Search results for: fast vessel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2180

Search results for: fast vessel

1610 Pattern Recognition Search: An Advancement Over Interpolation Search

Authors: Shahpar Yilmaz, Yasir Nadeem, Syed A. Mehdi

Abstract:

Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search.

Keywords: array, complexity, index, sorting, space, time

Procedia PDF Downloads 237
1609 Control the Flow of Big Data

Authors: Shizra Waris, Saleem Akhtar

Abstract:

Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.

Keywords: computer, it community, industry, big data

Procedia PDF Downloads 188
1608 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 252
1607 Technology Road Mapping in the Fourth Industrial Revolution: A Comprehensive Analysis and Strategic Framework

Authors: Abdul Rahman Hamdan

Abstract:

The Fourth Industrial Revolution (4IR) has brought unprecedented technological advancements that have disrupted many industries worldwide. In keeping up with the technological advances and rapid disruption by the introduction of many technological advancements brought forth by the 4IR, the use of technology road mapping has emerged as one of the critical tools for organizations to leverage. Technology road mapping can be used by many companies to guide them to become more adaptable and anticipate future transformation and innovation, and avoid being redundant or irrelevant due to the rapid changes in technological advancement. This research paper provides a comprehensive analysis of technology road mapping within the context of the 4IR. The objectives of the paper are to provide companies with practical insights and a strategic framework of technology road mapping for them to navigate the fast-changing nature of the 4IR. This study also contributes to the understanding and practice of technology road mapping in the 4IR and, at the same time, provides organizations with the necessary tools and critical insight to navigate the 4IR transformation by leveraging technology road mapping. Based on the literature review and case studies, the study analyses key principles, methodologies, and best practices in technology road mapping and integrates them with the unique characteristics and challenges of the 4IR. The research paper gives the background of the fourth industrial revolution. It explores the disruptive potential of technologies in the 4IR and the critical need for technology road mapping that consists of strategic planning and foresight to remain competitive and relevant in the 4IR era. It also highlights the importance of technology road mapping as an organisation’s proactive approach to align the organisation’s objectives and resources to their technology and product development in meeting the fast-evolving technological 4IR landscape. The paper also includes the theoretical foundations of technology road mapping and examines various methodological approaches, and identifies external stakeholders in the process, such as external experts, stakeholders, collaborative platforms, and cross-functional teams to ensure an integrated and robust technological roadmap for the organisation. Moreover, this study presents a comprehensive framework for technology road mapping in the 4IR by incorporating key elements and processes such as technology assessment, competitive intelligence, risk analysis, and resource allocation. It provides a framework for implementing technology road mapping from strategic planning, goal setting, and technology scanning to road mapping visualisation, implementation planning, monitoring, and evaluation. In addition, the study also addresses the challenges and limitations related to technology roadmapping in 4IR, including the gap analysis. In conclusion of the study, the study will propose a set of practical recommendations for organizations that intend to leverage technology road mapping as a strategic tool in the 4IR in driving innovation and becoming competitive in the current and future ecosystem.

Keywords: technology management, technology road mapping, technology transfer, technology planning

Procedia PDF Downloads 64
1606 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator

Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau

Abstract:

Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.

Keywords: FFFluid, dry foam, anti-vibration devices, elastomeric polymer foam

Procedia PDF Downloads 334
1605 Application of Remote Sensing and In-Situ Measurements for Discharge Monitoring in Large Rivers: Case of Pool Malebo in the Congo River Basin

Authors: Kechnit Djamel, Ammarri Abdelhadi, Raphael Tshimang, Mark Trrig

Abstract:

One of the most important aspects of monitoring rivers is navigation. The variation of discharge in the river generally produces a change in available draft for a vessel, particularly in the low flow season, which can impact the navigable water path, especially when the water depth is less than the normal one, which allows safe navigation for boats. The water depth is related to the bathymetry of the channel as well as the discharge. For a seasonal update of the navigation maps, a daily discharge value is required. Many novel approaches based on earth observation and remote sensing have been investigated for large rivers. However, it should be noted that most of these approaches are not currently able to directly estimate river discharge. This paper discusses the application of remote sensing tools using the analysis of the reflectance value of MODIS imagery and is combined with field measurements for the estimation of discharge. This approach is applied in the lower reach of the Congo River (Pool Malebo) for the period between 2019 and 2021. The correlation obtained between the observed discharge observed in the gauging station and the reflectance ratio time series is 0.81. In this context, a Discharge Reflectance Model (DRM) was developed to express discharge as a function of reflectance. This model introduces a non-contact method that allows discharge monitoring using earth observation. DRM was validated by field measurements using ADCP, in different sections on the Pool Malebo, over two different periods (dry and wet seasons), as well as by the observed discharge in the gauging station. The observed error between the estimated and measured discharge values ranges from 1 to 8% for the ADCP and from (1% to 11%) for the gauging station. The study of the uncertainties will give us the possibility to judge the robustness of the DRM.

Keywords: discharge monitoring, navigation, MODIS, empiric, ADCP, Congo River

Procedia PDF Downloads 85
1604 Parallel Computation of the Covariance-Matrix

Authors: Claude Tadonki

Abstract:

We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations.

Keywords: covariance-matrix, multicore, numerical computing, parallel computing

Procedia PDF Downloads 309
1603 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study

Authors: Jurij Tasinkiewicz

Abstract:

The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wave beam both in elevation and azimuth. In this paper, a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.

Keywords: beamforming, transducer array, BIS-expansion, piezoelectric layer

Procedia PDF Downloads 419
1602 Validating the Contract between Microservices

Authors: Parveen Banu Ansari, Venkatraman Chinnappan, Paramasivam Shankar

Abstract:

Contract testing plays a pivotal role in the current landscape of microservices architecture. Testing microservices at the initial stages of development helps to identify and rectify issues before they escalate to higher levels, such as UI testing. By validating microservices through contract testing, you ensure the integration quality of APIs, enhancing the overall reliability and performance of the application. Contract testing, being a collaborative effort between testers and developers, ensures that the microservices adhere to the specified contracts or agreements. This proactive approach significantly reduces defects, streamlines the development process, and contributes to the overall efficiency and robustness of the application. In the dynamic and fast-paced world of digital applications, where microservices are the building blocks, embracing contract testing is indeed a strategic move for ensuring the quality and reliability of the entire system.

Keywords: validation, testing, contract, agreement, microservices

Procedia PDF Downloads 54
1601 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S

Authors: Mohammad Javad Mollakazemi, Farhad Asadi

Abstract:

In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.

Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, safety margin

Procedia PDF Downloads 437
1600 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling

Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani

Abstract:

The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.

Keywords: material point method, woven fabric composites, forming, material handling

Procedia PDF Downloads 179
1599 Innate Immunity of Insects in Brief

Authors: Ehsan Soleymaninejadian

Abstract:

As the field of immunology is growing day by day, and its chaotic system amazes more people, greed of research in this area is growing; however dealing with human or mammalian cells such as mice make the research expensive. Although there are some differences between higher animals with insects, importance of innate immunity during evolution made it untouched. So, for understanding the innate immunity insects can be good models. They are cheap; reproduction is fast and in the case genetics, less complicated. In this review, we tried to briefly tackle with important factors in insects’ innate immunity such as melanization, encapsulation, JAK-STAT, IMD, and Toll pathways. At the end, we explained how hormones and nerve system also can impact on immune system and make it more beautiful. In concluding remarks, the possibility of taking help from insect immune system to fight against diseases such as cancer has been considered.

Keywords: insects, innate immunity, melanization, intracellular pathways, hormones

Procedia PDF Downloads 221
1598 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea

Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng

Abstract:

During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.

Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea

Procedia PDF Downloads 168
1597 Buckling Analysis of 2D Frames Using the Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The main purpose of this paper is to present the Modified Newmark Method of buckling analysis frame considering the effect of the axial load. The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. In this method, stiffness matrix of the structure is considered to be constant. The most important advantage of such a method is that it obtains both upper and lower critical loads. The advanced of the present method is fast convergence, ability to use computer simulations, and ability to model structures with semi-rigid support conditions using linear and rotational spring.

Keywords: buckling, stability, frame, modified newmark method

Procedia PDF Downloads 410
1596 Analysis of the Behavior of the Structure Under Internal Anfo Explosion

Authors: Seung-Min Ko, Seung-Jai Choi, Gun Jung, Jang-Ho Jay Kim

Abstract:

Although extensive explosion-related research has been performed in the past several decades, almost no research has focused on internal blasts. However, internal blast research is needed to understand about the behavior of a containment structure or building under internal blast loading, as in the case of the Chornobyl and Fukushima nuclear accidents. Therefore, the internal blast study concentrated on RC and PSC structures is performed. The test data obtained from reinforced concrete (RC) and prestressed concrete (PSC) tubular structures applied with an internal explosion using ammonium nitrate/fuel oil (ANFO) charge are used to assess their deformation resistance and ultimate failure load based on the structural stiffness change under various charge weight. For the internal blast charge weight, ANFO explosive charge weights of 15.88, 20.41, 22.68 and 24.95 kg were selected for the RC tubular structures, and 22.68, 24.95, 27.22, 29.48, and 31.75 kg were selected for PSC tubular structures, which were detonated at the center of cross section at the mid-span with a standoff distance of 1,000mm to the inner wall surface. Then, the test data were used to predict the internal charge weight required to fail a real scale reinforced concrete containment vessels (RCCV) and prestressed concrete containment vessel (PCCV). Then, the analytical results based on the experimental data were derived using the simple assumptions of the models, and another approach using the stiffness, deformation and explosion weight relationship was used to formulate a general method for analyzing internal blasted tubular structures. A model of the internal explosion of a steel tube was used as an example for validation. The proposed method can be used generically, using factors according to the material characteristics of the target structures. The results of the study are discussed in detail in the paper.

Keywords: internal blast, reinforced concrete, RCCV, PCCV, stiffness, blast safety

Procedia PDF Downloads 72
1595 A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer

Authors: Naim Suleyman Ting, Yakup Sahin, Ismail Aksoy

Abstract:

This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model.

Keywords: direct power transfer, boost converter, zero-voltage transition, zero-current transition

Procedia PDF Downloads 814
1594 Nudge Plus: Incorporating Reflection into Behavioural Public Policy

Authors: Sanchayan Banerjee, Peter John

Abstract:

Nudge plus is a modification of the toolkit of behavioural public policy. It incorporates an element of reflection¾the plus¾into the delivery of a nudge, either blended in or made proximate. Nudge plus builds on recent work combining heuristics and deliberation. It may be used to design pro-social interventions that help preserve the autonomy of the agent. The argument turns on seminal work on dual systems, which presents a subtler relationship between fast and slow thinking than commonly assumed in the classic literature in behavioural public policy. We review classic and recent work on dual processes to show that a hybrid is more plausible than the default interventionist or parallel competitive framework. We define nudge plus, set out what reflection could entail, provide examples, outline causal mechanisms, and draw testable implications.

Keywords: nudge, nudge plus, think, dual process theory

Procedia PDF Downloads 185
1593 Monocular Visual Odometry for Three Different View Angles by Intel Realsense T265 with the Measurement of Remote

Authors: Heru Syah Putra, Aji Tri Pamungkas Nurcahyo, Chuang-Jan Chang

Abstract:

MOIL-SDK method refers to the spatial angle that forms a view with a different perspective from the Fisheye image. Visual Odometry forms a trusted application for extending projects by tracking using image sequences. A real-time, precise, and persistent approach that is able to contribute to the work when taking datasets and generate ground truth as a reference for the estimates of each image using the FAST Algorithm method in finding Keypoints that are evaluated during the tracking process with the 5-point Algorithm with RANSAC, as well as produce accurate estimates the camera trajectory for each rotational, translational movement on the X, Y, and Z axes.

Keywords: MOIL-SDK, intel realsense T265, Fisheye image, monocular visual odometry

Procedia PDF Downloads 130
1592 Conceptual Design of a Wi-Fi and GPS Based Robotic Library Using an Intelligent System

Authors: M. S. Sreejith, Steffy Joy, Abhishesh Pal, Beom-Sahng Ryuh, V. R. Sanal Kumar

Abstract:

In this paper an attempt has been made for the design of a robotic library using an intelligent system. The robot works on the ARM microprocessor, motor driver circuit with 5 degrees of freedom with Wi-Fi and GPS based communication protocol. The authenticity of the library books is controlled by RFID. The proposed robotic library system is facilitated with embedded system and ARM. In this library issuance system the previous potential readers’ authentic review reports have been taken into consideration for recommending suitable books to the deserving new users and the issuance of books or periodicals is based on the users’ decision. We have conjectured that the Wi-Fi based robotic library management system would allow fast transaction of books issuance and it also produces quality readers.

Keywords: GPS bsed based Robotic library, library management system, robotic library, Wi-Fi library

Procedia PDF Downloads 300
1591 Digitalized Cargo Coordination to Eliminate Emissions in the Shipping Ecosystem: A System Dynamical Approach

Authors: Henry Schwartz, Bogdan Iancu, Magnus Gustafsson, Johan Lilius

Abstract:

The shipping sector generates significant amounts of carbon emissions on annual basis. The excess amount of carbon dioxide is harmful for both the environment and the society, and partly for that reason, there is acute interest to decrease the volume of anthropogenic carbon dioxide emissions in shipping. The usage of the existing cargo carrying capacity can be maximized, and the share of time used in actual transportation operations could be increased if the whole transportation and logistics chain was optimized with the aid of information sharing done through a centralized marketplace and an information-sharing platform. The outcome of this change would be decreased carbon dioxide emission volumes produced per each metric ton of cargo transported by a vessel. Cargo coordination is a platform under development that matches the need for waterborne transportation services with the ships that operate at a given moment in time. In this research, the transition towards adopting cargo coordination is modelled with system dynamics. The model encompasses the complex supply-demand relationships of ship operators and cargo owners. The built scenarios predict the pace at which different stakeholders start using the digitalized platform and by doing so reduce the amount of annual CO2 emissions generated. To improve the reliability of the results, various sensitivity analyses considering the pace of transition as well as the overall impact on the environment (carbon dioxide emissions per amount of cargo transported) are conducted. The results of the study can be used to support investors and politicians in decision making towards more environmentally sustainable solutions. In addition, the model provides concepts and ideas for a wider discussion considering the paths towards carbon neutral transportation.

Keywords: carbon dioxide emissions, energy efficiency, sustainable transportation, system dynamics

Procedia PDF Downloads 144
1590 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.

Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis

Procedia PDF Downloads 304
1589 An A-Star Approach for the Quickest Path Problem with Time Windows

Authors: Christofas Stergianos, Jason Atkin, Herve Morvan

Abstract:

As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.

Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling

Procedia PDF Downloads 225
1588 An Internet of Things Based Home Automation Based on Raspberry Pi and Node JS Server

Authors: Ahmed Khattab, Bassem Shetta

Abstract:

Today, there are many branches of technology, one of them is the internet of things. In this paper, it's focused specifically on automating all the home appliances through E-mail using Node JS server, the server side stores, and processes this data. The server side contains user interface and notification system functionalities which is operated by Raspberry Pi. It will present the security requirements for the smart home. In this application, the privilege of home control including special persons to use it, using the hardware appliances through mobiles and tablets is achieved. The proposed application delivers high quality of service, long lifetime, low maintenance, fast deployment, and low power requirements with low cost needed for development.

Keywords: Raspberry Pi, E-mail, home automation, temperature sensor, PIR sensor, actuators, relay

Procedia PDF Downloads 259
1587 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source

Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev

Abstract:

One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.

Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement

Procedia PDF Downloads 465
1586 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies

Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo

Abstract:

Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.

Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system

Procedia PDF Downloads 29
1585 Review: Wavelet New Tool for Path Loss Prediction

Authors: Danladi Ali, Abdullahi Mukaila

Abstract:

In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.

Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency

Procedia PDF Downloads 444
1584 Performance Analysis of Transformerless DC-DC Boost Converter

Authors: Nidhi Vijay, A. K. Sharma

Abstract:

Many industrial applications require power from dc source. DC-DC boost converters are now being used all over the world for rapid transit system. Although these provide high efficiency, smooth control, fast response and regeneration, conventional DC-DC boost converters are unable to provide high step up voltage gain due to effect of power switches, rectifier diodes and equivalent series resistance of inductor and capacitor. This paper proposes new transformerless dc-dc converters to achieve high step up voltage gain as compared to the conventional converter without an extremely high duty ratio. Only one power stage is used in this converter. Steady-state analysis of voltage gain is discussed in brief. Finally, a comparative analysis is given in order to verify the results.

Keywords: MATLAB, DC-DC boost converter, voltage gain, voltage stress

Procedia PDF Downloads 424
1583 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel

Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani

Abstract:

Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.

Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry

Procedia PDF Downloads 266
1582 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 92
1581 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 102