Search results for: variable speed condition
8558 Speed Characteristics of Mixed Traffic Flow on Urban Arterials
Authors: Ashish Dhamaniya, Satish Chandra
Abstract:
Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.Keywords: normal distribution, percentile speed, speed spread ratio, traffic volume
Procedia PDF Downloads 4268557 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips
Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi
Abstract:
In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.Keywords: wind energy, particle swarm optimization, wound rotor synchronous generator, power control, RST controller, maximum power point tracking
Procedia PDF Downloads 4578556 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines
Authors: Mustafa Sahin, İlkay Yavrucuk
Abstract:
This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control
Procedia PDF Downloads 1408555 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation
Authors: Minho Kwak, Suhwan Yun, Choonsoo Park
Abstract:
Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape
Procedia PDF Downloads 3538554 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization
Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun
Abstract:
Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.Keywords: airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design
Procedia PDF Downloads 5898553 Dynamic Analysis of Viscoelastic Plates with Variable Thickness
Authors: Gülçin Tekin, Fethi Kadıoğlu
Abstract:
In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.Keywords: dynamic analysis, inverse laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness
Procedia PDF Downloads 3358552 The Effects of Sleep Deprivation on Vigilance, Fatigue, and Performance during Simulated Train Driving
Authors: Clara Theresia, Hardianto Iridiastadi
Abstract:
Drowsiness is one of the main factors that contribute to the occurrence of accidents, particularly in the transportation sector. While the effects of sleep deprivation on cognitive functions have been reported, the exact relationships remain a critical issue. This study aimed at quantifying the effects of extreme sleep deprivation on vigilance, fatigue, and performance during simulated train driving. A total of 12 participants were asked to drive a train simulator continuously for 4 hours, either in a sleep deprived condition (2-hr of sleep) or normal (8-hr of sleep) condition. Dependent variables obtained during the task included Psychomotor Vigilance Task (PVT) parameters, degree of fatigue (assessed via Visual Analogue Scale/VAS) and sleepiness (reported using Karolinska Sleepiness Scale/KSS), and driving performance (the number of speed limit violations). Findings from this study demonstrated substantial decrements in vigilance in the sleep-deprived condition. This condition also resulted in 75% increase in speed violation and a two-fold increase in the degree of fatigue and sleepiness. Extreme sleep deprivation was clearly associated with substantially poorer response. The exact effects, however, were dependent upon the types of responses.Keywords: cognitive function, psychomotor vigilance task, sleep deprivation, train simulator
Procedia PDF Downloads 1888551 Second Order MIMO Sliding Mode Controller for Nonlinear Modeled Wind Turbine
Authors: Alireza Toloei, Ahmad R. Saffary, Reza Ghasemi
Abstract:
Due to the growing need for energy and limited fossil resources, the use of renewable energy, particularly wind is strongly favored. We all wind energy can’t be saved. Betz law, 59% of the total kinetic energy of the wind turbine is extracting. Therefore turbine control to achieve maximum performance and maintain stable conditions seem necessary. In this article, we plan for a horizontal axis wind turbine variable-speed variable-pitch nonlinear controller to obtain maximum output power. The model presented in this article, including a wide range of wind turbines are horizontal axis. However, the parameters used in this model is from Vestas V29 225 kW wind turbine. We designed second order sliding mode controller, which was robust in the face of changes in wind speed and it eliminated chattering by using of super twisting algorithm. Finally, using MATLAB software to simulate the results we considered the accuracy of the simulation results.Keywords: non linear controller, robust, sliding mode, kinetic energy
Procedia PDF Downloads 5058550 A New Converter Topology for Wind Energy Conversion System
Authors: Mahmoud Khamaira, Ahmed Abu-Siada, Yasser Alharbi
Abstract:
Doubly Fed Induction Generators (DFIGs) are currently extensively used in variable speed wind power plants due to their superior advantages that include reduced converter rating, low cost, reduced losses, easy implementation of power factor correction schemes, variable speed operation and four quadrants active and reactive power control capabilities. On the other hand, DFIG sensitivity to grid disturbances, especially for voltage sags represents the main disadvantage of the equipment. In this paper, a coil is proposed to be integrated within the DFIG converters to improve the overall performance of a DFIG-based wind energy conversion system (WECS). The charging and discharging of the coil are controlled by controlling the duty cycle of the switches of the dc-dc chopper. Simulation results reveal the effectiveness of the proposed topology in improving the overall performance of the WECS system under study.Keywords: doubly fed induction generator, coil, wind energy conversion system, converter topology
Procedia PDF Downloads 6648549 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation
Authors: Michael C. Barbecho, Romeo B. Morcilla
Abstract:
This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.Keywords: electric vehicle, solar vehicles, front drive, solar, solar power
Procedia PDF Downloads 5758548 Mechanism Design and Dynamic Analysis of Active Independent Front Steering System
Authors: Cheng-Chi Yu, Yu-Shiue Wang, Kei-Lin Kuo
Abstract:
Active Independent Front Steering system is a steering system which can according to vehicle driving situation adjusts the relation of steering angle between inner wheel and outer wheel. In low-speed cornering, AIFS sets the steering angles of inner and outer wheel into Ackerman steering geometry to make vehicle has less cornering radius. Besides, AIFS changes the steering geometry to parallel or even anti-Ackerman steering geometry to keep vehicle stability in high-speed cornering. Therefore, based on the analysis of the vehicle steering behavior from different steering geometries, this study develops a new screw type of active independent front steering system to make vehicles best cornering performance at any speeds. The screw type of active independent front steering system keeps the pinion and separates the rack into main rack and second rack. Two racks connect by a screw. Extra screw rotated motion powered by assistant motor through coupler makes second rack move relative to main rack, which can adjust both steering ratio and steering geometry. First of all, this study distinguishes the steering geometry by using Ackerman percentage and utilizes the software of ADAMS/Car to construct diverse steering geometry models. The different steering geometries are compared at low-speed and high-speed cornering, and then control strategies of the active independent front steering systems could be formulated. Secondly, this study applies closed loop equation to analyze tire steering angles and carries out optimization calculations to make the steering geometry from traditional rack and pinion steering system near to Ackerman steering geometry. Steering characteristics of the optimum steering mechanism and motion characteristics of vehicle installed the steering mechanism are verified by ADAMS/Car models of front suspension and full vehicle respectively. By adding dual auxiliary rack and dual motor to the optimum steering mechanism, the active independent front steering system could be developed to achieve the functions of variable steering ratio and variable steering geometry. At last, this study uses ADAMS/Car and Matlab/Simulink to co-simulate the cornering motion of vehicles confirms the vehicle installed the Active Independent Front Steering (AIFS) system has better handling performance than that with Active Independent Steering (AFS) system or with Electric Power Steering (EPS) system. At low-speed cornering, the vehicles with AIFS system and with AFS system have better maneuverability, less cornering radius, than the traditional vehicle with EPS system because that AIFS and AFS systems both provide function of variable steering ratio. However, there is a slight penalty in the motor(s) power consumption. In addition, because of the capability of variable steering geometry, the vehicle with AIFS system has better high-speed cornering stability, trajectory keeping, and even less motor(s) power consumption than that with EPS system and also with AFS system.Keywords: active front steering system, active independent front steering system, steering geometry, steering ratio
Procedia PDF Downloads 1928547 Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control
Authors: A. Mansouri, F. Krim
Abstract:
This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches.Keywords: ARMAX model, DC motor, AERLS, GA, optimization, parameter identification, PID speed regulation
Procedia PDF Downloads 3868546 Experimental Study of the Modifications of the Bed of a River under Extreme Flow Conditions
Authors: A. Ghenaim, A. Terfous
Abstract:
In this work, degradation phenomena in fluvial beds having uniform sediments are explored experimentally under extreme flow conditions. Laboratory experiments were conducted in a rectangular cross-section channel for different flow conditions, channel characteristics, and sediment properties at the National Institute of Applied Sciences (Strasbourg, France). Tests were carried out in two conditions: (1) equilibrium condition, where, once the steady and uniform flow conditions were achieved for a given slope and discharge, the channel was fed with variable sediment discharges until the bed-load sediment transport achieved an equilibrium condition; and (2) nonequilibrium condition, where the sediment feeding was instantaneously stopped, and the bed levels were measured over time. Experimental results enabled assessing the erosion rates and determining the empirical mathematical model to predict the bed level changes.Keywords: fluvial beds, sediment, uniform flow conditions, nonequilibrium condition, sediment disposition, erosion
Procedia PDF Downloads 988545 Comparing Skill, Employment, and Productivity of Industrial City Case Study: Bekasi Industrial Area and Special Economic Zone Sei Mangkei
Authors: Auliya Adzillatin Uzhma, M. Adrian Rizky, Puri Diah Santyarini
Abstract:
Bekasi Industrial Area in Kab. Bekasi and SEZ (Special Economic Zone) Sei Mangkei in Kab. Simalungun are two areas whose have the same main economic activity that are manufacturing industrial. Manufacturing industry in Bekasi Industrial Area contributes more than 70% of Kab. Bekasi’s GDP, while manufacturing industry in SEZ Sei Mangkei contributes less than 20% of Kab. Simalungun’s GDP. The dependent variable in the research is labor productivity, while the independent variable is the amount of labor, the level of labor education, the length of work and salary. This research used linear regression method to find the model for represent actual condition of productivity in two industrial area, then the equalization using dummy variable on labor education level variable. The initial hypothesis (Ho) in this research is that labor productivity in Bekasi Industrial Area will be higher than the productivity of labor in SEZ Sei Mangkei. The variable that supporting the accepted hypothesis are more labor, higher education, longer work and higher salary in Bekasi Industrial Area.Keywords: labor, industrial city, linear regression, productivity
Procedia PDF Downloads 1848544 A Cost-Effective Evaluation of Proper Control Process of Air-Cooled Heat Exchanger
Authors: Ali Ghobadi, Eisa Bakhoda, Hamid R. Javdan
Abstract:
One of the key factors in air cooled heat exchangers operation is the proper control of process stream outlet temperature. In this study, performances of two different air cooled heat exchangers have been considered, one of them condenses Propane and the other one cools LPG streams. In order to predict operation of these air coolers at different operating conditions. The results of simulations were applied for both economical evaluations and operational considerations for using convenient air cooler control system. In this paper, using On-Off fans method and installing variable speed drivers have been studied. Finally, the appropriate methods for controlling outlet temperature of process fluid streams as well as saving energy consumption were proposed. Using On-Off method for controlling studied Propane condenser by multiple fans is proper; while controlling LPG air cooler with lesser fans by means of two variable speed drivers is economically convenient.Keywords: air cooled heat exchanger, simulation, economical evaluation, energy, process control
Procedia PDF Downloads 4158543 Robust Attitude Control for Agile Satellites with Vibration Compensation
Authors: Jair Servín-Aguilar, Yu Tang
Abstract:
We address the problem of robust attitude tracking for agile satellites under unknown bounded torque disturbances using a double-gimbal variable-speed control-moment gyro (DGVSCMG) driven by a cluster of three permanent magnet synchronous motors (PMSMs). Uniform practical asymptotic stability is achieved at the torque control level first. The desired speed of gimbals and the acceleration of the spin wheel to produce the required torque are then calculated by a velocity-based steering law and tracked at the PMSM speed-control level by designing a speed-tracking controller with compensation for the vibration caused by eccentricity and imbalance due to mechanical imperfection in the DGVSCMG. Uniform practical asymptotic stability of the overall system is ensured by loan relying on the analysis of the resulting cascaded system. Numerical simulations are included to show the performance improvement of the proposed controller.Keywords: agile satellites, vibration compensation, internal model, stability
Procedia PDF Downloads 1178542 Operating Speed Models on Tangent Sections of Two-Lane Rural Roads
Authors: Dražen Cvitanić, Biljana Maljković
Abstract:
This paper presents models for predicting operating speeds on tangent sections of two-lane rural roads developed on continuous speed data. The data corresponds to 20 drivers of different ages and driving experiences, driving their own cars along an 18 km long section of a state road. The data were first used for determination of maximum operating speeds on tangents and their comparison with speeds in the middle of tangents i.e. speed data used in most of operating speed studies. Analysis of continuous speed data indicated that the spot speed data are not reliable indicators of relevant speeds. After that, operating speed models for tangent sections were developed. There was no significant difference between models developed using speed data in the middle of tangent sections and models developed using maximum operating speeds on tangent sections. All developed models have higher coefficient of determination then models developed on spot speed data. Thus, it can be concluded that the method of measuring has more significant impact on the quality of operating speed model than the location of measurement.Keywords: operating speed, continuous speed data, tangent sections, spot speed, consistency
Procedia PDF Downloads 4528541 On Optimum Stratification
Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao
Abstract:
In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.Keywords: auxiliary variable, dynamic programming technique, nonlinear programming problem, optimum stratification, uniform distribution
Procedia PDF Downloads 3378540 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane
Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal
Abstract:
The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion
Procedia PDF Downloads 3888539 Smart Speed Bump
Authors: Mohammad Rahmani Rezaiyeh, Mojtaba Rahmani Rezaiyeh, Mehrdad Rahmani Rezaiyeh
Abstract:
Smart speed bump is a new invention and I am invented it. Smart speed bump is a system that can change the position of speed bumps either active or passive in necessary situations. The basic system of smart speed bumps is based on a robotic system which includes mechanic, electronic and artificial intelligence. The smart speed bump is capable of smart decision making and can change its position by anticipating the peak of terrific hours. It can be noted to the advantages of this system such as preventing the waste of petrol while crossing speed bumps, traffic management, accelerating, flowing and securing traffic, reducing accidents and judicial records.Keywords: invention, smart, robotic system, speed bump, traffic, management
Procedia PDF Downloads 4228538 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure
Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser
Abstract:
Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model
Procedia PDF Downloads 4498537 Performance and Structural Evaluation of the Torrefaction of Bamboo under a High Gravity (Higee) Environment Using a Rotating Packed Bed
Authors: Mark Daniel De Luna, Ma. Katreena Pillejera, Wei-Hsin Chen
Abstract:
The raw bamboo (Phyllostachys mankinoi), with a moisture content of 13.54 % and a higher heating value (HHV) of 17.657 MJ/kg, was subjected to torrefaction under a high gravity (higee) environment using a rotating packed bed. The performance of the higee torrefaction was explored in two parts: (1) effect of rotation and temperature and (2) effect of duration on the solid yield, HHV and energy yield. By statistical analyses, the results indicated that the rotation, temperature and their interaction has a significant effect on the three responses. Same remarks on the effect of duration where when the duration (temperature and rotation) increases, the HHV increases, while the solid yield and energy yield decreases. Graphical interpretations showed that at 300 °C, the rotating speed has no evident effect on the responses. At 30-min holding time, the highest HHV reached (28.389 MJ/kg) was obtained in the most severe torrefaction condition (the rotating speed at 1800 rpm and temperature at 300 °C) with an enhancement factor of HHV corresponding to 1.61 and an energy yield of 63.51%. Upon inspection, the recommended operating condition under a 30-min holding time is at 255 °C-1800 rpm since the enhancement factor of HHV (1.53), HHV (26.988 MJ/kg), and energy yield (65.21%) values are relatively close to that of the aforementioned torrefaction condition. The Van Krevelen diagram of the torrefied biomass showed that the ratios decrease as the torrefaction intensifies, hence improving the hydrophobicity of the product. The spreads of the results of the solid yield, enhancement factor (EF) of HHV, energy yield, and H/C and O/C ratios were in accordance with the trends of the responses. Overall, from the results presented, it can be concluded that the quality of the product from the process is at par to that of coal (i.e. HHV of coal is 21-35 MJ/kg). The Fourier transform infrared (FTIR) spectroscopy results indicated that cellulose and lignin may have been degraded at a lower temperature accompanied with a high rotating speed. The results suggested that torrefaction under higee environment indicates promising process for the utilization of bamboo.Keywords: heat transfer, high gravity environment, FTIR, rotation, rotating speed, torrefaction
Procedia PDF Downloads 2768536 Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables
Authors: Saeed A. AlGhamdi, Nabil Habli, Vinoj Somasanran
Abstract:
This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing.Keywords: power management, reactive power, subsea cables, variable shunt reactors
Procedia PDF Downloads 2578535 The Use of Ward Linkage in Cluster Integration with a Path Analysis Approach
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
Path analysis is an analytical technique to study the causal relationship between independent and dependent variables. In this study, the integration of Clusters in the Ward Linkage method was used in a variety of clusters with path analysis. The variables used are character (x₁), capacity (x₂), capital (x₃), collateral (x₄), and condition of economy (x₄) to on time pay (y₂) through the variable willingness to pay (y₁). The purpose of this study was to compare the Ward Linkage method cluster integration in various clusters with path analysis to classify willingness to pay (y₁). The data used are primary data from questionnaires filled out by customers of Bank X, using purposive sampling. The measurement method used is the average score method. The results showed that the Ward linkage method cluster integration with path analysis on 2 clusters is the best method, by comparing the coefficient of determination. Variable character (x₁), capacity (x₂), capital (x₃), collateral (x₄), and condition of economy (x₅) to on time pay (y₂) through willingness to pay (y₁) can be explained by 58.3%, while the remaining 41.7% is explained by variables outside the model.Keywords: cluster integration, linkage, path analysis, compliant paying behavior
Procedia PDF Downloads 1938534 Effects of Cattaneo-Christov Heat Flux on 3D Magnetohydrodynamic Viscoelastic Fluid Flow with Variable Thermal Conductivity
Authors: Muhammad Ramzan
Abstract:
A mathematical model has been envisaged to discuss three-dimensional Viscoelastic fluid flow with an effect of Cattaneo-Christov heat flux in attendance of magnetohydrodynamic (MHD). Variable thermal conductivity with the impact of homogeneous-heterogeneous reactions and convective boundary condition is also taken into account. Homotopy analysis method is engaged to obtain series solutions. Graphical illustrations depicting behaviour of sundry parameters on skin friction coefficient and all involved distributions are also given. It is observed that velocity components are decreasing functions of Viscoelastic fluid parameter. Furthermore, strength of homogeneous and heterogeneous reactions have opposite effects on concentration distribution. A comparison with a published paper has also been established and an excellent agreement is obtained; hence reliable results are being presented.Keywords: Cattaneo Christov heat flux, homogenous-heterogeneous reactions, magnetic field, variable thermal conductivity
Procedia PDF Downloads 2018533 Influence of Driving Speed on Bearing Capacity Measurement of Intra-Urban Roads with the Traffic Speed Deflectometer(Tsd)
Authors: Pahirangan Sivapatham, Barbara Esser, Andreas Grimmel
Abstract:
In times of limited public funds and, in particular, an increased social, environmental awareness, as well as the limited availability of construction materials, sustainable and resource-saving pavement management system, is becoming more and more important. Therefore, the knowledge about the condition of the structural substances, particularly bearing capacity and its consideration while planning the maintenance measures of the subordinate network, i.e., state and municipal roads unavoidable. According to the experience, the recommended ride speed of the Traffic Speed Deflectometer (TSD) shall be higher than 40 km/h. Holding of this speed on the intra-urban roads is nearly not possible because of intersections and traffic lights as well as the speed limit. A sufficient background of experience for the evaluation of bearing capacity measurements with TSD in the range of lower speeds is not available yet. The aim of this study is to determine the possible lowest ride speed of the TSD while the bearing capacity measurement on the intra-urban roads. The manufacturer of the TSD used in this study states that the measurements can be conducted at a ride speed of higher than 5 km/h. It is well known that with decreasing ride speed, the viscous fractions in the response of the asphalt pavement increase. This must be taken into account when evaluating the bearing capacity data. In the scope of this study, several measurements were carried out at different speeds between 10 km/h and 60 km/h on the selected intra-urban roads with Pavement-Scanner of the University of Wuppertal, which is equipped with TSD. Pavement-Scanner is able to continuously determine the deflections of asphalt roads in flowing traffic at speeds of up to 80 km/h. The raw data is then aggregated to 10 m mean values so that, as a rule, a bearing capacity characteristic value can be determined for each 10 m road section. By means of analysing of obtained test results, the quality and validity of the determined data rate subject to the riding speed of TSD have been determined. Moreover, the data and pictures of the additional measuring systems of Pavement-Scanners such as High-Speed Road Monitor, Ground Penetration Radar and front cameras can be used to determine and eliminate irregularities in the pavement, which could influence the bearing capacity.Keywords: bearing capacity measurement, traffic speed deflectometer, inter-urban roads, Pavement-Scanner, structural substance
Procedia PDF Downloads 2438532 Structural Equation Modeling Semiparametric in Modeling the Accuracy of Payment Time for Customers of Credit Bank in Indonesia
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
The research was conducted to apply semiparametric SEM modeling to the timeliness of paying credit. Semiparametric SEM is structural modeling in which two combined approaches of parametric and nonparametric approaches are used. The analysis method in this research is semiparametric SEM with a nonparametric approach using a truncated spline. The data in the study were obtained through questionnaires distributed to Bank X mortgage debtors and are confidential. The study used 3 variables consisting of one exogenous variable, one intervening endogenous variable, and one endogenous variable. The results showed that (1) the effect of capacity and willingness to pay variables on timeliness of payment is significant, (2) modeling the capacity variable on willingness to pay also produces a significant estimate, (3) the effect of the capacity variable on the timeliness of payment variable is not influenced by the willingness to pay variable as an intervening variable, (4) the R^2 value of 0.763 or 76.33% indicates that the model has good predictive relevance.Keywords: structural equation modeling semiparametric, credit bank, accuracy of payment time, willingness to pay
Procedia PDF Downloads 518531 Cyclone Driven Variation of Chlorophyll-a Concentration in Bay of Bengal
Authors: Nowshin Nabila Siddique, S. M. Mustafizur Rahman
Abstract:
There is evidence of cyclonic events in Bay of Bengal (BoB) throughout the year. These cyclones cause a variety of fluctuations along its track including the is the influence in Chlorophyll-a (chl-a) concentration. The main purpose of this paper is to justify this variation pattern. Six Tropical Cyclones (TC) are studied using observational method. The result suggests that there is a noticeable change in productivity after a cyclone passes, when the pre cyclonic and post cyclonic condition is observed. In case of Cyclone Amphan, it shows 1.79 mg/m3 of chlorophyll-a concentration increase after a week of cyclonic occurrence. This change is affected by several attributes such as translation speed, intensity and Ocean Pre-condition, specifically Mixed Layer Depth (MLD). Translation Speed and MLD shows a strong negative correlation with the induced chlorophyll concentration. Whereas the effect of the intensity on a cyclone is not that prominent. It is also found that the period of starting an induction is not same for all cyclone such as in case of Cyclone Amphan, the changes started to occur after one day however for Cyclone Sidr and Cyclone Mora it started after three days. Furthermore, a slightly increase in overall productivity is also observed after a cyclone. In the case of Cyclone Amphan, Hudhud, Phailin it shows a rise up to 0.12 mg/m3 in productivity which decreases gradually taking around the period of two months. On a whole this paper signifies the changes in chlorophyll concentration caused by numerous cyclones and its different characteristics that regulates these changes.Keywords: tropical cyclone, chlorophyll-a concentration, mixed layer depth, translation speed
Procedia PDF Downloads 938530 The Role of Speed Reduction Model in Urban Highways Tunnels Accidents
Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi
Abstract:
According to the increasing travel demand in cities, bridges and tunnels are viewed as one of the fundamental components of cities transportation systems. Normally, due to geometric constraints forms in the tunnels, the considered speed in the tunnels is lower than the speed in connected highways. Therefore, drivers tend to reduce the speed near the entrance of the tunnels. In this paper, the effect of speed reduction on accident happened in the entrance of the tunnels has been discussed. The relation between accidents frequency and the parameters of speed, traffic volume and time of the accident in the mentioned tunnel has been analyzed and the mathematical model has been proposed.Keywords: urban highway, accident, tunnel, mathematical model
Procedia PDF Downloads 4758529 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions
Authors: Chaitanya Varma, Arpan Mehar
Abstract:
The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.Keywords: highway, mixed traffic flow, modeling, operating speed
Procedia PDF Downloads 462