hospital and not pressure injectable. 75% of respondents were in agreement to standardised introduction of the pressure injectable catheters of the recommended length in accordance with national guidance. Reasons why 25% respondents were opposed to introduction of these catheters were explored and discussed. We were successfully able to introduce the standardised central catheters to the theatre department following presentation at the local anaesthetic quality and safety meeting. Reasons against introduction of the catheters were discussed and a compromise was reached that the existing catheters would continue to be stocked but would only be available on request, with a focus on encouraging use of the standardised catheters. Additional changes achieved included removing redundant catheters from the theatre stock. Ongoing data is being collected to analyse positive and negative feedback from use of the introduced catheters.

Keywords: central venous catheter, medical equipment, medical safety, quality improvement

Procedia PDF Downloads 117
884 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 198
883 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
882 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine

Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali

Abstract:

Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.

Keywords: droplet collision, coalescence, low speed, diesel fuel

Procedia PDF Downloads 236
881 Geomorphology of Karst Features of Shiraz City and Arjan Plain and Development Limitations

Authors: Meysam Jamali, Ebrahim Moghimi, Zean Alabden Jafarpour

Abstract:

Karst term is the determiner of a variety of areas or landforms and unique perspectives that have been formed in result of the ingredients dissolution of rocks constituter by natural waters. Shiraz area with an area of 5322km2 is located in the simple folded belt in the southern part of Zagros Mountain of Fars, and is surrounded with Limestone Mountains (Asmari formation). Shiraz area is located in Calcareous areas. The Infrastructure of this city is lime and absorbing wells that the city has, can influence on the Limestone dissolution and those accelerate its rate and increases the cavitation below the surface. Dasht-e Arjan is a graben, which has been created as the result of activity of two normal faults in its east and west sides. It is a complete sample of Karst plains (Polje) which has been created with the help of tectonic forces (fault) and dissolution process of water in Asmari limestone formation. It is located 60km. off south west of Shiraz (on Kazeroon-Shiraz road). In 1971, UNESCO has recognized this plain as a reserve of biosphere. It is considered as one of the world’s most beautiful geological phenomena, so that most of the world’s geologists are interested in visiting this place. The purpose of this paper is to identify and introduce landscapes of Karst features shiraz city and Dasht-e Arjan including Karst dissolution features (Lapiez, Karst springs, dolines, caves, underground caves, ponors, and Karst valleys), anticlines and synclines, and Arjan Lake, which are studied in this paper.

Keywords: Dasht-eArjan, fault, Karst features, polje, Shiraz city, Zagros

Procedia PDF Downloads 420
880 Prediction of Fluid Induced Deformation using Cavity Expansion Theory

Authors: Jithin S. Kumar, Ramesh Kannan Kandasami

Abstract:

Geomaterials are generally porous in nature due to the presence of discrete particles and interconnected voids. The porosity present in these geomaterials play a critical role in many engineering applications such as CO2 sequestration, well bore strengthening, enhanced oil and hydrocarbon recovery, hydraulic fracturing, and subsurface waste storage. These applications involves solid-fluid interactions, which govern the changes in the porosity which in turn affect the permeability and stiffness of the medium. Injecting fluid into the geomaterials results in permeation which exhibits small or negligible deformation of the soil skeleton followed by cavity expansion/ fingering/ fracturing (different forms of instabilities) due to the large deformation especially when the flow rate is greater than the ability of the medium to permeate the fluid. The complexity of this problem increases as the geomaterial behaves like a solid and fluid under certain conditions. Thus it is important to understand this multiphysics problem where in addition to the permeation, the elastic-plastic deformation of the soil skeleton plays a vital role during fluid injection. The phenomenon of permeation and cavity expansion in porous medium has been studied independently through extensive experimental and analytical/ numerical models. The analytical models generally use Darcy's/ diffusion equations to capture the fluid flow during permeation while elastic-plastic (Mohr-Coulomb and Modified Cam-Clay) models were used to predict the solid deformations. Hitherto, the research generally focused on modelling cavity expansion without considering the effect of injected fluid coming into the medium. Very few studies have considered the effect of injected fluid on the deformation of soil skeleton. However, the porosity changes during the fluid injection and coupled elastic-plastic deformation are not clearly understood. In this study, the phenomenon of permeation and instabilities such as cavity and finger/ fracture formation will be quantified extensively by performing experiments using a novel experimental setup in addition to utilizing image processing techniques. This experimental study will describe the fluid flow and soil deformation characteristics under different boundary conditions. Further, a well refined coupled semi-analytical model will be developed to capture the physics involved in quantifying the deformation behaviour of geomaterial during fluid injection.

Keywords: solid-fluid interaction, permeation, poroelasticity, plasticity, continuum model

Procedia PDF Downloads 73
879 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions

Authors: Megh Patel, Arjun Chauhan, Jay Thakkar

Abstract:

Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.

Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers

Procedia PDF Downloads 256
878 Association of Transmission Risk Factors Among HCV-infected Bangladeshi Patients With Different Genotypes

Authors: Nahida Sultana

Abstract:

Globally, an estimated 58 million people have chronic hepatitis C virus infection, with about 1.5 million new infections occurring per year. The hepatitis C virus is a blood-borne virus, and most infections occur through exposure to blood from unsafe injection practices, unsafe health care, unscreened blood transfusion, injection drug use, and sexual practices that lead to exposure to blood. Hepatitis C virus (HCV) causes chronic infections that mainly affect the liver leading to liver diseases. This study aimed to determine whether there is any significant association between HCV transmission risk factors in relation to genotypes in HCV-infected Bangladeshi patients. After quantification of HCV viral load, 36 samples were randomly selected for HCV genotyping and risk factor measurement. A greater proportion of genotype 1 (p > 0.05) patients (40%) underwent blood transfusion compared to patients (22.6%) with genotype 3 infections. More genotype 1 patient underwent surgery and invasive procedures (20%), and rather than those with genotype 3 patients (16.1%). The history of IDUs (25.8%) and sexual exposure (3.2%) are only prevalent in genotype 3 patients and absent in patients with genotype 1 (p >0.05). There was no significant statistical difference found in HCV transmission risk factors (blood transfusion, IDUs, Surgery& interventions, sexual transmission) between patients infected with genotypes 1 and 3. In HCV infection, genotype may have no relation to transmission risk factors among Bangladeshi patients.

Keywords: HCV genotype, alanine aminotransferase (ALT), HCV viral load, IDUs

Procedia PDF Downloads 86
877 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi

Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham

Abstract:

Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.

Keywords: dam site, fault, geophysic, investigation, Meskiana

Procedia PDF Downloads 88
876 Comparison of the Existing Damage Indices in Steel Moment-Resisting Frame Structures

Authors: Hamid Kazemi, Abbasali Sadeghi

Abstract:

Assessment of seismic behavior of frame structures is just done for evaluating life and financial damages or lost. The new structural seismic behavior assessment methods have been proposed, so it is necessary to define a formulation as a damage index, which the damage amount has been quantified and qualified. In this paper, four new steel moment-resisting frames with intermediate ductility and different height (2, 5, 8, and 12-story) with regular geometry and simple rectangular plan were supposed and designed. The three existing groups’ damage indices were studied, each group consisting of local index (Drift, Maximum Roof Displacement, Banon Failure, Kinematic, Banon Normalized Cumulative Rotation, Cumulative Plastic Rotation and Ductility), global index (Roufaiel and Meyer, Papadopoulos, Sozen, Rosenblueth, Ductility and Base Shear), and story (Banon Failure and Inter-story Rotation). The necessary parameters for these damage indices have been calculated under the effect of far-fault ground motion records by Non-linear Dynamic Time History Analysis. Finally, prioritization of damage indices is defined based on more conservative values in terms of more damageability rate. The results show that the selected damage index has an important effect on estimation of the damage state. Also, failure, drift, and Rosenblueth damage indices are more conservative indices respectively for local, story and global damage indices.

Keywords: damage index, far-fault ground motion records, non-linear time history analysis, SeismoStruct software, steel moment-resisting frame

Procedia PDF Downloads 292
875 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid

Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong

Abstract:

Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.

Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function

Procedia PDF Downloads 100
874 The Effect of Adding Microsilica on the Rheological Behavior and Injectability of the Paste in the Injection Molding of Silica-Based Ceramic Cores

Authors: Arghavan Kazemi, Hossein Radipour

Abstract:

Microsilica (silica foam) is a byproduct of ferrosilicon production and silicon metal. Microsilica particles have a spherical shape, an average diameter of 0.15 µm, and a specific surface area of 15-25 m². g-¹. The overall density of this material is 150-700 kg.m-³. Many researchers have investigated the effect of adding microsilica on the flow properties of cement mixtures. This paper investigated the effect of adding microsilica on the flow behavior and injectability of silica-based paste. For this purpose, different percentages of microsilica have been used to prepare the paste. The rheometric test was performed on all the samples with different percentages of microsilica additives using an MCR300 rotary viscometer at a temperature of 70°C. In addition, the ability to inject pastes containing different amounts of microsilica at pressures of 25, 40, 50, and (bar) 60 at constant temperature and flow in a mold with dimensions of 80 × 80 × 0.5 mm³ has been investigated. Then, the effect of microsilica addition on the strength, porosity percentage, and leachability of the sintered core was studied. The results show that the rheological behavior of the paste is pseudoplastic; also, the silane index decreases with the increase in the percentage of microsilica addition, and the viscosity increases. On the other hand, the addition of microsilica has led to the appearance of thixotropic in the paste. By increasing the amount of microsilica, the injectability has significantly improved at low pressures. The strength of the sintered core increases with the increase of microsilica and the amount of remaining porosity and leachability decreases.

Keywords: microsilica, rheological behavior, injectability, injection molding, silica-based ceramic cores, leachability

Procedia PDF Downloads 32
873 Efficacy of Erector Spinae Plane Block for Postoperative Pain Management in Coronary Artery Bypass Graft Patients

Authors: Santosh Sharma Parajuli, Diwas Manandhar

Abstract:

Background: Perioperative pain management plays an integral part in patients undergoing cardiac surgery. We studied the effect of Erector Spinae Plane block on acute postoperative pain reduction and 24 hours opioid consumption in adult cardiac surgical patients. Methods: Twenty-five adult cardiac surgical patients who underwent cardiac surgery with sternotomy in whom ESP catheters were placed preoperatively were kept in group E, and the other 25 patients who had undergone cardiac surgery without ESP catheter and pain management done with conventional opioid injection were placed in group C. Fentanyl was used for pain management. The primary study endpoint was to compare the consumption of fentanyl and to assess the numeric rating scale in the postoperative period in the first 24 hours in both groups. Results: The 24 hours fentanyl consumption was 43.00±51.29 micrograms in the Erector Spinae Plane catheter group and 147.00±60.94 micrograms in the control group postoperatively which was statistically significant (p <0.001). The numeric rating scale was also significantly reduced in the Erector Spinae Plane group compared to the control group in the first 24 hours postoperatively. Conclusion: Erector Spinae Plane block is superior to the conventional opioid injection method for postoperative pain management in CABG patients. Erector Spinae Plane block not only decreases the overall opioid consumption but also the NRS score in these patients.

Keywords: erector, spinae, plane, numerical rating scale

Procedia PDF Downloads 66
872 Intrathecal: Not Intravenous Administration of Evans Blue Reduces Pain Behavior in Neuropathic Rats

Authors: Kun Hua O., Dong Woon Kim, Won Hyung Lee

Abstract:

Introduction: Neuropathic pain induced by spinal or peripheral nerve injury is highly resistant to common painkillers, nerve blocks, and other pain management approaches. Recently, several new therapeutic drug candidates have been developed to control neuropathic pain. In this study, we used the spinal nerve L5 ligation (SNL) model to investigate the ability of intrathecal or intravenous Evans blue to decrease pain behavior and to study the relationship between Evans blue and the neural structure of pain transmission. Method: Neuropathic pain (allodynia) of the left hind paw was induced by unilateral SNL in Sprague-Dawley rats(n=10) in each group. Evans blue (5, 15, 50μg/10μl) or phosphate buffer saline(PBS,10μl) was injected intrathecally at 3days post-ligation or intravenously(1mg/200 μl) 3days and 5days post-ligation . Mechanical sensitivity was assessed using Von Frey filaments at 3 days post-ligation and at 2 hours, days 1, 2, 3, 5,7 after intrathecal Evans blue injection, and on days 2, 4, 7, and 11 at 14 days after intravenous injection. In the intrathecal group, microglia and glutaminergic neurons in the dorsal horn and VNUT(vesicular nucleotide transporter) in the dorsal root ganglia were tested to evaluate co-staining with Evans blue. The experimental procedures were performed in accordance with the animal care guideline of the Korean Academy of Medical Science(Animal ethic committee of Chungnam National University Hospital: CNUH-014-A0005-1). Results: Tight ligation of the L5 spinal nerve induced allodynia in the left hind paw 3 days post-ligation. Intrathecal Evans blue most significantly(P<0.001) alleviated allodynia at 2 days after intrathecal, but not an intravenous injection. Glutaminergic neurons in the dorsal horn and VNUT in the dorsal root ganglia were co-stained with Evans blue. On the other hand, microglia in the dorsal horn were partially co-stained with Evans blue. Conclusion: We confirmed that Evans blue might have an analgesic effect through the central nervous system, not another system in neuropathic pain of the SNL animal model. These results suggest Evans blue may be a potential new drug for the treatment of chronic pain. This research was supported by the National Research Foundation of Korea (NRF-2020R1A2C100757512), funded by the Ministry of Education.

Keywords: neuropathic pain, Evas blue, intrathecal, intravenous

Procedia PDF Downloads 94
871 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 193
870 Analyses of Soil Volatile Contaminants Extraction by Hot Air Injection

Authors: Abraham Dayan

Abstract:

Remediation of soil containing volatile contaminants is often conducted by vapor extraction (SVE) technique. The operation is based on injection of air at ambient temperatures with or without thermal soil warming. Thermal enhancements of soil vapor extraction (TESVE) processes are usually conducted by soil heating, sometimes assisted by added steam injections. The current study addresses a technique which has not received adequate attention and is based on using exclusively hot air as an alternative to the common TESVE practices. To demonstrate the merit of the hot air TESVE technique, a sandy soil containing contaminated water is studied. Numerical and analytical tools were used to evaluate the rate of decontamination processes for various geometries and operating conditions. The governing equations are based on the Darcy law and are applied to an expanding compressible flow within a sandy soil. The equations were solved to determine the minimal time required for complete soil remediation. An approximate closed form solution was developed based on the assumption of local thermodynamic equilibrium and on a linearized representation of temperature dependence of the vapor to air density ratio. The solution is general in nature and offers insight into the governing processes of the soil remediation operation, where self-similar temperature profiles under certain conditions may exist, and the noticeable role of the contaminants evaporation and recondensation processes in affecting the remediation time. Based on analyses of the hot air TESVE technique, it is shown that it is sufficient to heat the air during a certain period of the decontamination process without compromising its full advantage, and thereby, entailing a minimization of the air-heating-energy requirements. This in effect is achieved by regeneration, leaving the energy stored in the soil during the early period of the remediation process to heat the subsequently injected ambient air, which infiltrates through it for the decontamination of the remaining untreated soil zone. The characteristic time required to complete SVE operations are calculated as a function of, both, the injected air temperature and humidity. For a specific set of conditions, it is demonstrated that elevating the injected air temperature by 20oC, the hot air injection technique reduces the soil remediation time by 50%, while requiring 30% of additional energy consumption. Those evaluations clearly unveil the advantage of the hot air SVE process, which for insignificant cost of added air heating energy, the substantial cost expenditures for manpower and equipment utilization are reduced.

Keywords: Porous Media, Soil Decontamination, Hot Air, Vapor Extraction

Procedia PDF Downloads 10
869 Characterization of Double Shockley Stacking Fault in 4H-SiC Epilayer

Authors: Zhe Li, Tao Ju, Liguo Zhang, Zehong Zhang, Baoshun Zhang

Abstract:

In-grow stacking-faults (IGSFs) in 4H-SiC epilayers can cause increased leakage current and reduce the blocking voltage of 4H-SiC power devices. Double Shockley stacking fault (2SSF) is a common type of IGSF with double slips on the basal planes. In this study, a 2SSF in the 4H-SiC epilayer grown by chemical vaper deposition (CVD) is characterized. The nucleation site of the 2SSF is discussed, and a model for the 2SSF nucleation is proposed. Homo-epitaxial 4H-SiC is grown on a commercial 4 degrees off-cut substrate by a home-built hot-wall CVD. Defect-selected-etching (DSE) is conducted with melted KOH at 500 degrees Celsius for 1-2 min. Room temperature cathodoluminescence (CL) is conducted at a 20 kV acceleration voltage. Low-temperature photoluminescence (LTPL) is conducted at 3.6 K with the 325 nm He-Cd laser line. In the CL image, a triangular area with bright contrast is observed. Two partial dislocations (PDs) with a 20-degree angle in between show linear dark contrast on the edges of the IGSF. CL and LTPL spectrums are conducted to verify the IGSF’s type. The CL spectrum shows the maximum photoemission at 2.431 eV and negligible bandgap emission. In the LTPL spectrum, four phonon replicas are found at 2.468 eV, 2.438 eV, 2.420 eV and 2.410 eV, respectively. The Egx is estimated to be 2.512 eV. A shoulder with a red-shift to the main peak in CL, and a slight protrude at the same wavelength in LTPL are verified as the so called Egx- lines. Based on the CL and LTPL results, the IGSF is identified as a 2SSF. Back etching by neutral loop discharge and DSE are conducted to track the origin of the 2SSF, and the nucleation site is found to be a threading screw dislocation (TSD) in this sample. A nucleation mechanism model is proposed for the formation of the 2SSF. Steps introduced by the off-cut and the TSD on the surface are both suggested to be two C-Si bilayers height. The intersections of such two types of steps are along [11-20] direction from the TSD, while a four-bilayer step at each intersection. The nucleation of the 2SSF in the growth is proposed as follows. Firstly, the upper two bilayers of the four-bilayer step grow down and block the lower two at one intersection, and an IGSF is generated. Secondly, the step-flow grows over the IGSF successively, and forms an AC/ABCABC/BA/BC stacking sequence. Then a 2SSF is formed and extends by the step-flow growth. In conclusion, a triangular IGSF is characterized by CL approach. Base on the CL and LTPL spectrums, the estimated Egx is 2.512 eV and the IGSF is identified to be a 2SSF. By back etching, the 2SSF nucleation site is found to be a TSD. A model for the 2SSF nucleation from an intersection of off-cut- and TSD- introduced steps is proposed.

Keywords: cathodoluminescence, defect-selected-etching, double Shockley stacking fault, low-temperature photoluminescence, nucleation model, silicon carbide

Procedia PDF Downloads 316
868 Structural Analysis of Archaeoseismic Records Linked to the 5 July 408 - 410 AD Utica Strong Earthquake (NE Tunisia)

Authors: Noureddine Ben Ayed, Abdelkader Soumaya, Saïd Maouche, Ali Kadri, Mongi Gueddiche, Hayet Khayati-Ammar, Ahmed Braham

Abstract:

The archaeological monument of Utica, located in north-eastern Tunisia, was founded (8th century BC) By the Phoenicians as a port installed on the trade route connecting Phoenicia and the Straits of Gibraltar in the Mediterranean Sea. The flourishment of this city as an important settlement during the Roman period was followed by a sudden abandonment, disuse and progressive oblivion in the first half of the fifth century AD. This decadence can be attributed to the destructive earthquake of 5 July 408 - 410 AD, affecting this historic city as documented in 1906 by the seismologist Fernand De Montessus De Ballore. The magnitude of the Utica earthquake was estimated at 6.8 by the Tunisian National Institute of Meteorology (INM). In order to highlight the damage caused by this earthquake, a field survey was carried out at the Utica ruins to detect and analyse the earthquake archaeological effects (EAEs) using structural geology methods. This approach allowed us to highlight several structural damages, including: (1) folded mortar pavements, (2) cracks affecting the mosaic and walls of a water basin in the "House of the Grand Oecus", (3) displaced columns, (4) block extrusion in masonry walls, (5) undulations in mosaic pavements, (6) tilted walls. The structural analysis of these EAEs and data measurements reveal a seismic cause for all evidence of deformation in the Utica monument. The maximum horizontal strain of the ground (e.g. SHmax) inferred from the building oriented damage in Utica shows a NNW-SSE direction under a compressive tectonic regime. For the seismogenic source of this earthquake, we propose the active E-W to NE-SW trending Utique - Ghar El Melh reverse fault, passing through the Utica Monument and extending towards the Ghar El Melh Lake, as the causative tectonic structure. The active fault trace is well supported by instrumental seismicity, geophysical data (e.g., gravity, seismic profiles) and geomorphological analyses. In summary, we find that the archaeoseismic records detected at Utica are similar to those observed at many other archaeological sites affected by destructive ancient earthquakes around the world. Furthermore, the calculated orientation of the average maximum horizontal stress (SHmax) closely match the state of the actual stress field, as highlighted by some earthquake focal mechanisms in this region.

Keywords: Tunisia, utica, seimogenic fault, archaeological earthquake effects

Procedia PDF Downloads 45
867 Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades

Authors: M. Javahar, H. B. Dong

Abstract:

Single crystal components manufactured using Ni-base Superalloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection, which is used to obtain the single crystal morphology from a plethora of columnar grains. For this purpose, different designs of grain selectors are employed and the most common type is the spiral grain selector. A typical spiral grain selector includes a starter block and a spiral (helix) located above. It has been found that the grains with orientation well aligned to the thermal gradient survive in the starter block by competitive grain growth while the selection of the single crystal grain occurs in the spiral part. In the present study, 2D spiral selectors with different geometries were designed and produced using a state-of-the-art Bridgeman Directional Solidification casting furnace to investigate the competitive growth during grain selection in 2d grain selectors. The principal advantage of using a 2-D selector is to facilitate the wax injection process in investment casting by enabling significant degree of automation. The automation within the process can be derived by producing 2D grain selector wax patterns parts using a split die (metal mold model) coupled with wax injection stage. This will not only produce the part with high accuracy but also at an acceptable production rate.

Keywords: grain selector, single crystal, directional solidification, CMSX-4 superalloys, investment casting

Procedia PDF Downloads 587
866 Algorithmic Approach to Management of Complications of Permanent Facial Filler: A Saudi Experience

Authors: Luay Alsalmi

Abstract:

Background: Facial filler is the most common type of cosmetic surgery next to botox. Permanent filler is preferred nowadays due to the low cost brought about by non-recurring injection appointments. However, such fillers pose a higher risk for complications, with even greater adverse effects when the procedure is done using unknown dermal filler injections. AIM: This study aimed to establish an algorithm to categorize and manage patients that receive permanent fillers. Materials and Methods: Twelve participants were presented to the service through emergency or as outpatient from November 2015 to May 2021. Demographics such as age, sex, date of injection, time of onset, and types of complications were collected. After examination, all cases were managed based on an algorithm established. FACE-Q was used to measure overall satisfaction and psychological well-being. Results: The algorithm to diagnose and manage these patients effectively with a high satisfaction rate was established in this study. All participants were non-smoker females with no known medical comorbidities. The algorithm presented determined the treatment plan when faced with complications. Results revealed high appearance-related psychosocial distress was observed prior to surgery, while it significantly dropped after surgery. FACE-Q was able to establish evidence of satisfactory ratings among patients prior to and after surgery. Conclusion: This treatment algorithm can guide the surgeon in formulating a suitable plan with fewer complications and a high satisfaction rate.

Keywords: facial filler, FACE-Q, psycho-social stress, botox, treatment algorithm

Procedia PDF Downloads 84