Search results for: redox gradients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 334

Search results for: redox gradients

304 Redox-Mediated Supramolecular Radical Gel

Authors: Sonam Chorol, Sharvan Kumar, Pritam Mukhopadhyay

Abstract:

In biology, supramolecular systems require the use of chemical fuels to stay in sustained nonequilibrium steady states termed dissipative self-assembly in contrast to synthetic self-assembly. Biomimicking these natural dynamic systems, some studies have demonstrated artificial self-assembly under nonequilibrium utilizing various forms of energies (fuel) such as chemical, redox, and pH. Naphthalene diimides (NDIs) are well-known organic molecules in supramolecular architectures with high electron affinity and have applications in controlled electron transfer (ET) reactions, etc. Herein, we report the endergonic ET from tetraphenylborate to highly electron-deficient phosphonium NDI²+ dication to generate NDI•+ radical. The formation of radicals was confirmed by UV-Vis-NIR absorption spectroscopy. Electron-donor and electron-acceptor energy levels were calculated from experimental electrochemistry and theoretical DFT analysis. The HOMO of the electron donor locates below the LUMO of the electro-acceptor. This indicates that electron transfer is endergonic (ΔE°ET = negative). The endergonic ET from NaBPh₄ to NDI²+ dication was achieved thermodynamically by the formation of coupled biphenyl product confirmed by GC-MS analysis. NDI molecule bearing octyl phosphonium at the core and H-bond forming imide moieties at the axial position forms a gel. The rheological properties of purified radical ion NDI⦁+ gels were evaluated. The atomic force microscopy studies reveal the formation of large branching-type networks with a maximum height of 70-80 nm. The endergonic ET from NaBPh₄ to NDI²+ dication was used to design the assembly and disassembly redox reaction cycle using reducing (NaBPh₄) and oxidizing agents (Br₂) as chemical fuels. A part of NaBPh₄ is used to drive assembly, while a fraction of the NaBPh₄ is dissipated by forming a useful product. The system goes back to the disassembled NDI²+ dication state with the addition of Br₂. We think bioinspired dissipative self-assembly is the best approach to developing future lifelike materials with autonomous behavior.

Keywords: Ionic-gel, redox-cycle, self-assembly, useful product

Procedia PDF Downloads 53
303 Three-dimensional Steady Flow in Thin Annular Pools of Silicon Melt under a Magnetic Field

Authors: Brahim Mahfoud

Abstract:

A three-dimensional (3D) numerical technique is used to investigate the possibility of reducing the price of manufacturing some silicon-based devices, particularly those in which minor temperature gradients can significantly reduce performance. The silicon melt under the magnetic field produces Lorentz force, which can effectively suppress the flow which is caused by temperature gradients. This might allow some silicon-based products, such as solar cells, to be manufactured using a less pure, and hence less expensive. The thermocapillary effect of the silicon melt flow in thin annular pools subjected to an externally induced magnetic field was observed. The results reveal that with a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value.

Keywords: magnetic field, manufacturing, silicon melt, thermocapillary

Procedia PDF Downloads 52
302 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 190
301 Bifurcations of the Rotations in the Thermocapillary Flows

Authors: V. Batishchev, V. Getman

Abstract:

We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.

Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer

Procedia PDF Downloads 321
300 Diselenide-Linked Redox Stimuli-Responsive Methoxy Poly(Ethylene Glycol)-b-Poly(Lactide-Co-Glycolide) Micelles for the Delivery of Doxorubicin in Cancer Cells

Authors: Yihenew Simegniew Birhan, Hsieh Chih Tsai

Abstract:

The recent advancements in synthetic chemistry and nanotechnology fostered the development of different nanocarriers for enhanced intracellular delivery of pharmaceutical agents to tumor cells. Polymeric micelles (PMs), characterized by small size, appreciable drug loading capacity (DLC), better accumulation in tumor tissue via enhanced permeability and retention (EPR) effect, and the ability to avoid detection and subsequent clearance by the mononuclear phagocyte (MNP) system, are convenient to improve the poor solubility, slow absorption and non-selective biodistribution of payloads embedded in their hydrophobic cores and hence, enhance the therapeutic efficacy of chemotherapeutic agents. Recently, redox-responsive polymeric micelles have gained significant attention for the delivery and controlled release of anticancer drugs in tumor cells. In this study, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se₂ from mPEG-PLGA, and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. The successful synthesis of the copolymers was verified by different spectroscopic techniques. Above the critical micelle concentration, the amphiphilic copolymer, Bi(mPEG-PLGA)-Se₂, self-assembled into stable micelles. The DLS data indicated that the hydrodynamic diameter of the micelles (123.9 ± 0.85 nm) was suitable for extravasation into the tumor cells through the EPR effect. The drug loading content (DLC) and encapsulation efficiency (EE) of DOX-loaded micelles were found to be 6.61 wt% and 54.9%, respectively. The DOX-loaded micelles showed initial burst release accompanied by sustained release trend where 73.94% and 69.54% of encapsulated DOX was released upon treatment with 6mM GSH and 0.1% H₂O₂, respectively. The biocompatible nature of Bi(mPEG-PLGA)-Se₂ copolymer was confirmed by the cell viability study. In addition, the DOX-loaded micelles exhibited significant inhibition against HeLa cells (44.46%), at a maximum dose of 7.5 µg/mL. The fluorescent microscope images of HeLa cells treated with 3 µg/mL (equivalent DOX concentration) revealed efficient internalization and accumulation of DOX-loaded Bi(mPEG-PLGA)-Se₂ micelles in the cytosol of cancer cells. In conclusion, the intelligent, biocompatible, and the redox stimuli-responsive behavior of Bi(mPEG-PLGA)-Se₂ copolymer marked the potential applications of diselenide-linked mPEG-PLGA micelles for the delivery and on-demand release of chemotherapeutic agents in cancer cells.

Keywords: anticancer drug delivery, diselenide bond, polymeric micelles, redox-responsive

Procedia PDF Downloads 88
299 Designing Active Sites on Amicyanin Using Histidine S Plus Cobalt, and Measuring Their Functional Activity

Authors: Han-Bin Kim, Sooim Shin, Moonsung Choi

Abstract:

There is a growing interest in introducing a desired functional group on enzymes in the field of protein engineering. In here, various redox centers were newly created using histidine tag, which is widely used for protein purification, plus cobalt in one of cupredoxins, amicyanin. The coordination of Cobalt-His tag and reactivity of the Co²⁺ loaded His-tag also were characterized. 3xHis-tag, 6xHis-tag, and 9xHis-tag were introduced on amicyanin by site-directed mutagenesis, and then Co²⁺ was loaded on each His-tagged amicyanin. The spectral changes at 330 nm corresponding to cobalt binding on His-tag site indicated the binding ratio of 3xHis-tag, 6xHis-tag, and 9xHis-tag to cobalt as 1:1, 1:2, 1:3 respectively. Based on kinetic studies of binding cobalt to 3xHis-tag, 6xHis-tag, and 9xHis-tagged amicyanin, the nature of the sites was elucidated. In addition, internal electron transfer properties between Cu¹⁺ site and engineered site of amicyanin were determined. These results provide insight into improvement of metal coordination and alternation of the redox properties of metal as a new catalytic site on proteins.

Keywords: amicyanin, cobalt, histidine, protein engineering

Procedia PDF Downloads 142
298 Homoleptic Complexes of a Tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-Terpyridine

Authors: Angelo Lanzilotto, Martin Kuss-Petermann, Catherine E. Housecroft, Edwin C. Constable, Oliver S. Wenger

Abstract:

We recently described the synthesis of a new tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-terpyridine (1) in which the tpy domain enables the molecule to act as a metalloligand. The synthetic route to 1 has been optimized, the importance of selecting a particular sequence of synthetic steps will be discussed. Three homoleptic complexes have been prepared, [Zn(1)₂]²⁺, [Fe(1)₂]²⁺ and [Ru(1)₂]²⁺, and have been isolated as the hexafluoridophosphate salts. Spectroelectrochemical measurements have been performed and the spectral changes ascribed to redox processes are partitioned on either the porphyrin or the terpyridine units. Compound 1 undergoes a reversible one-electron oxidation/reduction. The removal/gain of a second electron leads to a further irreversible chemical transformation. For the homoleptic [M(1)₂]²⁺ complexes, a suitable potential can be chosen at which both the oxidation and the reduction of the {ZnTPP} core are reversible. When the homoleptic complex contains a redox active metal such as Fe or Ru, spectroelectrochemistry has been used to investigate the metal to ligand charge transfer (MLCT) transition. The latter is sensitive to the oxidation state of the metal, and electrochemical oxidation of the metal center suppresses it. Detailed spectroelectrochemical studies will be presented.

Keywords: homoleptic complexes, spectroelectrochemistry, tetraphenylporphyrinatozinc(II), 2, 2':6', 6"-terpyridine

Procedia PDF Downloads 190
297 Electrochemical APEX for Genotyping MYH7 Gene: A Low Cost Strategy for Minisequencing of Disease Causing Mutations

Authors: Ahmed M. Debela, Mayreli Ortiz , Ciara K. O´Sullivan

Abstract:

The completion of the human genome Project (HGP) has paved the way for mapping the diversity in the overall genome sequence which helps to understand the genetic causes of inherited diseases and susceptibility to drugs or environmental toxins. Arrayed primer extension (APEX) is a microarray based minisequencing strategy for screening disease causing mutations. It is derived from Sanger DNA sequencing and uses fluorescently dideoxynucleotides (ddNTPs) for termination of a growing DNA strand from a primer with its 3´- end designed immediately upstream of a site where single nucleotide polymorphism (SNP) occurs. The use of DNA polymerase offers a very high accuracy and specificity to APEX which in turn happens to be a method of choice for multiplex SNP detection. Coupling the high specificity of this method with the high sensitivity, low cost and compatibility for miniaturization of electrochemical techniques would offer an excellent platform for detection of mutation as well as sequencing of DNA templates. We are developing an electrochemical APEX for the analysis of SNPs found in the MYH7 gene for group of cardiomyopathy patients. ddNTPs were labeled with four different redox active compounds with four distinct potentials. Thiolated oligonucleotide probes were immobilised on gold and glassy carbon substrates which are followed by hybridisation with complementary target DNA just adjacent to the base to be extended by polymerase. Electrochemical interrogation was performed after the incorporation of the redox labelled dedioxynucleotide. The work involved the synthesis and characterisation of the redox labelled ddNTPs, optimisation and characterisation of surface functionalisation strategies and the nucleotide incorporation assays.

Keywords: array based primer extension, labelled ddNTPs, electrochemical, mutations

Procedia PDF Downloads 221
296 A Fluid-Walled Microfluidic Device for Cell Migration Studies

Authors: Cyril Deroy, Agata Rumianek, David R. Greaves, Peter R. Cook, Edmond J. Walsh

Abstract:

Various microfluidic platforms have been developed in the past couple of decades offering experimental methods for the study of cell migration; however, their implementation in the laboratory has remained limited. Some reasons cited for the lack of uptake include the technical complexity of the devices, high failure rate associated with gas-bubbles, biocompatibility concerns with the use of polydimethylsiloxane (PDMS) and equipment/time/expertise requirements for operation and manufacture. As sample handling remains challenging due to the closed format of microfluidic devices, open microfluidic systems have been developed offering versatility and simplicity of use. Rather than confining fluids by solid walls, samples can be accessed directly over the open platform, by removing at least one of the solid boundaries, such as the cover. In this paper, a method for the fabrication of open fluid-walled microfluidic circuits for cell migration studies is introduced, where only materials commonly used by the life-science community are required; tissue culture dishes and cell media. The simplicity of the method, and ability to retrieve cells of interest are two key features of the method. Both passive and active flow-devices can be created in this way. To demonstrate the versatility of the method a cell migration assay is performed, which requires fabricating circuits for establishing chemical gradients, loading cells and incubating, creating chemical gradients, real time imaging of cell migration and finally retrieval of cells. The open architecture has high fidelity as it eliminates air bubble related failures and enables the precise control of gradients. The ability to fabricate custom microfluidic designs in minutes should make this method suitable for use in a wide range of cell migration studies.

Keywords: chemotaxis, fluid walls, gradient generation, open microfluidics

Procedia PDF Downloads 121
295 Fabrication of Functionalized Multi-Walled Carbon-Nanotubes Paper Electrode for Simultaneous Detection of Dopamine and Ascorbic Acid

Authors: Tze-Sian Pui, Aung Than, Song-Wei Loo, Yuan-Li Hoe

Abstract:

A paper-based electrode devised from an array of carboxylated multi-walled carbon nanotubes (MWNTs) and poly (diallyldimethylammonium chloride) (PDDA) has been successfully developed for the simultaneous detection of dopamine (DA) and ascorbic acid (AA) in 0.1 M phosphate buffer solution (PBS). The PDDA/MWNTs electrodes were fabricated by allowing PDDA to absorb onto the surface of carboxylated MWNTs, followed by drop-casting the resulting mixture onto a paper. Cyclic voltammetry performed using 5 mM [Fe(CN)₆]³⁻/⁴⁻ as the redox marker showed that the PDDA/MWNTs electrode has higher redox activity compared to non-functionalized carboxylated MWNT electrode. Differential pulse voltammetry was conducted with DA concentration ranging from 2 µM to 500 µM in the presence of 1 mM AA. The distinctive potential of 0.156 and -0.068 V (vs. Ag/AgCl) measured on the surface of the PDDA/MWNTs electrode revealed that both DA and AA were oxidized. The detection limit of DA was estimated to be 0.8 µM. This nanocomposite paper-based electrode has great potential for future applications in bioanalysis and biomedicine.

Keywords: dopamine, differential pulse voltammetry, paper sensor, carbon nanotube

Procedia PDF Downloads 110
294 Heterophase Polymerization of Pyrrole and Thienyl End Capped Ethoxylated Nonyl Phenol by Iron (III) Chloride

Authors: Görkem Ülkü, Nesrin Köken, Esin A. Güvel, Nilgün Kızılcan

Abstract:

Ethoxylated nonyl phenols (ENP) and ceric ammonium nitrate redox systems have been used for the polymerization of vinyl and acrylic monomers. In that case, ENP acted as an organic reducing agent in the presence of Ce (IV) salt and a radical was formed. The polymers obtained with that redox system contained ENP chain ends because the radicals are formed on the reducing molecules. Similar copolymer synthesis has been reported using poly(ethylene oxide) instead of its nonyl phenol terminated derivative, ENP. However, copolymers of poly(ethylene oxide) and conducting polymers synthesized by ferric ions were produced in two steps. Firstly, heteroatoms (pyrrole, thiophene etc.) were attached to the poly(ethylene oxide) chains then copolymerization with heterocyclic monomers was carried out. In this work, ethoxylated nonylphenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENP-ThC). Then, copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant.

Keywords: end capped polymer, ethoxylated nonylphenol, heterophase polymerization, polypyrrole

Procedia PDF Downloads 385
293 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors

Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber

Abstract:

The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.

Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode

Procedia PDF Downloads 443
292 Electroactive Ferrocenyl Dendrimers as Transducers for Fabrication of Label-Free Electrochemical Immunosensor

Authors: Sudeshna Chandra, Christian Gäbler, Christian Schliebe, Heinrich Lang

Abstract:

Highly branched dendrimers provide structural homogeneity, controlled composition, comparable size to biomolecules, internal porosity and multiple functional groups for conjugating reactions. Electro-active dendrimers containing multiple redox units have generated great interest in their use as electrode modifiers for development of biosensors. The electron transfer between the redox-active dendrimers and the biomolecules play a key role in developing a biosensor. Ferrocenes have multiple and electrochemically equivalent redox units that can act as electron “pool” in a system. The ferrocenyl-terminated polyamidoamine dendrimer is capable of transferring multiple numbers of electrons under the same applied potential. Therefore, they can be used for dual purposes: one in building a film over the electrode for immunosensors and the other for immobilizing biomolecules for sensing. Electrochemical immunosensor, thus developed, exhibit fast and sensitive analysis, inexpensive and involve no prior sample pre-treatment. Electrochemical amperometric immunosensors are even more promising because they can achieve a very low detection limit with high sensitivity. Detection of the cancer biomarkers at an early stage can provide crucial information for foundational research of life science, clinical diagnosis and prevention of disease. Elevated concentration of biomarkers in body fluid is an early indication of some type of cancerous disease and among all the biomarkers, IgG is the most common and extensively used clinical cancer biomarkers. We present an IgG (=immunoglobulin) electrochemical immunosensor using a newly synthesized redox-active ferrocenyl dendrimer of generation 2 (G2Fc) as glassy carbon electrode material for immobilizing the antibody. The electrochemical performance of the modified electrodes was assessed in both aqueous and non-aqueous media using varying scan rates to elucidate the reaction mechanism. The potential shift was found to be higher in an aqueous electrolyte due to presence of more H-bond which reduced the electrostatic attraction within the amido groups of the dendrimers. The cyclic voltammetric studies of the G2Fc-modified GCE in 0.1 M PBS solution of pH 7.2 showed a pair of well-defined redox peaks. The peak current decreased significantly with the immobilization of the anti-goat IgG. After the immunosensor is blocked with BSA, a further decrease in the peak current was observed due to the attachment of the protein BSA to the immunosensor. A significant decrease in the current signal of the BSA/anti-IgG/G2Fc/GCE was observed upon immobilizing IgG which may be due to the formation of immune-conjugates that blocks the tunneling of mass and electron transfer. The current signal was found to be directly related to the amount of IgG captured on the electrode surface. With increase in the concentration of IgG, there is a formation of an increasing amount of immune-conjugates that decreased the peak current. The incubation time and concentration of the antibody was optimized for better analytical performance of the immunosensor. The developed amperometric immunosensor is sensitive to IgG concentration as low as 2 ng/mL. Tailoring of redox-active dendrimers provides enhanced electroactivity to the system and enlarges the sensor surface for binding the antibodies. It may be assumed that both electron transfer and diffusion contribute to the signal transformation between the dendrimers and the antibody.

Keywords: ferrocenyl dendrimers, electrochemical immunosensors, immunoglobulin, amperometry

Procedia PDF Downloads 308
291 Synthesis of Rare-Earth Pyrazolate Compounds

Authors: Nazli Eslamirad, Peter C. Junk, Jun Wang, Glen B. Deacon

Abstract:

Since coordination behavior of pyrazoles and pyrazolate ions are widely versatile towards a great range of metals such as d-block, f-block as well as main group elements; they attract interest as ligands for preparing compounds. A variety of rare-earth pyrazolate complexes have been synthesized by redox transmetalation/protolysis (RTP) previously, therefore, a variety of rare-earth pyrazolate complexes using two pyrazoles, 3,5-dimethylpyrazole (Me₂pzH) and 3,5-di-tert -butylpyrazolate (t-Bu₂pzH), in which the structures span the whole La-Lu array beside Sc and Y has been synthesized by RTP reaction. There have been further developments in this study: Synthesizing structure of [Tb(Me₂pz)₃(thf)]₂ which is isomorphous with those of the previously reported [Dy(Me₂pz)₃(thf)]₂ and [Lu(Me₂pz)₃(thf)]₂ analogous that has two µ-1(N):2(Nʹ)-Me2pz ligands (the most common pyrazolate ligation for non-rare-earth complexes). Previously most of the reported compounds using t-Bu2pzH were monomeric compounds however the lanthanum derivative [La(Me₂pz)₃thf₂] ,which has been reported previously without crystal structure, has now been structurally characterized, along with cerium and lutetium analogue. Also a polymeric structure with samarium has now been synthesized which the neodymium analogue has been reported previously and comparing these polymeric structures can support the idea that the geometry of Sm(tBu₂pz)₃ affect the coordination of the solvent. Also, by using 1,2-dimethoxyethane (DME) instead of tetrahydrofuran (THF) new [Er(tBu₂pz)₃ (dme)₂] has now been reported.

Keywords: lanthanoid complexes, pyrazolate, redox transmetalation/protolysis, x-ray crystal structures

Procedia PDF Downloads 190
290 Polymerspolyaniline/CMK-3/Hydroquinone Composite Electrode for Supercapacitor Application

Authors: Hu-Cheng Weng, Jhen-Ting Huang, Chia-Chia Chang, An-Ya Lo

Abstract:

In this study, carbon mesoporous material, CMK-3, was adopted as supporting material for electroactive polymerspolyaniline (PANI), polyaniline, for supercapacitor application, where hydroquinone (HQ) was integrated to enhance the redox reaction of PANI. The results show that the addition of PANI improves the capacitance of electrode from 89 F/g (CMK-3) to 337 F/g (PANI/CMK-3), the addition of HQ furtherly improves the capacitance to 463 F/g (PANI/CMK-3/HQ). The PANI provides higher energy density and also acts as binder of the electrode; the CMK-3 provides higher electron double layer capacitance EDLC and stabilize the polyaniline by its highly porosity. With the addition of HQ, the capacitance of PANI/CMK-3 was further enhanced. In-situ analyses including cyclic voltammetry (CV), chronopotentiometry (CP), electron impedance spectrum (EIS) analyses were applied for electrode performance examination. For materials characterization, the crystal structure, morphology, microstructure, and porosity were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), and 77K N2 adsorption/desorption analyses, respectively. The effects of electrolyte pH value, PANI polymerization time, HQ concentration, and PANI/CMK-3 ratio on capacitance were discussed. The durability was also studied by long-term operation test. The results show that PANI/CMK-3/HQ with great potential for supercapacitor application. Finally, the potential of all-solid PANI/CMK-3/HQ based supercapacitor was successfully demonstrated.

Keywords: CMK3, PANI, redox electrolyte, solid supercapacitor

Procedia PDF Downloads 110
289 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair

Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro

Abstract:

The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.

Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear

Procedia PDF Downloads 479
288 Effect of Auraptene on the Enzymatic Glutathione Redox-System in Nrf2 Knockout Mice

Authors: Ludmila A. Gavriliuc, Jerry McLarty, Heather E. Kleiner, J. Michael Mathis

Abstract:

Abstract -- Background: The citrus coumarine Auraptene (Aur) is an effective chemopreventive agent, as manifested in many models of diseases and cancer. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1, and peroxiredoxin 1, by activating the antioxidant response element (ARE). Genetic and biochemical evidence has demonstrated that glutathione (GSH) and glutathione-dependent enzymes, glutathione reductase (GR), glutathione peroxidases (GPs), glutathione S-transferases (GSTs) are responsible for the control of intracellular reduction-oxidation status and participate in cellular adaptation to oxidative stress. The effect of Aur on the activity of GR, GPs (Se-GP and Se-iGP), and content of GSH in the liver, kidney, and spleen is insufficiently explored. Aim: Our goal was the examination of the Aur influence on the redox-system of GSH in Nrf2 wild type and Nrf2 knockout mice via activation of Nrf2 and ARE. Methods: Twenty female mice, 10 Nrf2 wild-type (WT) and 10 Nrf2 (-/-) knockout (KO), were bred and genotyped for our study. The activity of GR, Se-GP, Se-iGP, GST, G6PD, CytP450 reductase, catalase (Cat), and content of GSH were analyzed in the liver, kidney, and spleen using Spectrophotometry methods. The results of the specific activity of enzymes and the amount of GSH were analyzed with ANOVA and Spearman statistical methods. Results: Aur (200 mg/kg) treatment induced hepatic GST, GR, Se-GP activity and inhibited their activity in the spleen of mice, most likely via activation of the ARE through Nrf2. Activation in kidney Se-GP and G6PD by Aur is also controlled, apparently through Nrf2. Results of the non-parametric Spearman correlation analysis indicated the strong positive correlation between GR and G6PD only in the liver in WT control mice (r=+0.972; p < 0.005) and in the kidney KO control mice (r=+0.958; p < 0.005). The observed low content of GSH in the liver of KO mice indicated an increase in its participation in the neutralization of toxic substances with the absence of induction of GSH-dependent enzymes, such as GST, GR, Se-GP, and Se-iGP. Activation of CytP450 in kidney and spleen and Cat in the liver in KO mice probably revealed another regulatory mechanism for these enzymes. Conclusion: Thereby, obtained results testify that Aur can modulate the activity of genes and antioxidant enzymatic redox-system of GSH, responsible for the control of intracellular reduction-oxidation status.

Keywords: auraptene, glutathione, GST, Nrf2

Procedia PDF Downloads 116
287 The Response of Mammal Populations to Abrupt Changes in Fire Regimes in Montane Landscapes of South-Eastern Australia

Authors: Jeremy Johnson, Craig Nitschke, Luke Kelly

Abstract:

Fire regimes, climate and topographic gradients interact to influence ecosystem structure and function across fire-prone, montane landscapes worldwide. Biota have developed a range of adaptations to historic fire regime thresholds, which allow them to persist in these environments. In south-eastern Australia, a signal of fire regime changes is emerging across these landscapes, and anthropogenic climate change is likely to be one of the main drivers of an increase in burnt area and more frequent wildfire over the last 25 years. This shift has the potential to modify vegetation structure and composition at broad scales, which may lead to landscape patterns to which biota are not adapted, increasing the likelihood of local extirpation of some mammal species. This study aimed to address concerns related to the influence of abrupt changes in fire regimes on mammal populations in montane landscapes. It first examined the impact of climate, topography, and vegetation on fire patterns and then explored the consequences of these changes on mammal populations and their habitats. Field studies were undertaken across diverse vegetation, fire severity and fire frequency gradients, utilising camera trapping and passive acoustic monitoring methodologies and the collection of fine-scale vegetation data. Results show that drought is a primary contributor to fire regime shifts at the landscape scale, while topographic factors have a variable influence on wildfire occurrence at finer scales. Frequent, high severity wildfire influenced forest structure and composition at broad spatial scales, and at fine scales, it reduced occurrence of hollow-bearing trees and promoted coarse woody debris. Mammals responded differently to shifts in forest structure and composition depending on their habitat requirements. This study highlights the complex interplay between fire regimes, environmental gradients, and biotic adaptations across temporal and spatial scales. It emphasizes the importance of understanding complex interactions to effectively manage fire-prone ecosystems in the face of climate change.

Keywords: fire, ecology, biodiversity, landscape ecology

Procedia PDF Downloads 43
286 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection

Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément

Abstract:

The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.

Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars

Procedia PDF Downloads 73
285 Electrochemical Properties of Bimetallic Silver-Platinum Core-Shell Nanoparticles

Authors: Fredrick O. Okumu, Mangaka C. Matoetoe

Abstract:

Silver-platinum (Ag-Pt) bimetallic nanoparticles (NPs) with varying mole fractions (1:1, 1:3 and 3:1) were prepared by co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. Upon successful formation of both monometallic and bimetallic (BM) core shell nanoparticles, cyclic voltammetry (CV) was used to characterize the NPs. The drop coated nanofilms on the GC substrate showed characteristic peaks of monometallic Ag NPs; Ag+/Ag0 redox couple as well as the Pt NPs; hydrogen adsorption and desorption peaks. These characteristic peaks were confirmed in the bimetallic NPs voltammograms. The following varying current trends were observed in the BM NPs ratios; GCE/Ag-Pt 1:3 > GCE/Ag-Pt 3:1 > GCE/Ag-Pt 1:1. Fundamental electrochemical properties which directly or indirectly affects the applicability of films such as; diffusion coefficient (D), electroactive surface coverage, electrochemical band gap, electron transfer coefficient (α) and charge (Q) were assessed using Randles - Sevcik plot and Laviron’s equations . High charge and surface coverage was observed in GCE/Ag-Pt 1:3 which supports its enhanced current. GCE/Ag-Pt 3:1 showed high diffusion coefficient while GCE/Ag-Pt 1:1 possessed high electron transfer coefficient that is facilitated by its high apparent heterogeneous rate constant relative to other BM NPs ratios. Surface redox reaction was determined as adsorption controlled in all modified GCEs. Surface coverage is inversely proportional to size; therefore the surface coverage data suggests that Ag-Pt 1:1 NPs have a small particle size. Generally, GCE/Ag-Pt 1:3 depicts the best electrochemical properties.

Keywords: characterization, core-shell, electrochemical, nanoparticles

Procedia PDF Downloads 243
284 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 174
283 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method

Authors: Arwa Alzughaibi

Abstract:

Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.

Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization

Procedia PDF Downloads 233
282 Macrocycles Enable Tuning of Uranyl Electrochemistry by Lewis Acids

Authors: Amit Kumar, Davide Lionetti, Victor Day, James Blakemore

Abstract:

Capture and activation of the water-soluble uranyl dication (UO22+) remains a challenging problem, as few rational approaches are available for modulating the reactivity of this species. Here, we report the divergent synthesis of heterobimetallic complexes in which UO22+ is held in close proximity to a range of redox-inactive metals by tailored macrocyclic ligands. Crystallographic and spectroscopic studies confirm assembly of homologous UVI(μ-OAr)2Mn+ cores with a range of mono-, di-, and trivalent Lewis acids (Mn+). X-ray diffraction (XRD) and cyclic voltammetry (CV) data suggest preferential binding of K+ in an 18-crown-6-like cavity and Na+ in a 15-crown-5-like cavity, both appended to Schiff-base type sites that selectively bind UO22+. CV data demonstrate that the UVI/UV reduction potential in these complexes shifts positive and the rate of electron transfer decreases with increasing Lewis acidity of the incorporated redox-inactive metals. Moreover, spectroelectrochemical studies confirm the formation of [UV] species in the case of monometallic UO22+ complex, consistent with results from prior studies. However, unique features were observed during spectroelectrochemical studies in the presence of the K+ ion, suggesting new insights into electronic structure may be accessible with the heterobimetallic complexes. Overall, these findings suggest that interactions with Lewis acids could be effectively leveraged for rational tuning of the electronic and thermochemical properties of the 5f elements, reminiscent of strategies more commonly employed with 3d transition metals.

Keywords: electrochemistry, Lewis acid, macrocycle, uranyl

Procedia PDF Downloads 113
281 Nanoceutical Intervention (Nanodrug) of Neonatal Hyperbilirubinemias Compared to Conventional Phototherapy

Authors: Samir Kumar Pal

Abstract:

Background: Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. Uncontrolled hyperbilirubinemia is a potential problem in developing countries, including India, because of the lack of reliable healthcare institutes for conventional phototherapy. In India, most of the rural subjects duel in the exchange limit during transport, leading to a risk of kernicterus when they arrive at the treatment centre. Thus, an alternative pharmaceutical agent is needed for the hours. Objective: Exploration of a distinct therapeutic strategy for the control of neonatal hyperbilirubinemia compared to conventional phototherapy in a clinical setting. Method: We synthesized, characterized and investigated a spinel-structured Manganese citrate nanocomplex (C-Mn₃O₄ NC, the nanodrug) along with conventional phototherapy in neonatal subjects. We have also observed BIND scores in order to assess neurological dysfunctions. Results: Our observational study clearly reveals that the rate of declination of bilirubin in neonatal subjects with nanodrug oral administration and phototherapy is faster compared to that in the case of phototherapy only. The associated neural dysfunctions were also found to be significantly lower in the case of combined therapy. Conclusion: This study demonstrates that combined therapy works better than conventional phototherapy only for the control of hyperbilirubinemia. We have observed that a significant portion of neonatal subjects requiring blood exchange has been prevented with the combined therapeutic strategy. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemo preventive approach to clinical settings.

Keywords: nanodrug, nanoparticle, Neonatal hyperbilirubinemia, alternative to phototherapy, redox modulation, redox medicine

Procedia PDF Downloads 28
280 Simultaneous Detection of Dopamine and Uric Acid in the Presence of Ascorbic Acid at Physiological Level Using Anodized Multiwalled Carbon Nanotube–Poldimethylsiloxane Paste Electrode

Authors: Angelo Gabriel Buenaventura, Allan Christopher Yago

Abstract:

A carbon paste electrode (CPE) composed of Multiwalled Carbon Nanotube (MWCNT) conducting particle and Polydimethylsiloxane (PDMS) binder was used for simultaneous detection of Dopamine (DA) and Uric Acid (UA) in the presence of Ascorbic Acid (AA) at physiological level. The MWCNT-PDMS CPE was initially activated via potentiodynamic cycling in a basic (NaOH) solution, which resulted in enhanced electrochemical properties. Electrochemical Impedance Spectroscopy measurements revealed a significantly lower charge transfer resistance (Rct) for the OH--activated MWCNT-PDMS CPE (Rct = 5.08kΩ) as compared to buffer (pH 7)-activated MWCNT-PDMS CPE (Rct = 25.9kΩ). Reversibility analysis of Fe(CN)63-/4- redox couple of both Buffer-Activated CPE and OH--Activated CPE showed that the OH—Activated CPE have peak current ratio (Ia/Ic) of 1.11 at 100mV/s while 2.12 for the Buffer-Activated CPE; this showed an electrochemically reversible behavior for Fe(CN)63-/4- redox couple even at relatively fast scan rate using the OH--activated CPE. Enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained using the OH--activated MWCNT-PDMS CPE in the presence of 50 μM AA via Differential Pulse Voltammetry technique. The anodic peak currents which appeared at 0.263V and 0.414 V were linearly increasing with increasing concentrations of DA and UA, respectively. The linear ranges were obtained at 25 μM – 100 μM for both DA and UA. The detection limit was determined to be 3.86 μM for DA and 5.61 μM for UA. These results indicate a practical approach in the simultaneous detection of important bio-organic molecules using a simple CPE composed of MWCNT and PDMS with base anodization as activation technique.

Keywords: anodization, ascorbic acid, carbon paste electrodes, dopamine, uric acid

Procedia PDF Downloads 254
279 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments

Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob

Abstract:

Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.

Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology

Procedia PDF Downloads 134
278 LaMn₁₋ₓNiₓO₃ Perovskites as Oxygen Carriers for Chemical Looping Partial Oxidation of Methane

Authors: Xianglei Yin, Shen Wang, Baoyi Wang, Laihong Shen

Abstract:

Chemical looping partial oxidation of methane (CLPOM) is a novel technology to produce high-quality syngas with an auto-thermic process and low equipment investment. The development of oxygen carriers is important for the improvement of the CLPOM performance. In this work, the effect of the nickel-substitution proportion on the performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was studied in the aspect of reactivity, syngas selectivity, resistance towards carbon deposition and thermal stability in cyclic redox process. The LaMn₁₋ₓNiₓO₃ perovskite oxides with x = 0, 0.1, 0.2 were prepared by the sol-gel method. The performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was investigated through the characterization of XRD, H₂-TPR, XPS, and fixed-bed experiments. The characterization and test results suggest that the doping of nickel enhances the generation rate of syngas, leading to high syngas yield, methane conversion, and syngas selectivity. This is attributed to the that the introduction of nickel provides active sites to promote the methane activation on the surface and causes the addition of oxygen vacancies to accelerate the migration of oxygen anion in the bulk of oxygen carrier particles. On the other hand, the introduction of nickel causes carbon deposition to occur earlier. The best substitution proportion of nickel is y=0.1 and LaMn₀.₉Ni₀.₁O₃₊δ could produce high-quality syngas with a yield of 3.54 mmol·g⁻¹, methane conversion of 80.7%, and CO selectivity of 84.8% at 850℃. In addition, the LaMn₀.₉Ni₀.₁O₃₊δ oxygen carrier exhibits superior and stable performance in the cyclic redox process.

Keywords: chemical looping partial oxidation of methane, LaMnO₃₊δ, Ni doping, syngas, carbon deposition

Procedia PDF Downloads 73
277 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 139
276 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 73
275 Water-Controlled Fracturing with Fuzzy-Ball Fluid in Tight Gas Reservoirs of Deep Coal Measures in Sulige

Authors: Xiangchun Wang, Lihui Zheng, Maozong Gan, Peng Zhang, Tong Wu, An Chang

Abstract:

The deep coal measure tight gas reservoir in Sulige is usually reformed by fracturing, because the reservoir thickness is small, the water layers can be easily communicated during fracturing, which will lead to water production of gas wells and lower production of gas wells. Therefore, it is necessary to control water during fracturing in deep coal measure tight gas reservoir. Using fuzzy-ball fluid to control water fracturing can not only increase the output but also reduce the water output. The fuzzy-ball fluid was prepared indoors to carry out evaluation experiments. The fuzzy ball fluid was mixed in equal volume with the pre-fluid and formation water to test its compatibility. The core displacement device was used to test the gas and water breaking through the matrix and fractured cores blocked by fuzzy-ball fluid. The breakthrough pressure of the plunger tests its water blocking performance. The experimental results show that there is no precipitation after the fuzzy-ball fluid is mixed with the pad fluid and the formation water, respectively. The breakthrough pressure gradients of gas and water after the fuzzy-ball fluid plugged the cracks were 0.02MPa/cm and 0.04MPa/cm, respectively, and the breakthrough pressure gradients of gas and water after the matrix was plugged were 0.03MPa/cm and 0.2MPa/cm, respectively, which meet the requirements of field operation. Two wells A and B in the Sulige Gas Field were used on site to implement water control fracturing. After the pre-fluid was injected into the two wells, 50m3 of fuzzy-ball fluid was pumped to plug the water. The construction went smoothly. After water control and fracturing, the average daily output in 161 days was increased by 13.71% and 6.99% compared with that of adjacent wells in the same layer. The adjacent wells were bubbled for 3 times and 63 times respectively, while there was no effusion in A and B construction wells. The results show that fuzzy-ball fluid is a water plugging material suitable for water control fracturing in tight gas wells, and its water control mechanism can also provide a new idea for the development of water control fracturing materials.

Keywords: coal seam, deep layer, fracking, fuzzy-ball fluid, reservoir reconstruction

Procedia PDF Downloads 191