Search results for: semantic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25434

Search results for: semantic data

25404 Reverse Logistics Information Management Using Ontological Approach

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

Reverse Logistics (RL) Process is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails, and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies, on the other hand, can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper, we propose a semantic representation based on hybrid architecture for building the Ontologies in an ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems (ICT) that support reverse logistics Processes and product data.

Keywords: Reverse Logistics, information management, heterogeneity, ontologies, semantic web

Procedia PDF Downloads 492
25403 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data

Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah

Abstract:

At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.

Keywords: Semantic Web, linked open data, database, statistic

Procedia PDF Downloads 174
25402 Using the Semantic Web Technologies to Bring Adaptability in E-Learning Systems

Authors: Fatima Faiza Ahmed, Syed Farrukh Hussain

Abstract:

The last few decades have seen a large proportion of our population bending towards e-learning technologies, starting from learning tools used in primary and elementary schools to competency based e-learning systems specifically designed for applications like finance and marketing. The huge diversity in this crowd brings about a large number of challenges for the designers of these e-learning systems, one of which is the adaptability of such systems. This paper focuses on adaptability in the learning material in an e-learning course and how artificial intelligence and the semantic web can be used as an effective tool for this purpose. The study proved that the semantic web, still a hot topic in the area of computer science can prove to be a powerful tool in designing and implementing adaptable e-learning systems.

Keywords: adaptable e-learning, HTMLParser, information extraction, semantic web

Procedia PDF Downloads 338
25401 Using Corpora in Semantic Studies of English Adjectives

Authors: Oxana Lukoshus

Abstract:

The methods of corpus linguistics, a well-established field of research, are being increasingly applied in cognitive linguistics. Corpora data are especially useful for different quantitative studies of grammatical and other aspects of language. The main objective of this paper is to demonstrate how present-day corpora can be applied in semantic studies in general and in semantic studies of adjectives in particular. Polysemantic adjectives have been the subject of numerous studies. But most of them have been carried out on dictionaries. Undoubtedly, dictionaries are viewed as one of the basic data sources, but only at the initial steps of a research. The author usually starts with the analysis of the lexicographic data after which s/he comes up with a hypothesis. In the research conducted three polysemantic synonyms true, loyal, faithful have been analyzed in terms of differences and similarities in their semantic structure. A corpus-based approach in the study of the above-mentioned adjectives involves the following. After the analysis of the dictionary data there was the reference to the following corpora to study the distributional patterns of the words under study – the British National Corpus (BNC) and the Corpus of Contemporary American English (COCA). These corpora are continually updated and contain thousands of examples of the words under research which make them a useful and convenient data source. For the purpose of this study there were no special needs regarding genre, mode or time of the texts included in the corpora. Out of the range of possibilities offered by corpus-analysis software (e.g. word lists, statistics of word frequencies, etc.), the most useful tool for the semantic analysis was the extracting a list of co-occurrence for the given search words. Searching by lemmas, e.g. true, true to, and grouping the results by lemmas have proved to be the most efficient corpora feature for the adjectives under the study. Following the search process, the corpora provided a list of co-occurrences, which were then to be analyzed and classified. Not every co-occurrence was relevant for the analysis. For example, the phrases like An enormous sense of responsibility to protect the minds and hearts of the faithful from incursions by the state was perceived to be the basic duty of the church leaders or ‘True,’ said Phoebe, ‘but I'd probably get to be a Union Official immediately were left out as in the first example the faithful is a substantivized adjective and in the second example true is used alone with no other parts of speech. The subsequent analysis of the corpora data gave the grounds for the distribution groups of the adjectives under the study which were then investigated with the help of a semantic experiment. To sum it up, the corpora-based approach has proved to be a powerful, reliable and convenient tool to get the data for the further semantic study.

Keywords: corpora, corpus-based approach, polysemantic adjectives, semantic studies

Procedia PDF Downloads 314
25400 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 102
25399 The Influence of Noise on Aerial Image Semantic Segmentation

Authors: Pengchao Wei, Xiangzhong Fang

Abstract:

Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.

Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise

Procedia PDF Downloads 220
25398 SPBAC: A Semantic Policy-Based Access Control for Database Query

Authors: Aaron Zhang, Alimire Kahaer, Gerald Weber, Nalin Arachchilage

Abstract:

Access control is an essential safeguard for the security of enterprise data, which controls users’ access to information resources and ensures the confidentiality and integrity of information resources [1]. Research shows that the more common types of access control now have shortcomings [2]. In this direction, to improve the existing access control, we have studied the current technologies in the field of data security, deeply investigated the previous data access control policies and their problems, identified the existing deficiencies, and proposed a new extension structure of SPBAC. SPBAC extension proposed in this paper aims to combine Policy-Based Access Control (PBAC) with semantics to provide logically connected, real-time data access functionality by establishing associations between enterprise data through semantics. Our design combines policies with linked data through semantics to create a "Semantic link" so that access control is no longer per-database and determines that users in each role should be granted access based on the instance policy, and improves the SPBAC implementation by constructing policies and defined attributes through the XACML specification, which is designed to extend on the original XACML model. While providing relevant design solutions, this paper hopes to continue to study the feasibility and subsequent implementation of related work at a later stage.

Keywords: access control, semantic policy-based access control, semantic link, access control model, instance policy, XACML

Procedia PDF Downloads 91
25397 Semantics of the Word “Nas” in the Verse 24 of Surah Al-Baqarah Based on Izutsus’ Semantic Field Theory

Authors: Seyedeh Khadijeh. Mirbazel, Masoumeh Arjmandi

Abstract:

Semantics is a linguistic approach and a scientific stream, and like all scientific streams, it is dynamic. The study of meaning is carried out in the broad semantic collections of words that form the discourse. In other words, meaning is not something that can be found in a word; rather, the formation of meaning is a process that takes place in a discourse as a whole. One of the contemporary semantic theories is Izutsu's Semantic Field Theory. According to this theory, the discovery of meaning depends on the function of words and takes place within the context of language. The purpose of this research is to identify the meaning of the word "Nas" in the discourse of verse 24 of Surah Al-Baqarah, which introduces "Nas" as the firewood of hell, but the translators have translated it as "people". The present research has investigated the semantic structure of the word "Nas" using the aforementioned theory through the descriptive-analytical method. In the process of investigation, by matching the semantic fields of the Quranic word "Nas", this research came to the conclusion that "Nas" implies those persons who have forgotten God and His covenant in believing in His Oneness. For this reason, God called them "Nas (the forgetful)" - the imperfect participle of the noun /næsiwoɔn/ in single trinity of Arabic language, which means “to forget”. Therefore, the intended meaning of "Nas" in the verses that have the word "Nas" is not equivalent to "People" which is a general noun.

Keywords: Nas, people, semantics, semantic field theory.

Procedia PDF Downloads 189
25396 Neural Correlates of Arabic Digits Naming

Authors: Fernando Ojedo, Alejandro Alvarez, Pedro Macizo

Abstract:

In the present study, we explored electrophysiological correlates of Arabic digits naming to determine semantic processing of numbers. Participants named Arabic digits grouped by category or intermixed with exemplars of other semantic categories while the N400 event-related potential was examined. Around 350-450 ms after the presentation of Arabic digits, brain waves were more positive in anterior regions and more negative in posterior regions when stimuli were grouped by category relative to the mixed condition. Contrary to what was found in other studies, electrophysiological results suggested that the production of numerals involved semantic mediation.

Keywords: Arabic digit naming, event-related potentials, semantic processing, number production

Procedia PDF Downloads 582
25395 A Study on Bilingual Semantic Processing: Category Effects and Age Effects

Authors: Lai Yi-Hsiu

Abstract:

The present study addressed the nature of bilingual semantic processing in Mandarin Chinese and Southern Min and examined category effects and age effects. Nineteen bilingual adults of Mandarin Chinese and Southern Min, nine monolingual seniors of Mandarin Chinese, and ten monolingual seniors of Southern Min in Taiwan individually completed two semantic tasks: Picture naming and category fluency tasks. The instruments for the naming task were sixty black-and-white pictures, including thirty-five object pictures and twenty-five action pictures. The category fluency task also consisted of two semantic categories – objects (or nouns) and actions (or verbs). The reaction time for each picture/question was additionally calculated and analyzed. Oral productions in Mandarin Chinese and in Southern Min were compared and discussed to examine the category effects and age effects. The results of the category fluency task indicated that the content of information of these seniors was comparatively deteriorated, and thus they produced a smaller number of semantic-lexical items. Significant group differences were also found in the reaction time results. Category effects were significant for both adults and seniors in the semantic fluency task. The findings of the present study will help characterize the nature of the bilingual semantic processing of adults and seniors, and contribute to the fields of contrastive and corpus linguistics.

Keywords: bilingual semantic processing, aging, Mandarin Chinese, Southern Min

Procedia PDF Downloads 571
25394 Analysis of Expert Information in Linguistic Terms

Authors: O. Poleshchuk, E. Komarov

Abstract:

In this paper, semantic spaces with the properties of completeness and orthogonality (complete orthogonal semantic spaces) were chosen as models of expert evaluations. As the theoretical and practical studies have shown all the properties of complete orthogonal semantic spaces correspond to the thinking activity of experts that is why these semantic spaces were chosen for modeling. Two methods of construction such spaces were proposed. Models of comparative and fuzzy cluster analysis of expert evaluations were developed. The practical application of the developed methods has demonstrated their viability and validity.

Keywords: expert evaluation, comparative analysis, fuzzy cluster analysis, theoretical and practical studies

Procedia PDF Downloads 531
25393 The Use of Semantic Mapping Technique When Teaching English Vocabulary at Saudi Schools

Authors: Mohammed Hassan Alshaikhi

Abstract:

Vocabulary is essential factor of learning and mastering any languages, and it helps learners to communicate with others and to be understood. The aim of this study was to examine whether semantic mapping technique was helpful in terms of improving student's English vocabulary learning comparing to the traditional technique. The students’ age was between 11 and 13 years old. There were 60 students in total who participated in this study. 30 students were in the treatment group (target vocabulary items were taught with semantic mapping). The other 30 students were in the control group (the target vocabulary items were taught by a traditional technique). A t-test was used with the results of pre-test and post-test in order to examine the outcomes of using semantic mapping when teaching vocabulary. The results showed that the vocabulary mastery in the treatment group was increased more than the control group.

Keywords: English language, learning vocabulary, Saudi teachers, semantic mapping, teaching vocabulary strategies

Procedia PDF Downloads 247
25392 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation

Procedia PDF Downloads 354
25391 Building Semantic-Relatedness Thai Word Ontology for Semantic Analysis

Authors: Gridaphat Sriharee

Abstract:

Building semantic-relatedness Thai word ontology can be implemented by considering word forms and word meaning. This research proposed the methodology for building the ontology, which can be used for semantic analysis. There are four categories of words: similar form and the same meaning, similar form and similar meaning, different form and opposite/same meaning, and different form and similar meaning, which will be used as initial words for building the proposed ontology. Extension of the ontology can be augmented by considering the messages that give the meaning of the word from the dictionaries. Exploiting WordNet to construct the proposed ontology was investigated and discussed. The proposed ontology was evaluated for its quality. With the proposed methodology, it is promising that the constructed ontology is a well-defined ontology.

Keywords: Thai, NLP, semantics, ontology

Procedia PDF Downloads 93
25390 The Study of Formal and Semantic Errors of Lexis by Persian EFL Learners

Authors: Mohammad J. Rezai, Fereshteh Davarpanah

Abstract:

Producing a text in a language which is not one’s mother tongue can be a demanding task for language learners. Examining lexical errors committed by EFL learners is a challenging area of investigation which can shed light on the process of second language acquisition. Despite the considerable number of investigations into grammatical errors, few studies have tackled formal and semantic errors of lexis committed by EFL learners. The current study aimed at examining Persian learners’ formal and semantic errors of lexis in English. To this end, 60 students at three different proficiency levels were asked to write on 10 different topics in 10 separate sessions. Finally, 600 essays written by Persian EFL learners were collected, acting as the corpus of the study. An error taxonomy comprising formal and semantic errors was selected to analyze the corpus. The formal category covered misselection and misformation errors, while the semantic errors were classified into lexical, collocational and lexicogrammatical categories. Each category was further classified into subcategories depending on the identified errors. The results showed that there were 2583 errors in the corpus of 9600 words, among which, 2030 formal errors and 553 semantic errors were identified. The most frequent errors in the corpus included formal error commitment (78.6%), which were more prevalent at the advanced level (42.4%). The semantic errors (21.4%) were more frequent at the low intermediate level (40.5%). Among formal errors of lexis, the highest number of errors was devoted to misformation errors (98%), while misselection errors constituted 2% of the errors. Additionally, no significant differences were observed among the three semantic error subcategories, namely collocational, lexical choice and lexicogrammatical. The results of the study can shed light on the challenges faced by EFL learners in the second language acquisition process.

Keywords: collocational errors, lexical errors, Persian EFL learners, semantic errors

Procedia PDF Downloads 142
25389 Measuring Text-Based Semantics Relatedness Using WordNet

Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed

Abstract:

Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.

Keywords: Graphviz representation, semantic relatedness, similarity measurement, WordNet similarity

Procedia PDF Downloads 237
25388 Assessing the Structure of Non-Verbal Semantic Knowledge: The Evaluation and First Results of the Hungarian Semantic Association Test

Authors: Alinka Molnár-Tóth, Tímea Tánczos, Regina Barna, Katalin Jakab, Péter Klivényi

Abstract:

Supported by neuroscientific findings, the so-called Hub-and-Spoke model of the human semantic system is based on two subcomponents of semantic cognition, namely the semantic control process and semantic representation. Our semantic knowledge is multimodal in nature, as the knowledge system stored in relation to a conception is extensive and broad, while different aspects of the conception may be relevant depending on the purpose. The motivation of our research is to develop a new diagnostic measurement procedure based on the preservation of semantic representation, which is appropriate to the specificities of the Hungarian language and which can be used to compare the non-verbal semantic knowledge of healthy and aphasic persons. The development of the test will broaden the Hungarian clinical diagnostic toolkit, which will allow for more specific therapy planning. The sample of healthy persons (n=480) was determined by the last census data for the representativeness of the sample. Based on the concept of the Pyramids and Palm Tree Test, and according to the characteristics of the Hungarian language, we have elaborated a test based on different types of semantic information, in which the subjects are presented with three pictures: they have to choose the one that best fits the target word above from the two lower options, based on the semantic relation defined. We have measured 5 types of semantic knowledge representations: associative relations, taxonomy, motional representations, concrete as well as abstract verbs. As the first step in our data analysis, we examined the normal distribution of our results, and since it was not normally distributed (p < 0.05), we used nonparametric statistics further into the analysis. Using descriptive statistics, we could determine the frequency of the correct and incorrect responses, and with this knowledge, we could later adjust and remove the items of questionable reliability. The reliability was tested using Cronbach’s α, and it can be safely said that all the results were in an acceptable range of reliability (α = 0.6-0.8). We then tested for the potential gender differences using the Mann Whitney-U test, however, we found no difference between the two (p < 0.05). Likewise, we didn’t see that the age had any effect on the results using one-way ANOVA (p < 0.05), however, the level of education did influence the results (p > 0.05). The relationships between the subtests were observed by the nonparametric Spearman’s rho correlation matrix, showing statistically significant correlation between the subtests (p > 0.05), signifying a linear relationship between the measured semantic functions. A margin of error of 5% was used in all cases. The research will contribute to the expansion of the clinical diagnostic toolkit and will be relevant for the individualised therapeutic design of treatment procedures. The use of a non-verbal test procedure will allow an early assessment of the most severe language conditions, which is a priority in the differential diagnosis. The measurement of reaction time is expected to advance prodrome research, as the tests can be easily conducted in the subclinical phase.

Keywords: communication disorders, diagnostic toolkit, neurorehabilitation, semantic knowlegde

Procedia PDF Downloads 103
25387 An Ontology for Semantic Enrichment of RFID Systems

Authors: Haitham S. Hamza, Mohamed Maher, Shourok Alaa, Aya Khattab, Hadeal Ismail, Kamilia Hosny

Abstract:

Radio Frequency Identification (RFID) has become a key technology in the margining concept of Internet of Things (IoT). Naturally, business applications would require the deployment of various RFID systems that are developed by different vendors and use various data formats. This heterogeneity poses a real challenge in developing large-scale IoT systems with RFID as integration is becoming very complex and challenging. Semantic integration is a key approach to deal with this challenge. To do so, ontology for RFID systems need to be developed in order to annotated semantically RFID systems, and hence, facilitate their integration. Accordingly, in this paper, we propose ontology for RFID systems. The proposed ontology can be used to semantically enrich RFID systems, and hence, improve their usage and reasoning. The usage of the proposed ontology is explained through a simple scenario in the health care domain.

Keywords: RFID, semantic technology, ontology, sparql query language, heterogeneity

Procedia PDF Downloads 471
25386 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 120
25385 Language Development and Growing Spanning Trees in Children Semantic Network

Authors: Somayeh Sadat Hashemi Kamangar, Fatemeh Bakouie, Shahriar Gharibzadeh

Abstract:

In this study, we target to exploit Maximum Spanning Trees (MST) of children's semantic networks to investigate their language development. To do so, we examine the graph-theoretic properties of word-embedding networks. The networks are made of words children learn prior to the age of 30 months as the nodes and the links which are built from the cosine vector similarity of words normatively acquired by children prior to two and a half years of age. These networks are weighted graphs and the strength of each link is determined by the numerical similarities of the two words (nodes) on the sides of the link. To avoid changing the weighted networks to the binaries by setting a threshold, constructing MSTs might present a solution. MST is a unique sub-graph that connects all the nodes in such a way that the sum of all the link weights is maximized without forming cycles. MSTs as the backbone of the semantic networks are suitable to examine developmental changes in semantic network topology in children. From these trees, several parameters were calculated to characterize the developmental change in network organization. We showed that MSTs provides an elegant method sensitive to capture subtle developmental changes in semantic network organization.

Keywords: maximum spanning trees, word-embedding, semantic networks, language development

Procedia PDF Downloads 145
25384 Enhanced Arabic Semantic Information Retrieval System Based on Arabic Text Classification

Authors: A. Elsehemy, M. Abdeen , T. Nazmy

Abstract:

Since the appearance of the Semantic web, many semantic search techniques and models were proposed to exploit the information in ontology to enhance the traditional keyword-based search. Many advances were made in languages such as English, German, French and Spanish. However, other languages such as Arabic are not fully supported yet. In this paper we present a framework for ontology based information retrieval for Arabic language. Our system consists of four main modules, namely query parser, indexer, search and a ranking module. Our approach includes building a semantic index by linking ontology concepts to documents, including an annotation weight for each link, to be used in ranking the results. We also augmented the framework with an automatic document categorizer, which enhances the overall document ranking. We have built three Arabic domain ontologies: Sports, Economic and Politics as example for the Arabic language. We built a knowledge base that consists of 79 classes and more than 1456 instances. The system is evaluated using the precision and recall metrics. We have done many retrieval operations on a sample of 40,316 documents with a size 320 MB of pure text. The results show that the semantic search enhanced with text classification gives better performance results than the system without classification.

Keywords: Arabic text classification, ontology based retrieval, Arabic semantic web, information retrieval, Arabic ontology

Procedia PDF Downloads 525
25383 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity

Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang

Abstract:

The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.

Keywords: text information retrieval, natural language processing, new word discovery, information extraction

Procedia PDF Downloads 95
25382 Phraseologisms With The Spices And Food Additives Component In Polish And Russian. Lexical And Semantic Aspects

Authors: Oliwia Bator

Abstract:

The subject of this description is phraseologisms with the component “spices and food additives component" in Polish and Russian. The purpose of the study is to analyze the phraseologisms from the point of view of lexis and semantics. The material for analysis was extracted from Phraseological Dictionaries of Polish and Russian. The phraseologisms were considered from the lexical point of view, taking into account the name of the " spices and food additives" component, which forms them. From the semantic point of view, 12 semantic groups of phraseologisms were separated in Polish, while 9 semantic groups were separated in Russian. In addition is shown their functioning in the contexts of contemporary Polish and Russian. The contexts were taken from the National Corpus of the Polish Language and the National Corpus of the Russian Language.

Keywords: phraseology, language, slavic studies, linguistics

Procedia PDF Downloads 37
25381 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems

Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi

Abstract:

There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.

Keywords: knowledge management systems, ontologies, semantic web, open educational resources

Procedia PDF Downloads 498
25380 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 90
25379 Alive Cemeteries with Augmented Reality and Semantic Web Technologies

Authors: Tamás Matuszka, Attila Kiss

Abstract:

Due the proliferation of smartphones in everyday use, several different outdoor navigation systems have become available. Since these smartphones are able to connect to the Internet, the users can obtain location-based information during the navigation as well. The users could interactively get to know the specifics of a particular area (for instance, ancient cultural area, Statue Park, cemetery) with the help of thus obtained information. In this paper, we present an Augmented Reality system which uses Semantic Web technologies and is based on the interaction between the user and the smartphone. The system allows navigating through a specific area and provides information and details about the sight an interactive manner.

Keywords: augmented reality, semantic web, human computer interaction, mobile application

Procedia PDF Downloads 340
25378 Russian Spatial Impersonal Sentence Models in Translation Perspective

Authors: Marina Fomina

Abstract:

The paper focuses on the category of semantic subject within the framework of a functional approach to linguistics. The semantic subject is related to similar notions such as the grammatical subject and the bearer of predicative feature. It is the multifaceted nature of the category of subject that 1) triggers a number of issues that, syntax-wise, remain to be dealt with (cf. semantic vs. syntactic functions / sentence parts vs. parts of speech issues, etc.); 2) results in a variety of approaches to the category of subject, such as formal grammatical, semantic/syntactic (functional), communicative approaches, etc. Many linguists consider the prototypical approach to the category of subject to be the most instrumental as it reveals the integrity of denotative and linguistic components of the conceptual category. This approach relates to subject as a source of non-passive predicative feature, an element of subject-predicate-object situation that can take on a variety of semantic roles, cf.: 1) an agent (He carefully surveyed the valley stretching before him), 2) an experiencer (I feel very bitter about this), 3) a recipient (I received this book as a gift), 4) a causee (The plane broke into three pieces), 5) a patient (This stove cleans easily), etc. It is believed that the variety of roles stems from the radial (prototypical) structure of the category with some members more central than others. Translation-wise, the most “treacherous” subject types are the peripheral ones. The paper 1) features a peripheral status of spatial impersonal sentence models such as U menia v ukhe zvenit (lit. I-Gen. in ear buzzes) within the category of semantic subject, 2) makes a structural and semantic analysis of the models, 3) focuses on their Russian-English translation patterns, 4) reveals non-prototypical features of subjects in the English equivalents.

Keywords: bearer of predicative feature, grammatical subject, impersonal sentence model, semantic subject

Procedia PDF Downloads 370
25377 Academic Literacy: Semantic-Discursive Resource and the Relationship with the Constitution of Genre for the Development of Writing

Authors: Lucia Rottava

Abstract:

The present study focuses on academic literacy and addresses the impact of semantic-discursive resources on the constitution of genres that are produced in such context. The research considers the development of writing in the academic context in Portuguese. Researches that address academic literacy and the characteristics of the texts produced in this context are rare, mainly with focus on the development of writing, considering three variables: the constitution of the writer, the perception of the reader/interlocutor and the organization of the informational text flow. The research aims to map the semantic-discursive resources of the written register in texts of several genres and produced by students in the first semester of the undergraduate course in letters. The hypothesis raised is that writing in the academic environment is not a recurrent literacy practice for these learners and can be explained by the ontogenetic and phylogenetic nature of language development. Qualitative in nature, the present research has as empirical data texts produced in a half-yearly course of Reading and Textual Production; these data result from the proposition of four different writing proposals, in a total of 600 texts. The corpus is analyzed based on semantic-discursive resources, seeking to contemplate relevant aspects of language (grammar, discourse and social context) that reveal the choices made in the reader/writer interrelationship and the organizational flow of the text. Among the semantic-discursive resources, the analysis includes three resources, including (a) appraisal and negotiation to understand the attitudes negotiated (roles of the participants of the discourse and their relationship with the other); (b) ideation to explain the construction of the experience (activities performed and participants); and (c) periodicity to outline the flow of information in the organization of the text according to the genre it instantiates. The results indicate the organizational difficulties of the flow of the text information. Cartography contributes to the understanding of the way writers use language in an effort to present themselves, evaluate someone else’s work, and communicate with readers.

Keywords: academic writing, portuguese mother tongue, semantic-discursive resources, sistemic funcional linguistic

Procedia PDF Downloads 123
25376 Comparing Accuracy of Semantic and Radiomics Features in Prognosis of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer

Authors: Mahya Naghipoor

Abstract:

Purpose: Non-small cell lung cancer (NSCLC) is the most common lung cancer type. Epidermal growth factor receptor (EGFR) mutation is the main reason which causes NSCLC. Computed tomography (CT) is used for diagnosis and prognosis of lung cancers because of low price and little invasion. Semantic analyses of qualitative CT features are based on visual evaluation by radiologist. However, the naked eye ability may not assess all image features. On the other hand, radiomics provides the opportunity of quantitative analyses for CT images features. The aim of this review study was comparing accuracy of semantic and radiomics features in prognosis of EGFR mutation in NSCLC. Methods: For this purpose, the keywords including: non-small cell lung cancer, epidermal growth factor receptor mutation, semantic, radiomics, feature, receiver operating characteristics curve (ROC) and area under curve (AUC) were searched in PubMed and Google Scholar. Totally 29 papers were reviewed and the AUC of ROC analyses for semantic and radiomics features were compared. Results: The results showed that the reported AUC amounts for semantic features (ground glass opacity, shape, margins, lesion density and presence or absence of air bronchogram, emphysema and pleural effusion) were %41-%79. For radiomics features (kurtosis, skewness, entropy, texture, standard deviation (SD) and wavelet) the AUC values were found %50-%86. Conclusions: In conclusion, the accuracy of radiomics analysis is a little higher than semantic in prognosis of EGFR mutation in NSCLC.

Keywords: lung cancer, radiomics, computer tomography, mutation

Procedia PDF Downloads 167
25375 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved

Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben

Abstract:

Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.

Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons

Procedia PDF Downloads 394