Search results for: stiff ordinary differential equation
3860 Investigation of Different Conditions to Detect Cycles in Linearly Implicit Quantized State Systems
Authors: Elmongi Elbellili, Ben Lauwens, Daan Huybrechs
Abstract:
The increasing complexity of modern engineering systems presents a challenge to the digital simulation of these systems which usually can be represented by differential equations. The Linearly Implicit Quantized State System (LIQSS) offers an alternative approach to traditional numerical integration techniques for solving Ordinary Differential Equations (ODEs). This method proved effective for handling discontinuous and large stiff systems. However, the inherent discrete nature of LIQSS may introduce oscillations that result in unnecessary computational steps. The current oscillation detection mechanism relies on a condition that checks the significance of the derivatives, but it could be further improved. This paper describes a different cycle detection mechanism and presents the outcomes using LIQSS order one in simulating the Advection Diffusion problem. The efficiency of this new cycle detection mechanism is verified by comparing the performance of the current solver against the new version as well as a reference solution using a Runge-Kutta method of order14.Keywords: numerical integration, quantized state systems, ordinary differential equations, stiffness, cycle detection, simulation
Procedia PDF Downloads 603859 Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments
Authors: Mehtap Lafcı
Abstract:
In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results.Keywords: Carvalho's method, impulsive differential equation, periodic solution, piecewise constant arguments
Procedia PDF Downloads 5153858 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides
Authors: R. B. Ogunrinde, C. C. Jibunoh
Abstract:
In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian
Procedia PDF Downloads 3303857 Modification of Newton Method in Two Point Block Backward Differentiation Formulas
Authors: Khairil I. Othman, Nur N. Kamal, Zarina B. Ibrahim
Abstract:
In this paper, we present modified Newton method as a new strategy for improving the efficiency of Two Point Block Backward Differentiation Formulas (BBDF) when solving stiff systems of ordinary differential equations (ODEs). These methods are constructed to produce two approximate solutions simultaneously at each iteration The detailed implementation of the predictor corrector BBDF with PE(CE)2 with modified Newton are discussed. The proposed modification of BBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing Block Backward Differentiation Formula. Numerical results show the advantage of using the new strategy for solving stiff ODEs in improving the accuracy of the solution.Keywords: newton method, two point, block, accuracy
Procedia PDF Downloads 3573856 Differential Transform Method: Some Important Examples
Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen
Abstract:
In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions
Procedia PDF Downloads 5373855 Existence of positive periodic solutions for certain delay differential equations
Authors: Farid Nouioua, Abdelouaheb Ardjouni
Abstract:
In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results.Keywords: delay differential equations, positive periodic solutions, integral equations, Krasnoselskii fixed point theorem
Procedia PDF Downloads 4383854 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback
Authors: M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.Keywords: Parkinson's disease, stability, simulation, two delay differential equation
Procedia PDF Downloads 1303853 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes
Authors: Amir T. Payandeh Najafabadi
Abstract:
This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.Keywords: ruin probability, compound poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions
Procedia PDF Downloads 3413852 Image Transform Based on Integral Equation-Wavelet Approach
Authors: Yuan Yan Tang, Lina Yang, Hong Li
Abstract:
Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments.Keywords: harmonic model, partial differential equation (PDE), integral equation, integral representation, boundary measure formula, wavelet collocation
Procedia PDF Downloads 5583851 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy
Authors: Beata Jackowska-Zduniak
Abstract:
We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy
Procedia PDF Downloads 4083850 Asymptotic Expansion of the Korteweg-de Vries-Burgers Equation
Authors: Jian-Jun Shu
Abstract:
It is common knowledge that many physical problems (such as non-linear shallow-water waves and wave motion in plasmas) can be described by the Korteweg-de Vries (KdV) equation, which possesses certain special solutions, known as solitary waves or solitons. As a marriage of the KdV equation and the classical Burgers (KdVB) equation, the Korteweg-de Vries-Burgers (KdVB) equation is a mathematical model of waves on shallow water surfaces in the presence of viscous dissipation. Asymptotic analysis is a method of describing limiting behavior and is a key tool for exploring the differential equations which arise in the mathematical modeling of real-world phenomena. By using variable transformations, the asymptotic expansion of the KdVB equation is presented in this paper. The asymptotic expansion may provide a good gauge on the validation of the corresponding numerical scheme.Keywords: asymptotic expansion, differential equation, Korteweg-de Vries-Burgers (KdVB) equation, soliton
Procedia PDF Downloads 2493849 Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation
Authors: A. A. Soliman
Abstract:
The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied.Keywords: collocation method, MRLW equation, Quartic B-splines, solitons
Procedia PDF Downloads 3033848 A Study of Non Linear Partial Differential Equation with Random Initial Condition
Authors: Ayaz Ahmad
Abstract:
In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.Keywords: drift term, finite time blow up, inverse problem, soliton solution
Procedia PDF Downloads 2153847 Formulation of Corrector Methods from 3-Step Hybid Adams Type Methods for the Solution of First Order Ordinary Differential Equation
Authors: Y. A. Yahaya, Ahmad Tijjani Asabe
Abstract:
This paper focuses on the formulation of 3-step hybrid Adams type method for the solution of first order differential equation (ODE). The methods which was derived on both grid and off grid points using multistep collocation schemes and also evaluated at some points to produced Block Adams type method and Adams moulton method respectively. The method with the highest order was selected to serve as the corrector. The convergence was valid and efficient. The numerical experiments were carried out and reveal that hybrid Adams type methods performed better than the conventional Adams moulton method.Keywords: adam-moulton type (amt), corrector method, off-grid, block method, convergence analysis
Procedia PDF Downloads 6263846 A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem
Authors: Rajeev, N. K. Raigar
Abstract:
In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.Keywords: operational matrix of differentiation, similarity transformation, shifted second kind chebyshev wavelets, stefan problem
Procedia PDF Downloads 4033845 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation
Authors: Yaping Zhao
Abstract:
In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density
Procedia PDF Downloads 5033844 Discontinuous Galerkin Method for Higher-Order Ordinary Differential Equations
Authors: Helmi Temimi
Abstract:
In this paper, we study the super-convergence properties of the discontinuous Galerkin (DG) method applied to one-dimensional mth-order ordinary differential equations without introducing auxiliary variables. We found that nth−derivative of the DG solution exhibits an optimal O (hp+1−n) convergence rates in the L2-norm when p-degree piecewise polynomials with p≥1 are used. We further found that the odd-derivatives and the even derivatives are super convergent, respectively, at the upwind and downwind endpoints.Keywords: discontinuous, galerkin, superconvergence, higherorder, error, estimates
Procedia PDF Downloads 4783843 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation
Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem
Abstract:
The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation
Procedia PDF Downloads 5513842 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model
Procedia PDF Downloads 1523841 Numerical Solution of Space Fractional Order Solute Transport System
Authors: Shubham Jaiswal
Abstract:
In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system
Procedia PDF Downloads 2613840 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations
Authors: James Adewale, Joshua Sunday
Abstract:
In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent
Procedia PDF Downloads 5013839 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 4483838 The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations
Authors: Chao-Qing Dai
Abstract:
In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation.Keywords: discrete sine-Gordon equation, variable coefficient Jacobian elliptic function method, exact solutions, equation
Procedia PDF Downloads 6683837 Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids
Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin
Abstract:
In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods.Keywords: viscos fluid, incompressible fluid flow, inclined plane, nonlinear phenomena
Procedia PDF Downloads 2833836 Parameter Estimation in Dynamical Systems Based on Latent Variables
Authors: Arcady Ponosov
Abstract:
A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.Keywords: generalized law of mass action, metamodels, principal components, synergetic systems
Procedia PDF Downloads 3553835 Existence Theory for First Order Functional Random Differential Equations
Authors: Rajkumar N. Ingle
Abstract:
In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon
Procedia PDF Downloads 5013834 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: A. Guezane-Lakoud, S. Bensebaa
Abstract:
In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem
Procedia PDF Downloads 4143833 Numerical Solutions of an Option Pricing Rainfall Derivatives Model
Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa
Abstract:
Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives
Procedia PDF Downloads 1053832 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization
Authors: Silas A. Ihedioha
Abstract:
In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle
Procedia PDF Downloads 2253831 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 554