Search results for: speech audiometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 779

Search results for: speech audiometry

749 Prosody Generation in Neutral Speech Storytelling Application Using Tilt Model

Authors: Manjare Chandraprabha A., S. D. Shirbahadurkar, Manjare Anil S., Paithne Ajay N.

Abstract:

This paper proposes Intonation Modeling for Prosody generation in Neutral speech for Marathi (language spoken in Maharashtra, India) story telling applications. Nowadays audio story telling devices are very eminent for children. In this paper, we proposed tilt model for stressed words in Marathi for speech modification. Tilt model predicts modification in tone of neutral speech. GMM is used to identify stressed words for modification.

Keywords: tilt model, fundamental frequency, statistical parametric speech synthesis, GMM

Procedia PDF Downloads 392
748 The Importance of Right Speech in Buddhism and Its Relevance Today

Authors: Gautam Sharda

Abstract:

The concept of right speech is the third stage of the noble eightfold path as prescribed by the Buddha and followed by millions of practicing Buddhists. The Buddha lays a lot of importance on the notion of right speech (Samma Vacca). In the Angutara Nikaya, the Buddha mentioned what constitutes right speech, which is basically four kinds of abstentions; namely abstaining from false speech, abstaining from slanderous speech, abstaining from harsh or hateful speech and abstaining from idle chatter. The Buddha gives reasons in support of his view as to why abstaining from these four kinds of speeches is favourable not only for maintaining the peace and equanimity within an individual but also within a society. It is a known fact that when we say something harsh or slanderous to others, it eventually affects our individual peace of mind too. We also know about the many examples of hate speeches which have led to senseless cases of violence and which are well documented within our country and the world. Also, indulging in false speech is not a healthy sign for individuals within a group as this kind of a social group which is based on falsities and lies cannot really survive for long and will eventually lead to chaos. Buddha also told us to refrain from idle chatter or gossip as generally we have seen that idle chatter or gossip does more harm than any good to the individual and the society. Hence, if most of us actually inculcate this third stage (namely, right speech) of the noble eightfold path of the Buddha in our daily life, it would be highly beneficial both for the individual and for the harmony of the society.

Keywords: Buddhism, speech, individual, society

Procedia PDF Downloads 264
747 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 478
746 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition

Procedia PDF Downloads 229
745 Application of the Bionic Wavelet Transform and Psycho-Acoustic Model for Speech Compression

Authors: Chafik Barnoussi, Mourad Talbi, Adnane Cherif

Abstract:

In this paper we propose a new speech compression system based on the application of the Bionic Wavelet Transform (BWT) combined with the psychoacoustic model. This compression system is a modified version of the compression system using a MDCT (Modified Discrete Cosine Transform) filter banks of 32 filters each and the psychoacoustic model. This modification consists in replacing the banks of the MDCT filter banks by the bionic wavelet coefficients which are obtained from the application of the BWT to the speech signal to be compressed. These two methods are evaluated and compared with each other by computing bits before and bits after compression. They are tested on different speech signals and the obtained simulation results show that the proposed technique outperforms the second technique and this in term of compressed file size. In term of SNR, PSNR and NRMSE, the outputs speech signals of the proposed compression system are with acceptable quality. In term of PESQ and speech signal intelligibility, the proposed speech compression technique permits to obtain reconstructed speech signals with good quality.

Keywords: speech compression, bionic wavelet transform, filterbanks, psychoacoustic model

Procedia PDF Downloads 384
744 Hate Speech Detection Using Deep Learning and Machine Learning Models

Authors: Nabil Shawkat, Jamil Saquer

Abstract:

Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.

Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification

Procedia PDF Downloads 136
743 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: discrete wavelet transform, speech intelligibility, STOI, standard deviation

Procedia PDF Downloads 148
742 The Language Use of Middle Eastern Freedom Activists' Speeches: A Gender Perspective

Authors: Sulistyaningtyas

Abstract:

Examining the role of Middle Eastern freedom activists’ speech based on gender perspective is considered noteworthy because the society in the Middle East is patriarchal. This research aims to examine the language use of the Middle Eastern freedom activists’ speeches through gender perspective. The data sources are from male and female Middle Eastern freedom activists’ speech videos. In analyzing the data, the theories employed are about Language Style from Gender Perspective and The Language for Speech. The result reveals that there are sets of spoken language differences between male and female speakers. In using the language for speech, both male and female speakers produce metaphor, euphemism, the ‘rule of three’, parallelism, and pronouns in random frequency of production, which cannot be separated by genders. Moreover, it cannot be concluded that one gender is more potential than the other to influence the audience in delivering speech. There are other factors, particularly non-verbal factors, existing to give impacts on how a speech can influence the audience.

Keywords: gender perspective, language use, Middle Eastern freedom activists, speech

Procedia PDF Downloads 421
741 Considering Cultural and Linguistic Variables When Working as a Speech-Language Pathologist with Multicultural Students

Authors: Gabriela Smeckova

Abstract:

The entire world is becoming more and more diverse. The reasons why people migrate are different and unique for each family /individual. Professionals delivering services (including speech-language pathologists) must be prepared to work with clients coming from different cultural and/or linguistic backgrounds. Well-educated speech-language pathologists will consider many factors when delivering services. Some of them will be discussed during the presentation (language spoken, beliefs about health care and disabilities, reasons for immigration, etc.). The communication styles of the client can be different than the styles of the speech-language pathologist. The goal is to become culturally responsive in service delivery.

Keywords: culture, cultural competence, culturallly responsive practices, speech-language pathologist, cultural and linguistical variables, communication styles

Procedia PDF Downloads 76
740 Effect of Noise Reduction Algorithms on Temporal Splitting of Speech Signal to Improve Speech Perception for Binaural Hearing Aids

Authors: Rajani S. Pujar, Pandurangarao N. Kulkarni

Abstract:

Increased temporal masking affects the speech perception in persons with sensorineural hearing impairment especially under adverse listening conditions. This paper presents a cascaded scheme, which employs a noise reduction algorithm as well as temporal splitting of the speech signal. Earlier investigations have shown that by splitting the speech temporally and presenting alternate segments to the two ears help in reducing the effect of temporal masking. In this technique, the speech signal is processed by two fading functions, complementary to each other, and presented to left and right ears for binaural dichotic presentation. In the present study, half cosine signal is used as a fading function with crossover gain of 6 dB for the perceptual balance of loudness. Temporal splitting is combined with noise reduction algorithm to improve speech perception in the background noise. Two noise reduction schemes, namely spectral subtraction and Wiener filter are used. Listening tests were conducted on six normal-hearing subjects, with sensorineural loss simulated by adding broadband noise to the speech signal at different signal-to-noise ratios (∞, 3, 0, and -3 dB). Objective evaluation using PESQ was also carried out. The MOS score for VCV syllable /asha/ for SNR values of ∞, 3, 0, and -3 dB were 5, 4.46, 4.4 and 4.05 respectively, while the corresponding MOS scores for unprocessed speech were 5, 1.2, 0.9 and 0.65, indicating significant improvement in the perceived speech quality for the proposed scheme compared to the unprocessed speech.

Keywords: MOS, PESQ, spectral subtraction, temporal splitting, wiener filter

Procedia PDF Downloads 327
739 Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids

Authors: Ajish K. Abraham

Abstract:

Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques.

Keywords: hearing aid output speech, noise reduction, SNR improvement, Wiener filter, speech enhancement

Procedia PDF Downloads 247
738 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic Speech Recognition System, children speech, adaptation, Malay

Procedia PDF Downloads 397
737 The Complaint Speech Act Set Produced by Arab Students in the UAE

Authors: Tanju Deveci

Abstract:

It appears that the speech act of complaint has not received as much attention as other speech acts. However, the face-threatening nature of this speech act requires a special attention in multicultural contexts in particular. The teaching context in the UAE universities, where a big majority of teaching staff comes from other cultures, requires investigations into this speech act in order to improve communication between students and faculty. This session will outline the results of a study conducted with this purpose. The realization of complaints by Freshman English students in Communication courses at Petroleum Institute was investigated to identify communication patterns that seem to cause a strain. Data were collected using a role-play between a teacher and students, and a judgment scale completed by two of the instructors in the Communications Department. The initial findings reveal that the students had difficulty putting their case, produced the speech act of criticism along with a complaint and that they produced both requests and demands as candidate solutions. The judgement scales revealed that the students’ attitude was not appropriate most of the time and that the judges would behave differently from students. It is concluded that speech acts, in general, and complaint, in particular, need to be taught to learners explicitly to improve interpersonal communication in multicultural societies. Some teaching ideas are provided to help increase foreign language learners’ sociolinguistic competence.

Keywords: speech act, complaint, pragmatics, sociolinguistics, language teaching

Procedia PDF Downloads 507
736 On Overcoming Common Oral Speech Problems through Authentic Films

Authors: Tamara Matevosyan

Abstract:

The present paper discusses the main problems that students face while developing oral skills through authentic films. It states that special attention should be paid not only to the study of verbal speech but also to non-verbal communication. Authentic films serve as an important tool to understand both native speaker’s gestures and their culture of pausing while speaking. Various phonetic difficulties causing phonetic interference in actual speech are covered in the paper emphasizing the role of authentic films in overcoming them.

Keywords: compressive speech, filled pauses, unfilled pauses, pausing culture

Procedia PDF Downloads 353
735 Morpheme Based Parts of Speech Tagger for Kannada Language

Authors: M. C. Padma, R. J. Prathibha

Abstract:

Parts of speech tagging is the process of assigning appropriate parts of speech tags to the words in a given text. The critical or crucial information needed for tagging a word come from its internal structure rather from its neighboring words. The internal structure of a word comprises of its morphological features and grammatical information. This paper presents a morpheme based parts of speech tagger for Kannada language. This proposed work uses hierarchical tag set for assigning tags. The system is tested on some Kannada words taken from EMILLE corpus. Experimental result shows that the performance of the proposed system is above 90%.

Keywords: hierarchical tag set, morphological analyzer, natural language processing, paradigms, parts of speech

Procedia PDF Downloads 296
734 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement

Authors: Shibo Wei, Ting Jiang

Abstract:

Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).

Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR

Procedia PDF Downloads 200
733 Detection of Clipped Fragments in Speech Signals

Authors: Sergei Aleinik, Yuri Matveev

Abstract:

In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.

Keywords: clipping, clipped signal, speech signal processing, digital signal processing

Procedia PDF Downloads 392
732 Developing an Intonation Labeled Dataset for Hindi

Authors: Esha Banerjee, Atul Kumar Ojha, Girish Nath Jha

Abstract:

This study aims to develop an intonation labeled database for Hindi. Although no single standard for prosody labeling exists in Hindi, researchers in the past have employed perceptual and statistical methods in literature to draw inferences about the behavior of prosody patterns in Hindi. Based on such existing research and largely agreed upon intonational theories in Hindi, this study attempts to develop a manually annotated prosodic corpus of Hindi speech data, which can be used for training speech models for natural-sounding speech in the future. 100 sentences ( 500 words) each for declarative and interrogative types have been labeled using Praat.

Keywords: speech dataset, Hindi, intonation, labeled corpus

Procedia PDF Downloads 197
731 Distant Speech Recognition Using Laser Doppler Vibrometer

Authors: Yunbin Deng

Abstract:

Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.

Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR

Procedia PDF Downloads 179
730 The Philippines’ War on Drugs: a Pragmatic Analysis on Duterte's Commemorative Speeches

Authors: Ericson O. Alieto, Aprillete C. Devanadera

Abstract:

The main objective of the study is to determine the dominant speech acts in five commemorative speeches of President Duterte. This study employed Speech Act Theory and Discourse analysis to determine how the speech acts features connote the pragmatic meaning of Duterte’s speeches. Identifying the speech acts is significant in elucidating the underlying message or the pragmatic meaning of the speeches. From the 713 sentences or utterances from the speeches, assertive with 208 occurrences from the corpus or 29% is the dominant speech acts. It was followed by expressive with 177 or 25% occurrences, directive accounts for 152 or 15% occurrences. While commisive accounts for 104 or 15% occurrences and declarative got the lowest percentage of occurrences with 72 or 10% only. These sentences when uttered by Duterte carry a certain power of language to move or influence people. Thus, the present study shows the fundamental message perceived by the listeners. Moreover, the frequent use of assertive and expressive not only explains the pragmatic message of the speeches but also reflects the personality of President Duterte.

Keywords: commemorative speech, discourse analysis, duterte, pragmatics

Procedia PDF Downloads 287
729 Excitation Modeling for Hidden Markov Model-Based Speech Synthesis Based on Wavelet Analysis

Authors: M. Kiran Reddy, K. Sreenivasa Rao

Abstract:

The conventional Hidden Markov Model (HMM)-based speech synthesis system (HTS) uses only a pulse excitation model, which significantly differs from natural excitation signal. Hence, buzziness can be perceived in the speech generated using HTS. This paper proposes an efficient excitation modeling method that can significantly reduce the buzziness, and improve the quality of HMM-based speech synthesis. The proposed approach models the pitch-synchronous residual frames extracted from the residual excitation signal. Each pitch synchronous residual frame is parameterized using 30 wavelet coefficients. These 30 wavelet coefficients are found to accurately capture the perceptually important information present in the residual waveform. In synthesis phase, the residual frames are reconstructed from the generated wavelet coefficients and are pitch-synchronously overlap-added to generate the excitation signal. The proposed excitation modeling method is integrated into HMM-based speech synthesis system. Evaluation results indicate that the speech synthesized by the proposed excitation model is significantly better than the speech generated using state-of-the-art excitation modeling methods.

Keywords: excitation modeling, hidden Markov models, pitch-synchronous frames, speech synthesis, wavelet coefficients

Procedia PDF Downloads 248
728 Theory and Practice of Wavelets in Signal Processing

Authors: Jalal Karam

Abstract:

The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.

Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression

Procedia PDF Downloads 416
727 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment

Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova

Abstract:

Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.

Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper

Procedia PDF Downloads 44
726 Hate Speech Detection Using Machine Learning: A Survey

Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile

Abstract:

Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.

Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection

Procedia PDF Downloads 177
725 Auditory Function in Hypothyroidism as Compared to Controls

Authors: Mrunal Phatak

Abstract:

Introduction: Thyroid hormone is important for the normal function of the auditory system. Hearing impairment can occur insidiously in subclinical hypothyroidism. The present study was undertaken with the aim of evaluating audiological tests like tuning fork tests, pure tone audiometry, brainstem evoked auditory potentials (BAEPs), and auditory reaction time (ART) in hypothyroid women and in age and sex-matched controls to evaluate the effect of thyroid hormone on hearing. The objective of the study was to investigate hearing status by the audiological profile in hypothyroidism (group 1) and healthy controls (group 2) to compare the audiological profile between these groups and find the correlation of levels of TSH, T3 and T4 with the above parameters. Material and methods: A total sample size of 124 women in the age group of 30 to 50 years was recruited and divided into the Cases group comprising 62 newly diagnosed hypothyroid women and a Control group having 62 women with normal thyroid profiles. Otoscopic examination, tuning fork tests, Pure tone audiometry tests (PTA). Brain Stem Auditory Evoked Potential (BAEP) and Auditory Reaction Time (ART) were done in both ears, i.e., a total of 248 ears of all subjects. Results: By BAEPs, hearing impairment was detected in a total of 64 years (51.61%). A significant increase was seen in Wave V latency, IPL I-V and IPL III-V, and the decrease was seen in the amplitude of Wave I and V in both the ears cases. A positive correlation of Wave V latency of the Right and Left ears is seen with TSH levels (p < 0.001) and a negative correlation with T3 (>0.05) and with T4 (p < 0.01). The negative correlation of wave V amplitude of the Right and Left ears is seen with TSH levels (p < 0.001), and a significant positive correlation is seen with T3 and T4. Pure tone audiometry parameters showed hearing impairment of conductive (31.29%), sensorineural (36.29%), as well as mixed type (15.32%). Hearing loss was mild in 65.32% of ears and moderate in 17.74% of ears. Pure tone averages (PTA) were significantly increased in cases than in controls in both ears. A significant positive correlation of PTA of Right and Left ears is seen with TSH levels (p<0.05). A negative correlation between T3 and T4 is seen. A significant increase in HF ART and LF ART is seen in cases as compared to controls. A positive correlation between ART of high frequency and low frequency is seen with TSH levels and a negative correlation with T3 and T4 (p > 0.05). Conclusion: The abnormal BAEPs in hypothyroid women suggest an impaired central auditory pathway. BAEP abnormalities are indicative of a nonspecific injury in the bulbo-ponto-mesencephalic centers. The results of auditory investigations suggest a causal relationship between hypothyroidism and hearing loss. The site of lesion in the auditory pathway is probably at several levels, namely, in the middle ear and at cochlear and retrocochlear sites. Prolonged ART also suggests an impairment in central processing mechanisms. The results of the present study conclude that the probable reason for hearing impairment in hypothyroidism may be delayed impulse conduction in the acoustic nerve up to the level of the midbrain (IPL I-V, III-V), particularly the inferior colliculus (wave V). There is also impairment in central processing mechanisms, as shown by prolonged ART.

Keywords: hypothyroidism, deafness, pure tone audiometry, brain stem auditory evoked potential

Procedia PDF Downloads 38
724 Automatic Assignment of Geminate and Epenthetic Vowel for Amharic Text-to-Speech System

Authors: Tadesse Anberbir, Felix Bankole, Tomio Takara, Girma Mamo

Abstract:

In the development of a text-to-speech synthesizer, automatic derivation of correct pronunciation from the grapheme form of a text is a central problem. Particularly deriving phonological features which are not shown in orthography is challenging. In the Amharic language, geminates and epenthetic vowels are very crucial for proper pronunciation but neither is shown in orthography. In this paper, we proposed and integrated a morphological analyzer into an Amharic Text-to-Speech system, mainly to predict geminates and epenthetic vowel positions, and prepared a duration modeling method. Amharic Text-to-Speech system (AmhTTS) is a parametric and rule-based system that adopts a cepstral method and uses a source filter model for speech production and a Log Magnitude Approximation (LMA) filter as the vocal tract filter. The naturalness of the system after employing the duration modeling was evaluated by sentence listening test and we achieved an average Mean Opinion Score (MOS) 3.4 (68%) which is moderate. By modeling the duration of geminates and controlling the locations of epenthetic vowel, we are able to synthesize good quality speech. Our system is mainly suitable to be customized for other Ethiopian languages with limited resources.

Keywords: Amharic, gemination, speech synthesis, morphology, epenthesis

Procedia PDF Downloads 87
723 Auditory Profile Function in Hypothyroidism

Authors: Mrunal Phatak, Suvarna Raut

Abstract:

Introduction: Thyroid hormone is important for the normal function of the auditory system. Hearing impairment can occur insidiously in subclinical hypothyroidism. The present study was undertaken with the aims of evaluating audiological tests like tuning fork tests, pure tone audiometry, brainstem evoked auditory potentials (BAEPs), and auditory reaction time (ART) in hypothyroid women and in age and sex matched controls so as to evaluate the effect of thyroid hormone on hearing. The objective of the study was to investigate hearing status by the audiological profile in hypothyroidism (group 1) and healthy controls ( group 2) to compare the audiological profile between these groups and find the correlation of levels of TSH, T3, and T4 with the above parameters. Material and methods: A total sample size of 124 women in the age group of 30 to 50 years was recruited and divided into the Cases group comprising of 62 newly diagnosed hypothyroid women and the Control group having 62 women with normal thyroid profile. Otoscopic examination, tuning fork tests, Pure tone audiometry tests (PTA). Brain Stem Auditory Evoked Potential (BAEP) and Auditory Reaction Time (ART) were done in both ears, i.e. total 248 ears of all subjects. Results: By BAEPs, hearing impairment was detected in total 64 ears (51.61%). A significant increase was seen in Wave V latency, IPL I-V, and IPL III-V, and the decrease was seen in the amplitude of Wave I and V in both the ears in cases. Positive correlation of Wave V latency of Right and Left ears is seen with TSH levels (p < 0.001) and a negative correlation with T3 (>0.05) and with T4 (p < 0.01). Negative correlation of wave V amplitude of Right and Left ears is seen with TSH levels (p < 0.001), and a significant positive correlation is seen with T3 and T4. Pure tone audiometry parameters showed hearing impairment of conductive (31.29%), sensorineural (36.29%), as well as the mixed type (15.32%). Hearing loss was mild in 65.32% of ears and moderate in 17.74% of ears. Pure tone averages (PTA) were significantly increased in cases than in controls in both the ears. Significant positive correlation of PTA of Right and Left ears is seen with TSH levels (p<0.05). Negative correlation with T3 and T4 is seen. A significant increase in HF ART and LF ART is seen in cases as compared to controls. Positive correlation of ART of high frequency and low frequency is seen with TSH levels and a negative correlation with T3 and T4 (p > 0.05). Conclusion: The abnormal BAEPs in hypothyroid women suggest an impaired central auditory pathway. BAEP abnormalities are indicative of a nonspecific injury in the bulbo-ponto-mesencephalic centres. The results of auditory investigations suggest a causal relationship between hypothyroidism and hearing loss. The site of lesion in the auditory pathway is probably at several levels, namely, in the middle ear and at cochlear and retrocochlear sites. Prolonged ART also suggests the impairment in central processing mechanisms. The results of the present study conclude that the probable reason for hearing impairment in hypothyroidism may be delayed impulse conduction in acoustic nerve up to the level of the midbrain (IPL I-V, III-V), particularly inferior colliculus (wave V). There is also impairment in central processing mechanisms, as shown by prolonged ART.

Keywords: deafness, pure tone audiometry, brain stem auditory evoked potential, hyopothyroidism

Procedia PDF Downloads 132
722 Systemic Functional Grammar Analysis of Barack Obama's Second Term Inaugural Speech

Authors: Sadiq Aminu, Ahmed Lamido

Abstract:

This research studies Barack Obama’s second inaugural speech using Halliday’s Systemic Functional Grammar (SFG). SFG is a text grammar which describes how language is used, so that the meaning of the text can be better understood. The primary source of data in this research work is Barack Obama’s second inaugural speech which was obtained from the internet. The analysis of the speech was based on the ideational and textual metafunctions of Systemic Functional Grammar. Specifically, the researcher analyses the Process Types and Participants (ideational) and the Theme/Rheme (textual). It was found that material process (process of doing) was the most frequently used ‘Process type’ and ‘We’ which refers to the people of America was the frequently used ‘Theme’. Application of the SFG theory, therefore, gives a better meaning to Barack Obama’s speech.

Keywords: ideational, metafunction, rheme, textual, theme

Procedia PDF Downloads 159
721 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 480
720 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method

Authors: João Rato, Nuno Costa

Abstract:

The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.

Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate

Procedia PDF Downloads 322