Search results for: second order elastic constants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14261

Search results for: second order elastic constants

14231 Spin-Polarized Investigation of Ferromagnetism on Magnetic Semiconductors MnxCa1-xS in the Rock-salt Phase

Authors: B. Ghebouli, M. A. Ghebouli, H. Choutri, M. Fatmi, L. Louail

Abstract:

The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors MnxCa1-xS in the rock-salt phase have been investigated using first-principles calculations. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of MnxCa1-xS is 4.4µB and is independent of the Mn concentration. The unfilled Mn -3d levels reduce the local magnetic moment of Mn from its free space charge value of 5µB to 4.4µB due to 3p–3d hybridization.

Keywords: semiconductors, Ab initio calculations, band-structure, magnetic properties

Procedia PDF Downloads 329
14230 First Principles Study of a New Half-Metallic Ferrimagnets Mn2–Based Full Heusler Compounds: Mn2ZrSi and Mn2ZrGe

Authors: Ahmed Abada, Kadda Amara, Said Hiadsi, Bouhalouane Amrani

Abstract:

Half-metallic properties of new predicted Mn2-based full Heusler alloys Mn2ZrSi and Mn2ZrGe have been studied by first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). Our investigation is focused on the structural, elastic, electronic and magnetic properties of these compounds. The AlCu2Mn-type structure is found to be energetically more favorable than the CuHg2Ti-type structure for both compounds and are half-metallic ferrimagnets (HMFIs) with total magnetic moments of 2.000 µB per formula unit, well consistent with Slater-Pauling rule (Mtot = ( 24 – Ztot ) µB). Calculations show that both the alloys have an indirect band gaps, in the majority-spin channel, with values of 0.505 eV and 0.278 eV for Mn2ZrSi and Mn2ZrGe, respectively. It was found that Mn2ZrSi and Mn2ZrGe preserved their half-metallicity for lattice constants range of 5.85–6.38 Å and 6.05–6.38 Å, respectively, and kept a 100% of spin polarization at the Fermi level. Moreover, the calculated formation energies and elastic constants confirm that these compounds are stable chemically and mechanically, and the good crystallographic compatibility with the lattice of semiconductors used industrially makes them promising magnetic materials in spintronic applications.

Keywords: first-principles calculations, full Heusler structure, half-metallic ferrimagnets, elastic properties

Procedia PDF Downloads 345
14229 The Structural, Elastic, Thermal, Electronic, and Magnetic Properties of Intermetallic rmn₂ge₂ (R=CA, Y, ND)

Authors: I. Benkaddour, Y. Benkaddour, A. Benk Addour

Abstract:

The structural, elastic, Thermal, electronic, and magnetic properties of intermetallic RMn₂Ge₂ (R= Ca, Y, Nd) are investigated by density functional theory (DFT), using the full potential –linearised augmented plane wave method (FP-LAPW). In this approach, the local-density approximation (LDA) is used for the exchange-correlation (XC) potential. The equilibrium lattice constant and magnetic moment agree well with the experiment. The density of states shows that these phases are conductors, with contribution predominantly from the R and Mn d states. We have determined the elastic constants C₁₁, C₁₂, C₁₃, C₄₄, C₃₃, andC₆₆ at ambient conditions in, which have not been established neither experimentally nor theoretically. Thermal properties, including the relative expansion coefficients and the heat capacity, have been estimated using a quasi-harmonic Debye model.

Keywords: RMn₂Ge₂, intermetallic, first-principles, density of states, mechanical properties

Procedia PDF Downloads 62
14228 Structural, Elastic, Vibrational and Thermal Properties of Perovskites AHfO3 (a=Ba,Sr,Eu)

Authors: H. Krarcha

Abstract:

The structural, elastic, vibrational and thermal properties of AHfO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The optimized lattice parameters, independent elastic constants (C11, C12 and C44), bulk modulus (B), compressibility (b), shear modulus (G), Young’s modulus (Y ), Poisson’s ratio (n), Lame´’s coefficients (m, l), as well as band structure, density of states and electron density distributions are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time the numerical estimates of elastic parameters of the polycrystalline AHfO3 ceramics (in framework of the VoigteReusseHill approximation) are performed. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the FP-LAPW method, is applied to study the thermal and vibrational effects. Predicted temperature and pressure effects on the structural parameters, thermal expansions, heat capacities, and Debye temperatures are determined from the non-equilibrium Gibbs functions.

Keywords: Hafnium, elastic propreties, first principles calculation, perovskite

Procedia PDF Downloads 353
14227 Spectroscopic Constant Calculation of the BeF Molecule

Authors: Nayla El-Kork, Farah Korjieh, Ahmed Bentiba, Mahmoud Korek

Abstract:

Ab-initio calculations have been performed to investigate the spectroscopic constants for the diatomic compound BeF. Values of the internuclear distance Re, the harmonic frequency ωe, the rotational constants Be, the electronic transition energy with respect to the ground state Te, the eignvalues Ev, the abscissas of the turning points Rmin, Rmax, the rotational constants Bv and the centrifugal distortion constants Dv have been calculated for the molecule’s ground and excited electronic states. Results are in agreement with experimental data.

Keywords: spectroscopic constant, potential energy curve, diatomic molecule, spectral analysis

Procedia PDF Downloads 549
14226 A Unified Fitting Method for the Set of Unified Constitutive Equations for Modelling Microstructure Evolution in Hot Deformation

Authors: Chi Zhang, Jun Jiang

Abstract:

Constitutive equations are very important in finite element (FE) modeling, and the accuracy of the material constants in the equations have significant effects on the accuracy of the FE models. A wide range of constitutive equations are available; however, fitting the material constants in the constitutive equations could be complex and time-consuming due to the strong non-linearity and relationship between the constants. This work will focus on the development of a set of unified MATLAB programs for fitting the material constants in the constitutive equations efficiently. Users will only need to supply experimental data in the required format and run the program without modifying functions or precisely guessing the initial values, or finding the parameters in previous works and will be able to fit the material constants efficiently.

Keywords: constitutive equations, FE modelling, MATLAB program, non-linear curve fitting

Procedia PDF Downloads 67
14225 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 130
14224 Mechanical Properties of Ternary Metal Nitride Ti1-xTaxN Alloys from First-Principles

Authors: M. Benhamida, Kh. Bouamama, P. Djemia

Abstract:

We investigate by first-principles pseudo-potential calculations the composition dependence of lattice parameter, hardness and elastic properties of ternary disordered solid solutions Ti(1-x)Ta(x)N (1>=x>=0) with B1-rocksalt structure. Calculations use the coherent potential approximation with the exact muffin-tin orbitals (EMTO) and hardness formula for multicomponent covalent solid solution proposed. Bulk modulus B shows a nearly linear behaviour whereas not C44 and C’=(C11-C12)/2 that are not monotonous. Influences of vacancies on hardness of off-stoichiometric transition-metal nitrides TiN(1−x) and TaN(1−x) are also considered.

Keywords: transition metal nitride materials, elastic constants, hardness, EMTO

Procedia PDF Downloads 406
14223 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method

Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola

Abstract:

In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.

Keywords: constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity

Procedia PDF Downloads 277
14222 Transverse Vibration of Elastic Beam Resting on Variable Elastic Foundation Subjected to moving Load

Authors: Idowu Ibikunle Albert, Atilade Adesanya Oluwafemi, Okedeyi Abiodun Sikiru, Mustapha Rilwan Adewale

Abstract:

These present-day all areas of transport have experienced large advances characterized by increases in the speeds and weight of vehicles. As a result, this paper considered the Transverse Vibration of an Elastic Beam Resting on a Variable Elastic Foundation Subjected to a moving Load. The beam is presumed to be uniformly distributed and has simple support at both ends. The moving distributed moving mass is assumed to move with constant velocity. The governing equations, which are fourth-order partial differential equations, were reduced to second-order partial differential equations using an analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). Results show that an increase in the values of beam parameters, moving Mass M, and k-stiffness K, significantly reduces the deflection profile of the vibrating beam. In the results, it was equally found that moving mass is greater than moving force.

Keywords: elastic beam, moving load, response of structure, variable elastic foundation

Procedia PDF Downloads 87
14221 Prediction Study of the Structural, Elastic and Electronic Properties of the Parent and Martensitic Phases of Nonferrous Ti, Zr, and Hf Pure Metals

Authors: Tayeb Chihi, Messaoud Fatmi

Abstract:

We present calculations of the structural, elastic and electronic properties of nonferrous Ti, Zr, and Hf pure metals in both parent and martensite phases in bcc and hcp structures respectively. They are based on the generalized gradient approximation (GGA) within the density functional theory (DFT). The shear modulus, Young's modulus and Poisson's ratio for Ti, Zr, and Hf metals have were calculated and compared with the corresponding experimental values. Using elastic constants obtained from calculations GGA, the bulk modulus along the crystallographic axes of single crystals was calculated. This is in good agreement with experiment for Ti and Zr, whereas the hcp structure for Hf is a prediction. At zero temperature and zero pressure, the bcc crystal structure is found to be mechanically unstable for Ti, Zr, and Hf. In our calculations the hcp structures is correctly found to be stable at the equilibrium volume. In the electronic density of states (DOS), the smaller n(EF) is, the more stable the compound is. Therefore, in agreement with the results obtained from the total energy minimum.

Keywords: Ti, Zr, Hf, pure metals, transformation, energy

Procedia PDF Downloads 329
14220 A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material

Authors: Berkay Ergene, Çağın Bolat

Abstract:

In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects.

Keywords: composite, elastic behaviour, footbed, simulation

Procedia PDF Downloads 238
14219 Theoretical Study of the Structural and Elastic Properties of Semiconducting Rare Earth Chalcogenide Sm1-XEuXS under Pressure

Authors: R. Dubey, M. Sarwan, S. Singh

Abstract:

We have investigated the phase transition pressure and associated volume collapse in Sm1– X EuX S alloy (0≤x≤1) which shows transition from discontinuous to continuous as x is reduced. The calculated results from present approach are in good agreement with experimental data available for the end point members (x=0 and x=1). The results for the alloy counter parts are also in fair agreement with experimental data generated from the vegard’s law. An improved interaction potential model has been developed which includes coulomb, three body interaction, polarizability effect and overlap repulsive interaction operative up to second neighbor ions. It is found that the inclusion of polarizability effect has improved our results.

Keywords: elastic constants, high pressure, phase transition, rare earth compound

Procedia PDF Downloads 396
14218 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling

Authors: Sfiso Radebe

Abstract:

The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.

Keywords: convex modelling, hybrid, metal-composite, robust design

Procedia PDF Downloads 186
14217 Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body

Authors: Kotaro Miura, Makoto Sakamoto, Yuji Tanabe

Abstract:

We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson’s ratio and the thickness of elastic layer.

Keywords: indentation, contact problem, stress distribution, coating materials, layer-substrate body

Procedia PDF Downloads 129
14216 Modeling and Shape Prediction for Elastic Kinematic Chains

Authors: Jiun Jeon, Byung-Ju Yi

Abstract:

This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.

Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling

Procedia PDF Downloads 570
14215 GGA-PBEsol+TB-MBJ Studies of SrxPb1-xS Ternary Semiconductor Alloys

Authors: Y. Benallou, K. Amara, O. Arbouche

Abstract:

In this paper, we report a density functional study of the structural, electronic and elastic properties of the ordered phases of SrxPb1-xS ternary semiconductor alloys namely rocksalt compounds: PbS and SrS and the rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. These First-principles calculations have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. For the electronic properties calculations, the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.

Keywords: SrxPb1-xS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW

Procedia PDF Downloads 362
14214 Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks

Authors: Guoyang Fu, Wei Yang, Chun-Qing Li

Abstract:

The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure.

Keywords: Ductile metal pipes, elastic fracture toughness, longitudinal crack, plasticity

Procedia PDF Downloads 221
14213 Thermal Behaviors of the Strong Form Factors of Charmonium and Charmed Beauty Mesons from Three Point Sum Rules

Authors: E. Yazıcı, H. Sundu, E. Veli Veliev

Abstract:

In order to understand the nature of strong interactions and QCD vacuum, investigation of the meson coupling constants have an important role. The knowledge on the temperature dependence of the form factors is very important for the interpretation of heavy-ion collision experiments. Also, more accurate determination of these coupling constants plays a crucial role in understanding of the hadronic decays. With the increasing of CM energies of the experiments, researches on meson interactions have become one of the more interesting problems of hadronic physics. In this study, we analyze the temperature dependence of the strong form factor of the BcBcJ/ψ vertex using the three point QCD sum rules method. Here, we assume that with replacing the vacuum condensates and also the continuum threshold by their thermal version, the sum rules for the observables remain valid. In calculations, we take into account the additional operators, which appear in the Wilson expansion at finite temperature. We also investigated the momentum dependence of the form factor at T = 0, fit it into an analytic function, and extrapolate into the deep time-like region in order to obtain a strong coupling constant of the vertex. Our results are consistent with the results existing in the literature.

Keywords: QCD sum rules, thermal QCD, heavy mesons, strong coupling constants

Procedia PDF Downloads 160
14212 Nonstationary Waves Excited by the Rigid Cylinder in Elastic Medium

Authors: Tukeaban Hasanova, Jamila Imamalieva

Abstract:

By the operational method, the problem on two-dimensional wave propagation in elastic medium excited by the round cylinder is solved. An analytical solution responding to instantaneous application of speed to the inclusion at its subsequent change is constructed. The two-dimensional problem on wave propagation in an elastic medium is considered.

Keywords: cylinder, inclusion, wave, elastic medium, speed

Procedia PDF Downloads 139
14211 A Dislocation-Based Explanation to Quasi-Elastic Release in Shock Loaded Aluminum

Authors: Song L. Yao, Ji D. Yu, Xiao Y. Pei

Abstract:

An explanation is introduced to study the quasi-elastic release phenomenon in shock compressed aluminum. A dislocation-based model, taking into account of dislocation substructures and evolutions, is applied to simulate the elastic-plastic response of both single crystal and polycrystalline aluminum. Simulated results indicate that dislocation immobilization during dynamic deformation results in a smooth increase of yield stress, which leads to the quasi-elastic release. While the generation of dislocations caused by plastic release wave results in the appearance of transition point between the quasi-elastic release and the plastic release in the profile. The quantities of calculated shear strength and dislocation density are in accordance with experimental result, which demonstrates the accuracy of our simulations.

Keywords: dislocation density, quasi-elastic release, wave profile, shock wave

Procedia PDF Downloads 253
14210 First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications

Authors: M. Madigoe, R. Modiba

Abstract:

High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0.

Keywords: elastic modulus, phase proportion diagram, thermo-calc, titanium alloys

Procedia PDF Downloads 152
14209 A Design of Active Elastic Metamaterial with Extreme Anisotropic Stiffness

Authors: Conner Side, Hunter Pearce

Abstract:

Traditional elastic metamaterials have difficulties in achieving independent tunable working frequency in two orthogonal directions. In this work, we proposed a pragmatic active elastic metamaterial to obtain extreme anisotropic stiffness with a tunable working frequency range. Piezoelectric patches shunted with variable conductance are properly proposed in the microstructure unit cell to manipulate the effective elastic stiffness along two principal directions at the subwavelength scale. Simulation of manipulation of wave propagation in such metamaterials is performed. An experimental study is also conducted to validate the design, and the results are in good agreement with mathematic analysis and numerical predictions. The proposed active elastic metamaterial will bring forth significant guidelines for ultrasonic imaging technique, and the results are expected to offer novel and general design methodology for elastic metamaterials.

Keywords: microstructure, active elastic metamaterials, piezoelectric patches, experimental study

Procedia PDF Downloads 67
14208 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength

Authors: Klara Krizova, Rudolf Hela

Abstract:

The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development independence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions. With growing interest in this theme the elastic modulus questions have been developing further.

Keywords: concrete, compressive strength, modulus of elasticity, EuroCode 2

Procedia PDF Downloads 428
14207 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures

Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin

Abstract:

A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.

Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material

Procedia PDF Downloads 296
14206 Novel Correlations for P-Substituted Phenols in NMR Spectroscopy

Authors: Khodzhaberdi Allaberdiev

Abstract:

Substituted phenols are widely used for the synthesis of advanced polycondensation polymers. In terms of the structure regularity and practical value of obtained polymers are of special interest the p-substituted phenols. The lanthanide induced shifts (LIS) of the aromatic ring and the OH protons by addition Eu(fod)3 to various p-substituted phenols in CDCL3 solvent were measured Nuclear Magnetic Resonance spectroscopy. A linear relationship has been observed between the LIS of protons (∆=δcomplex –δsubstrate) and Eu(fod)3/substrate molar ratios. The LIS protons of the investigated phenols decreases in the following order: ОН > ortho > meta. The LIS of these protons also depends on both steric and electronic effects of p-substituents. The effect on the LIS of protons steric hindrance of substituents by way of example p-substituted alkyl phenols was studied. Alkyl phenols exhibit pronounced europium- induced shifts, their sensitivity increasing in the order: CH3 > C2H5 > sym-C5H11 > tert-C5H11 > tert-C4H9, i.e. in parallel with decreasing steric hindrance. The influence steric hindrance p-substituents of phenols on the LIS of protons in sequence following decreases: OH> meta >ortho. Contrary to the expectations, it is found that the LIS of the ortho protons an excellent linear correlation with meta-substituent constants, σm for 14 p-substituted phenols: ∆H2, 6=8.165-9.896 σm (r2=0,999). Moreover, a linear correlation between the LIS of the ortho protons and ionization constants, РКa of p-substituted phenols has been revealed. Similarly, the linear relationships for the LIS of the meta and the OH protons were obtained. Use the LIS of the phenolic hydroxyl groups for linear relationships is necessary with care, because of the signal broadening of the OH protons. New constants may be determinate with unusual case by this approach.

Keywords: novel correlations, NMR spectroscopy, phenols, shift reagent

Procedia PDF Downloads 281
14205 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil

Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina

Abstract:

This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.

Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis

Procedia PDF Downloads 182
14204 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys

Authors: Gulcan Ozerim, Gunay Anlas

Abstract:

In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.

Keywords: crack, HRR singularity, shape memory alloys, stress distribution

Procedia PDF Downloads 305
14203 Development of Sound Tactile Interface by Use of Human Sensation of Stiffness

Authors: K. Doi, T. Nishimura, M. Umeda

Abstract:

There are very few sound interfaces that both healthy people and hearing handicapped people can use to play together. In this study, we developed a sound tactile interface that makes use of the human sensation of stiffness. The interface comprises eight elastic objects having varying degrees of stiffness. Each elastic object is shaped like a column. When people with and without hearing disabilities press each elastic object, different sounds are produced depending on the stiffness of the elastic object. The types of sounds used were “Do Re Mi sounds.” The interface has a major advantage in that people with or without hearing disabilities can play with it. We found that users were able to recognize the hardness sensation and relate it to the corresponding Do Re Mi sounds.

Keywords: tactile sense, sound interface, stiffness perception, elastic object

Procedia PDF Downloads 260
14202 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames

Authors: Abdul Hakim Chikho

Abstract:

A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.

Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects

Procedia PDF Downloads 61