Search results for: risk volatility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6166

Search results for: risk volatility

6136 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period

Authors: Xu Wang

Abstract:

This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.

Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty

Procedia PDF Downloads 167
6135 An Empirical Investigation of Uncertainty and the Lumpy Investment Channel of Monetary Policy

Authors: Min Fang, Jiaxi Yang

Abstract:

Monetary policy could be less effective at stimulating investment during periods of elevated volatility than during normal times. In this paper, we argue that elevated volatility leads to a decrease in extensive margin investment incentive so that nominal stimulus generates less aggregate investment. To do this, we first empirically document that high volatility weakens firms’ investment responses to monetary stimulus. Such effects depend on the lumpiness nature of the firm-level investment. The findings are that the channel exists for all of the physical investment, innovation investment, and organization investment.

Keywords: investment, irreversibility, volatility, uncertainty, firm heterogeneity, monetary policy

Procedia PDF Downloads 106
6134 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence

Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai

Abstract:

The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.

Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing

Procedia PDF Downloads 252
6133 Structural Breaks, Asymmetric Effects and Long Memory in the Volatility of Turkey Stock Market

Authors: Serpil Türkyılmaz, Mesut Balıbey

Abstract:

In this study, long memory properties in volatility of Turkey Stock Market are being examined through the FIGARCH, FIEGARCH and FIAPARCH models under different distribution assumptions as normal and skewed student-t distributions. Furthermore, structural changes in volatility of Turkey Stock Market are investigated. The results display long memory property and the presence of asymmetric effects of shocks in volatility of Turkey Stock Market.

Keywords: FIAPARCH model, FIEGARCH model, FIGARCH model, structural break

Procedia PDF Downloads 291
6132 Markov Switching of Conditional Variance

Authors: Josip Arneric, Blanka Skrabic Peric

Abstract:

Forecasting of volatility, i.e. returns fluctuations, has been a topic of interest to portfolio managers, option traders and market makers in order to get higher profits or less risky positions. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most common used models are GARCH type models. As standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance, it is difficult the predict volatility using standard GARCH models. Due to practical limitations of these models different approaches have been proposed in the literature, based on Markov switching models. In such situations models in which the parameters are allowed to change over time are more appropriate because they allow some part of the model to depend on the state of the economy. The empirical analysis demonstrates that Markov switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility for selected emerging markets.

Keywords: emerging markets, Markov switching, GARCH model, transition probabilities

Procedia PDF Downloads 455
6131 Dissecting ESG: The Impact of Environmental, Social, and Governance Factors on Stock Price Risk in European Markets

Authors: Sylwia Frydrych, Jörg Prokop, Michał Buszko

Abstract:

This study investigates the complex relationship between corporate ESG (Environmental, Social, Governance) performance and stock price risk within the European market context. By analyzing a dataset of 435 companies across 19 European countries, the research assesses the impact of both combined ESG performance and its individual components on various risk measures, including volatility, idiosyncratic risk, systematic risk, and downside risk. The findings reveal that while overall ESG scores do not significantly influence stock price risk, disaggregating the ESG components uncovers significant relationships. Governance practices are shown to consistently reduce market risk, positioning them as critical in risk management. However, environmental engagement tends to increase risk, particularly in times of regulatory shifts like those introduced in the EU post-2018. This research provides valuable insights for investors and corporate managers on the nuanced roles of ESG factors in financial risk, emphasizing the need for careful consideration of each ESG pillar in decision-making processes.

Keywords: ESG performance, ESG factors, ESG pillars, ESG scores

Procedia PDF Downloads 25
6130 Volatility Switching between Two Regimes

Authors: Josip Visković, Josip Arnerić, Ante Rozga

Abstract:

Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modelling time varying volatility are GARCH type models. When financial returns exhibit sudden jumps that are due to structural breaks, standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance. In such situations models in which the parameters are allowed to change over time are more appropriate. This paper compares different GARCH models in terms of their ability to describe structural changes in returns caused by financial crisis at stock markets of six selected central and east European countries. The empirical analysis demonstrates that Markov regime switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility when sudden switching occurs in response to financial crisis.

Keywords: central and east European countries, financial crisis, Markov switching GARCH model, transition probabilities

Procedia PDF Downloads 226
6129 Islamic Equity Markets Response to Volatility of Bitcoin

Authors: Zakaria S. G. Hegazy, Walid M. A. Ahmed

Abstract:

This paper examines the dependence structure of Islamic stock markets on Bitcoin’s realized volatility components in bear, normal, and bull market periods. A quantile regression approach is employed, after adjusting raw returns with respect to a broad set of relevant global factors and accounting for structural breaks in the data. The results reveal that upside volatility tends to exert negative influences on Islamic developed-market returns more in bear than in bull market conditions, while downside volatility positively affects returns during bear and bull conditions. For emerging markets, we find that the upside (downside) component exerts lagged negative (positive) effects on returns in bear (all) market regimes. By and large, the dependence structures turn out to be asymmetric. Our evidence provides essential implications for investors.

Keywords: cryptocurrency markets, bitcoin, realized volatility measures, asymmetry, quantile regression

Procedia PDF Downloads 188
6128 Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures

Authors: Roengchai Tansuchat, Woraphon Yamaka, Paravee Maneejuk

Abstract:

From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic.

Keywords: agricultural commodity futures, cereal, cross-hedge, spillover effect, switching regime approach

Procedia PDF Downloads 202
6127 Long- and Short-Term Impacts of COVID-19 and Gold Price on Price Volatility: A Comparative Study of MIDAS and GARCH-MIDAS Models for USA Crude Oil

Authors: Samir K. Safi

Abstract:

The purpose of this study was to compare the performance of two types of models, namely MIDAS and MIDAS-GARCH, in predicting the volatility of crude oil returns based on gold price returns and the COVID-19 pandemic. The study aimed to identify which model would provide more accurate short-term and long-term predictions and which model would perform better in handling the increased volatility caused by the pandemic. The findings of the study revealed that the MIDAS model performed better in predicting short-term and long-term volatility before the pandemic, while the MIDAS-GARCH model performed significantly better in handling the increased volatility caused by the pandemic. The study highlights the importance of selecting appropriate models to handle the complexities of real-world data and shows that the choice of model can significantly impact the accuracy of predictions. The practical implications of model selection and exploring potential methodological adjustments for future research will be highlighted and discussed.

Keywords: GARCH-MIDAS, MIDAS, crude oil, gold, COVID-19, volatility

Procedia PDF Downloads 65
6126 Loan Supply and Asset Price Volatility: An Experimental Study

Authors: Gabriele Iannotta

Abstract:

This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.

Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment

Procedia PDF Downloads 125
6125 Numerical Simulation of Wishart Diffusion Processes

Authors: Raphael Naryongo, Philip Ngare, Anthony Waititu

Abstract:

This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility model

Keywords: euler schemes, log-asset return, infinitesimal generator, wishart diffusion affine processes

Procedia PDF Downloads 378
6124 Red Meat Price Volatility and Its' Relationship with Crude Oil and Exchange Rate

Authors: Melek Akay

Abstract:

Turkey's agricultural commodity prices are prone to fluctuation but have gradually over time. A considerable amount of literature examines the changes in these prices by dealing with other commodities such as energy. Links between agricultural and energy markets have therefore been extensively investigated. Since red meat prices are becoming increasingly volatile in Turkey, this paper analyses the price volatility of veal, lamb and the relationship between red meat and crude oil, exchange rates by applying the generalize all period unconstraint volatility model, which generalises the GARCH (p, q) model for analysing weekly data covering a period of May 2006 to February 2017. Empirical results show that veal and lamb prices present volatility during the last decade, but particularly between 2009 and 2012. Moreover, oil prices have a significant effect on veal and lamb prices as well as their previous periods. Consequently, our research can lead policy makers to evaluate policy implementation in the appropriate way and reduce the impacts of oil prices by supporting producers.

Keywords: red meat price, volatility, crude oil, exchange rates, GARCH models, Turkey

Procedia PDF Downloads 122
6123 Leverage Effect for Volatility with Generalized Laplace Error

Authors: Farrukh Javed, Krzysztof Podgórski

Abstract:

We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.

Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models

Procedia PDF Downloads 385
6122 The Effect of Recycling on Price Volatility of Critical Metals in the EU (2010-2019): An Application of Multivariate GARCH Family Models

Authors: Marc Evenst Jn Jacques, Sophie Bernard

Abstract:

Electrical and electronic applications, as well as rechargeable batteries, are common in any economy. They also contain a number of important and valuable metals. It is critical to investigate the impact of these new materials or volume sources on the metal market dynamics. This paper investigates the impact of responsible recycling within the European region on metal price volatility. As far as we know, no empirical studies have been conducted to assess the role of metal recycling in metal market price volatility. The goal of this paper is to test the claim that metal recycling helps to cushion price volatility. A set of circular economy indicators/variables, namely, 1) annual total trade values of recycled metals, 2) annual volume of scrap traded and 3) circular material use rate, and 4) information about recycling, are used to estimate the volatility of monthly spot prices of regular metals. A combination of the GARCH-MIDAS model for mixed frequency data sampling and a simple GARCH (1,1) model for the same frequency variables was adopted to examine the potential links between each variable and price volatility. We discovered that from 2010 to 2019, except for Nickel, scrap consumption (Millions of tons), Scrap Trade Values, and Recycled Material use rate had no significant impact on the price volatility of standard metals (Aluminum, Lead) and precious metals (Gold and Platinum). Worldwide interest in recycling has no impact on returns or volatility. Specific interest in metal recycling did have a link to the mean return equation for Aluminum, Gold and to the volatility equation for lead and Nickel.

Keywords: recycling, circular economy, price volatility, GARCH, mixed data sampling

Procedia PDF Downloads 56
6121 Development and Emerging Risks in the Derivative Market: A Comparison of Impact of Futures Trading on Spot Price Volatility and a Case of Developed, Emerging and Less Developed Economies

Authors: Rancy Chepchirchir Kosgey, John Olukuru

Abstract:

This study examines the impact of introduction of futures trading on the spot price volatility in the commodity market. The paper considers the United States of America, South Africa and Ethiopian economies. Three commodities i.e. coffee, maize and wheat from New York Merchantile Exchange, South African Futures Exchange and Ethiopian Commodity Exchange are analyzed. ARCH LM test is used to check for heteroskedasticity and GARCH and EGARCH are used to check for the behavior of volatility between the pre- and post-futures periods. For all the three economies, the results indicate presence of the ARCH effect in the log returns. For conditional and unconditional variances; spot price volatility for coffee has decreased after futures trading in all the economies and the EGARCH has also shown reduction in persistence of volatility in the post-futures period in the three economies; while that of maize has reduced for the Ethiopian economy while there has been an increase in both the US and South African economies. For wheat, the conditional variance has been found to rise in the post-futures period in all the three economies.

Keywords: derivatives, futures exchange, agricultural commodities, spot price volatility

Procedia PDF Downloads 426
6120 On the Importance of Quality, Liquidity Level and Liquidity Risk: A Markov-Switching Regime Approach

Authors: Tarik Bazgour, Cedric Heuchenne, Danielle Sougne

Abstract:

We examine time variation in the market beta of portfolios sorted on quality, liquidity level and liquidity beta characteristics across stock market phases. Using US stock market data for the period 1970-2010, we find, first, the US stock market was driven by four regimes. Second, during the crisis regime, low (high) quality, high (low) liquidity beta and illiquid (liquid) stocks exhibit an increase (a decrease) in their market betas. This finding is consistent with the flight-to-quality and liquidity phenomena. Third, we document the same pattern across stocks when the market volatility is low. We argue that, during low volatility times, investors shift their portfolios towards low quality and illiquid stocks to seek portfolio gains. The pattern observed in the tranquil regime can be, therefore, explained by a flight-to-low-quality and to illiquidity. Finally, our results reveal that liquidity level is more important than liquidity beta during the crisis regime.

Keywords: financial crises, quality, liquidity, liquidity risk, regime-switching models

Procedia PDF Downloads 404
6119 Determinants of International Volatility Passthroughs of Agricultural Commodities: A Panel Analysis of Developing Countries

Authors: Tetsuji Tanaka, Jin Guo

Abstract:

The extant literature has not succeeded in uncovering the common determinants of price volatility transmissions of agricultural commodities from international to local markets, and further, has rarely investigated the role of self-sufficiency measures in the context of national food security. We analyzed various factors to determine the degree of price volatility transmissions of wheat, rice, and maize between world and domestic markets using GARCH models with dynamic conditional correlation (DCC) specifications and panel-feasible generalized least square models. We found that the grain autarky system has the potential to diminish volatility pass-throughs for three grain commodities. Furthermore, it was discovered that the substitutive commodity consumption behavior between maize and wheat buffers the volatility transmissions of both, but rice does not function as a transmission-relieving element, either for the volatilities of wheat or maize. The effectiveness of grain consumption substitution to insulate the pass-throughs from global markets is greater than that of cereal self-sufficiency. These implications are extremely beneficial for developing governments to protect their domestic food markets from uncertainty in foreign countries and as such, improves food security.

Keywords: food security, GARCH, grain self-sufficiency, volatility transmission

Procedia PDF Downloads 155
6118 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa

Authors: Yegnanew A. Shiferaw

Abstract:

Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.

Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility

Procedia PDF Downloads 202
6117 Investigating the UAE Residential Valuation System: A Framework for Analysis

Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa

Abstract:

The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which in turn are affected by geopolitical uncertainty, oil price volatility, and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic, and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.

Keywords: valuation, property rights, information, institutions, trust, salience

Procedia PDF Downloads 379
6116 Evaluating the Effects of a Positive Bitcoin Shock on the U.S Economy: A TVP-FAVAR Model with Stochastic Volatility

Authors: Olfa Kaabia, Ilyes Abid, Khaled Guesmi

Abstract:

This pioneer paper studies whether and how Bitcoin shocks are transmitted to the U.S economy. We employ a new methodology: TVP FAVAR model with stochastic volatility. We use a large dataset of 111 major U.S variables from 1959:m1 to 2016:m12. The results show that Bitcoin shocks significantly impact the U.S. economy. This significant impact is pronounced in a volatile and increasing U.S economy. The Bitcoin has a positive relationship on the U.S real activity, and a negative one on U.S prices and interest rates. Effects on the Monetary Policy exist via the inter-est rates and the Money, Credit and Finance transmission channels.

Keywords: bitcoin, US economy, FAVAR models, stochastic volatility

Procedia PDF Downloads 247
6115 Reasons of Change in Security Prices and Price Volatility: An Analysis of the European Carbon Futures Market

Authors: Boulis M. Ibrahim, Iordanis A. Kalaitzoglou

Abstract:

A micro structural pricing model is proposed in which price components account for learning by incorporating changing expectations of the trading intensity and the risk level of incoming trades. An analysis of European carbon futures transactions finds expected trading intensity to increase the information component and decrease the liquidity component of price changes, but at different rates. Among the results, the expected persistence in trading intensity explains the majority of the auto correlations in the level and the conditional volatility of price changes, helps predict hourly patterns in the bid–ask spread and differentiates between the impact of buy versus sell and continuing versus reversing trades.

Keywords: CO2 emission allowances, market microstructure, duration, price discovery

Procedia PDF Downloads 407
6114 Modelling Impacts of Global Financial Crises on Stock Volatility of Nigeria Banks

Authors: Maruf Ariyo Raheem, Patrick Oseloka Ezepue

Abstract:

This research aimed at determining most appropriate heteroskedastic model to predicting volatility of 10 major Nigerian banks: Access, United Bank for Africa (UBA), Guaranty Trust, Skye, Diamond, Fidelity, Sterling, Union, ETI and Zenith banks using daily closing stock prices of each of the banks from 2004 to 2014. The models employed include ARCH (1), GARCH (1, 1), EGARCH (1, 1) and TARCH (1, 1). The results show that all the banks returns are highly leptokurtic, significantly skewed and thus non-normal across the four periods except for Fidelity bank during financial crises; findings similar to those of other global markets. There is also strong evidence for the presence of heteroscedasticity, and that volatility persistence during crisis is higher than before the crisis across the 10 banks, with that of UBA taking the lead, about 11 times higher during the crisis. Findings further revealed that Asymmetric GARCH models became dominant especially during financial crises and post crises when the second reforms were introduced into the banking industry by the Central Bank of Nigeria (CBN). Generally, one could say that Nigerian banks returns are volatility persistent during and after the crises, and characterised by leverage effects of negative and positive shocks during these periods

Keywords: global financial crisis, leverage effect, persistence, volatility clustering

Procedia PDF Downloads 526
6113 A Regional Analysis on Co-movement of Sovereign Credit Risk and Interbank Risks

Authors: Mehdi Janbaz

Abstract:

The global financial crisis and the credit crunch that followed magnified the importance of credit risk management and its crucial role in the stability of all financial sectors and the whole of the system. Many believe that risks faced by the sovereign sector are highly interconnected with banking risks and most likely to trigger and reinforce each other. This study aims to examine (1) the impact of banking and interbank risk factors on the sovereign credit risk of Eurozone, and (2) how the EU Credit Default Swaps spreads dynamics are affected by the Crude Oil price fluctuations. The hypothesizes are tested by employing fitting risk measures and through a four-staged linear modeling approach. The sovereign senior 5-year Credit Default Swap spreads are used as a core measure of the credit risk. The monthly time-series data of the variables used in the study are gathered from the DataStream database for a period of 2008-2019. First, a linear model test the impact of regional macroeconomic and market-based factors (STOXX, VSTOXX, Oil, Sovereign Debt, and Slope) on the CDS spreads dynamics. Second, the bank-specific factors, including LIBOR-OIS spread (the difference between the Euro 3-month LIBOR rate and Euro 3-month overnight index swap rates) and Euribor, are added to the most significant factors of the previous model. Third, the global financial factors including EURO to USD Foreign Exchange Volatility, TED spread (the difference between 3-month T-bill and the 3-month LIBOR rate based in US dollars), and Chicago Board Options Exchange (CBOE) Crude Oil Volatility Index are added to the major significant factors of the first two models. Finally, a model is generated by a combination of the major factor of each variable set in addition to the crisis dummy. The findings show that (1) the explanatory power of LIBOR-OIS on the sovereign CDS spread of Eurozone is very significant, and (2) there is a meaningful adverse co-movement between the Crude Oil price and CDS price of Eurozone. Surprisingly, adding TED spread (the difference between the three-month Treasury bill and the three-month LIBOR based in US dollars.) to the analysis and beside the LIBOR-OIS spread (the difference between the Euro 3M LIBOR and Euro 3M OIS) in third and fourth models has been increased the predicting power of LIBOR-OIS. Based on the results, LIBOR-OIS, Stoxx, TED spread, Slope, Oil price, OVX, FX volatility, and Euribor are the determinants of CDS spreads dynamics in Eurozone. Moreover, the positive impact of the crisis period on the creditworthiness of the Eurozone is meaningful.

Keywords: CDS, crude oil, interbank risk, LIBOR-OIS, OVX, sovereign credit risk, TED

Procedia PDF Downloads 144
6112 Investment Adjustments to Exchange Rate Fluctuations Evidence from Manufacturing Firms in Tunisia

Authors: Mourad Zmami Oussema BenSalha

Abstract:

The current research aims to assess empirically the reaction of private investment to exchange rate fluctuations in Tunisia using a sample of 548 firms operating in manufacturing industries between 1997 and 2002. The micro-econometric model we estimate is based on an accelerator-profit specification investment model increased by two variables that measure the variation and the volatility of exchange rates. Estimates using the system the GMM method reveal that the effects of the exchange rate depreciation on investment are negative since it increases the cost of imported capital goods. Turning to the exchange rate volatility, as measured by the GARCH (1,1) model, our findings assign a significant role to the exchange rate uncertainty in explaining the sluggishness of private investment in Tunisia in the full sample of firms. Other estimation attempts based on various sub samples indicate that the elasticities of investment relative to the exchange rate volatility depend upon many firms’ specific characteristics such as the size and the ownership structure.

Keywords: investment, exchange rate volatility, manufacturing firms, system GMM, Tunisia

Procedia PDF Downloads 410
6111 In Search of Zero Beta Assets: Evidence from the Sukuk Market

Authors: Andrea Paltrinieri, Alberto Dreassi, Stefano Miani, Alex Sclip

Abstract:

The financial crises caused a collapse in prices of most asset classes, raising the attention on alternative investments such as Sukuk, a smaller, fast growing but often misunderstood market. We study diversification benefits of Sukuk, their correlation with other asset classes and the effects of their inclusion in investment portfolios of institutional and retail investors, through a comprehensive comparison of their risk/return profiles during and after the financial crisis. We find a beneficial performance adjusted for the specific volatility together with a lower correlation especially during the financial crisis. The distribution of Sukuk returns is positively skewed and leptokurtic, with a risk/return profile similarly to high yield bonds. Overall, our results suggest that Sukuk present diversification opportunities, a significant volatility-adjusted performance and lower correlations especially during the financial crisis. Our findings are relevant for a number of institutional investors. Long term investors, such as life insurers would benefit from Sukuk’s protective features during financial crisis yet keeping return and growth opportunities, whereas banks would gain due to their role of placers, advisors, market makers or underwriters.

Keywords: sukuk, zero beta asset, asset allocation, sukuk market

Procedia PDF Downloads 477
6110 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models

Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah

Abstract:

In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.

Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model

Procedia PDF Downloads 241
6109 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation

Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim

Abstract:

In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.

Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement

Procedia PDF Downloads 117
6108 Portfolio Selection with Active Risk Monitoring

Authors: Marc S. Paolella, Pawel Polak

Abstract:

The paper proposes a framework for large-scale portfolio optimization which accounts for all the major stylized facts of multivariate financial returns, including volatility clustering, dynamics in the dependency structure, asymmetry, heavy tails, and non-ellipticity. It introduces a so-called risk fear portfolio strategy which combines portfolio optimization with active risk monitoring. The former selects optimal portfolio weights. The latter, independently, initiates market exit in case of excessive risks. The strategy agrees with the stylized fact of stock market major sell-offs during the initial stage of market downturns. The advantages of the new framework are illustrated with an extensive empirical study. It leads to superior multivariate density and Value-at-Risk forecasting, and better portfolio performance. The proposed risk fear portfolio strategy outperforms various competing types of optimal portfolios, even in the presence of conservative transaction costs and frequent rebalancing. The risk monitoring of the optimal portfolio can serve as an early warning system against large market risks. In particular, the new strategy avoids all the losses during the 2008 financial crisis, and it profits from the subsequent market recovery.

Keywords: comfort, financial crises, portfolio optimization, risk monitoring

Procedia PDF Downloads 524
6107 The Effect of Oil Price Uncertainty on Food Price in South Africa

Authors: Goodness C. Aye

Abstract:

This paper examines the effect of the volatility of oil prices on food price in South Africa using monthly data covering the period 2002:01 to 2014:09. Food price is measured by the South African consumer price index for food while oil price is proxied by the Brent crude oil. The study employs the GARCH-in-mean VAR model, which allows the investigation of the effect of a negative and positive shock in oil price volatility on food price. The model also allows the oil price uncertainty to be measured as the conditional standard deviation of a one-step-ahead forecast error of the change in oil price. The results show that oil price uncertainty has a positive and significant effect on food price in South Africa. The responses of food price to a positive and negative oil price shocks is asymmetric.

Keywords: oil price volatility, food price, bivariate, GARCH-in-mean VAR, asymmetric

Procedia PDF Downloads 477