Search results for: power quality recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16850

Search results for: power quality recognition

16820 Synchronous Reference Frame and Instantaneous P-Q Theory Based Control of Unified Power Quality Conditioner for Power Quality Improvement of Distribution System

Authors: Ambachew Simreteab Gebremedhn

Abstract:

Context: The paper explores the use of synchronous reference frame theory (SRFT) and instantaneous reactive power theory (IRPT) based control of Unified Power Quality Conditioner (UPQC) for improving power quality in distribution systems. Research Aim: To investigate the performance of different control configurations of UPQC using SRFT and IRPT for mitigating power quality issues in distribution systems. Methodology: The study compares three control techniques (SRFT-IRPT, SRFT-SRFT, IRPT-IRPT) implemented in series and shunt active filters of UPQC. Data is collected under various control algorithms to analyze UPQC performance. Findings: Results indicate the effectiveness of SRFT and IRPT based control techniques in addressing power quality problems such as voltage sags, swells, unbalance, harmonics, and current harmonics in distribution systems. Theoretical Importance: The study provides insights into the application of SRFT and IRPT in improving power quality, specifically in mitigating unbalanced voltage sags, where conventional methods fall short. Data Collection: Data is collected under various control algorithms using simulation in MATLAB Simulink and real-time operation executed with experimental results obtained using RT-LAB. Analysis Procedures: Performance analysis of UPQC under different control algorithms is conducted to evaluate the effectiveness of SRFT and IRPT based control techniques in mitigating power quality issues. Questions Addressed: How do SRFT and IRPT based control techniques compare in improving power quality in distribution systems? What is the impact of using different control configurations on the performance of UPQC? Conclusion: The study demonstrates the efficacy of SRFT and IRPT based control of UPQC in mitigating power quality issues in distribution systems, highlighting their potential for enhancing voltage and current quality.

Keywords: power quality, UPQC, shunt active filter, series active filter, non-linear load, RT-LAB, MATLAB

Procedia PDF Downloads 10
16819 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.

Keywords: power quality, direct power control, power ripple, switching table, unity power factor

Procedia PDF Downloads 322
16818 DBN-Based Face Recognition System Using Light Field

Authors: Bing Gu

Abstract:

Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.

Keywords: DBN, face recognition, light field, Lytro

Procedia PDF Downloads 464
16817 Single Tuned Shunt Passive Filter Based Current Harmonic Elimination of Three Phase AC-DC Converters

Authors: Mansoor Soomro

Abstract:

The evolution of power electronic equipment has been pivotal in making industrial processes productive, efficient and safe. Despite its attractive features, it has been due to nonlinear loads which make it vulnerable to power quality conditions. Harmonics is one of the power quality problem in which the harmonic frequency is integral multiple of supply frequency. Therefore, the supply voltage and supply frequency do not last within their tolerable limits. As a result, distorted current and voltage waveform may appear. Attributes of low power quality confirm that an electrical device or equipment is likely to malfunction, fail promptly or unable to operate under all applied conditions. The electrical power system is designed for delivering power reliably, namely maximizing power availability to customers. However, power quality events are largely untracked, and as a result, can take out a process as many as 20 to 30 times a year, costing utilities, customers and suppliers of load equipment, a loss of millions of dollars. The ill effects of current harmonics reduce system efficiency, cause overheating of connected equipment, result increase in electrical power and air conditioning costs. With the passage of time and the rapid growth of power electronic converters has highlighted the damages of current harmonics in the electrical power system. Therefore, it has become essential to address the bad influence of current harmonics while planning any suitable changes in the electrical installations. In this paper, an effort has been made to mitigate the effects of dominant 3rd order current harmonics. Passive filtering technique with six pulse multiplication converter has been employed to mitigate them. Since, the standards of power quality are to maintain the supply voltage and supply current within certain prescribed standard limits. For this purpose, the obtained results are validated as per specifications of IEEE 519-1992 and IEEE 519-2014 performance standards.

Keywords: current harmonics, power quality, passive filters, power electronic converters

Procedia PDF Downloads 301
16816 Financial Reporting Quality and International Financial Reporting

Authors: Matthias Nnadi

Abstract:

Using samples of 250 large listed firms by market capitalization in China and Hong Kong, we conducted empirical test to determine the impact of regulatory environment on reporting quality following IFRS convergence using three financial reporting measures; earning management, timely loss recognition and value relevance. Our results indicate that accounting data are more value relevant for Hong Kong listed firms than the Chinese A-share firms. The empirical results for timely loss recognition further reveal that there is a larger coefficient estimate on bad news earnings, which suggests that Chines A-share firms are more likely to report losses in a timely manner. The results support the evidence that substantial convergence of IFRS can improve financial reporting quality in a regulated environment such as China. This further supports the expectation that IFRS are relevant to China and has positive effect on its accounting practice and quality.

Keywords: reporting, quality, earning, loss, relevance, financial, China, Hong Kong

Procedia PDF Downloads 465
16815 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
16814 Effects of the Quality Construction of Public Construction in Taiwan to Implementation Three Levels Quality Management Institution

Authors: Hsin-Hung Lai, Wei Lo

Abstract:

Whether it is in virtue or vice for a construction quality of public construction project, it is one of the important indicators for national economic development and overall construction, the impact on the quality of national life is very deep. In recent years, a number of scandal of public construction project occurred, the requirements of the government agencies and the public require the quality of construction of public construction project are getting stricter than ever, the three-level public construction project construction quality of quality control system implemented by the government has a profound impact. This study mainly aggregated the evolution of ISO 9000 quality control system, the difference between the practice of implementing management of construction quality by many countries and three-level quality control of our country, so we explored and found that almost all projects of enhancing construction quality are dominated by civil organizations in foreign countries, whereas, it is induced by the national power in our country and develop our three-level quality control system and audit mechanism based on IOS system and implement the works by legislation, we also explored its enhancement and relevance with construction quality of public construction project that are intervened by such system and national power, and it really presents the effectiveness of construction quality been enhanced by the audited result. The three-level quality control system of our country to promote the policy of public construction project is almost same with the quality control system of many developed countries; however our country mainly implements such system on public construction project only, we promote the three-level quality control system is for enhancing the quality of public construction project, for establishing effective quality management system, so as to urge, correct and prevent the defects of quality management by manufacturers, whereas, those developed countries is comprehensively promoting (both public construction project and civil construction) such system. Therefore, this study is to explore the scope for public construction project only; the most important is the quality recognition by the executor, either good quality or deterioration is not a single event, there is a certain procedure extends from the demand and feasibility analysis, design, tendering, contracting, construction performance, inspection, continuous improvement, completion and acceptance, transferring and meeting the needs of the users, all of mentioned above have a causal relationship and it is a systemic problems. So the best construction quality would be manufactured and managed by reasonable cost if it is by extensive thinking and be preventive. We aggregated the implemented results in the past 10 years (2005 to 2015), the audited results of both in central units and local ones were slightly increased in A-grade while those listed in B-grade were decreased, although the levels were not evidently upgraded, yet, such result presents that the construction quality of concept of manufacturers are improving, and the construction quality has been established in the design stage, thus it is relatively beneficial to the enhancement of construction quality of overall public construction project.

Keywords: ISO 9000, three-level quality control system, audit and review mechanism for construction implementation, quality of construction implementation

Procedia PDF Downloads 346
16813 Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network

Authors: M. Habab, C. Benachaiba, B. Mazari, H. Madi, C. Benoudjafer

Abstract:

The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).

Keywords: shunt active filter, series active filter, UPQC, power quality, sags voltage, distributed generation, wind turbine

Procedia PDF Downloads 407
16812 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 316
16811 Optimization of Line Loss Minimization Using Distributed Generation

Authors: S. Sambath, P. Palanivel

Abstract:

Research conducted in the last few decades has proven that an inclusion of Distributed Genaration (DG) into distribution systems considerably lowers the level of power losses and the power quality improved. Moreover, the choice of DG is even more attractive since it provides not only benefits in power loss minimisation, but also a wide range of other advantages including environment, economic, power qualities and technical issues. This paper is an intent to quantify and analyse the impact of distributed generation (DG) in Tamil Nadu, India to examine what the benefits of decentralized generation would be for meeting rural loads. We used load flow analysis to simulate and quantify the loss reduction and power quality enhancement by having decentralized generation available line conditions for actual rural feeders in Tamil Nadu, India. Reactive and voltage profile was considered. This helps utilities to better plan their system in rural areas to meet dispersed loads, while optimizing the renewable and decentralised generation sources.

Keywords: distributed generation, distribution system, load flow analysis, optimal location, power quality

Procedia PDF Downloads 400
16810 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review

Authors: Agastya Pratap Singh

Abstract:

Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.

Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation

Procedia PDF Downloads 20
16809 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control

Authors: Van Nhan Nguyen, Harald Holone

Abstract:

Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.

Keywords: automatic speech recognition, asr, air traffic control, atc

Procedia PDF Downloads 399
16808 A Contribution to Human Activities Recognition Using Expert System Techniques

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

This paper deals with human activity recognition from sensor data. It is an active research area, and the main objective is to obtain a high recognition rate. In this work, a recognition system based on expert systems is proposed; the recognition is performed using the objects, object states, and gestures and taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions and the activity). The system recognizes complex activities after decomposing them into simple, easy-to-recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 118
16807 Switching to the Latin Alphabet in Kazakhstan: A Brief Overview of Character Recognition Methods

Authors: Ainagul Yermekova, Liudmila Goncharenko, Ali Baghirzade, Sergey Sybachin

Abstract:

In this article, we address the problem of Kazakhstan's transition to the Latin alphabet. The transition process started in 2017 and is scheduled to be completed in 2025. In connection with these events, the problem of recognizing the characters of the new alphabet is raised. Well-known character recognition programs such as ABBYY FineReader, FormReader, MyScript Stylus did not recognize specific Kazakh letters that were used in Cyrillic. The author tries to give an assessment of the well-known method of character recognition that could be in demand as part of the country's transition to the Latin alphabet. Three methods of character recognition: template, structured, and feature-based, are considered through the algorithms of operation. At the end of the article, a general conclusion is made about the possibility of applying a certain method to a particular recognition process: for example, in the process of population census, recognition of typographic text in Latin, or recognition of photos of car numbers, store signs, etc.

Keywords: text detection, template method, recognition algorithm, structured method, feature method

Procedia PDF Downloads 187
16806 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation

Procedia PDF Downloads 541
16805 A Three Phase Shunt Active Power Filter for Currents Harmonics Elimination and Reactive Power Compensation

Authors: Amar Omeiri

Abstract:

This paper presents a three-phase shunt active power filter for current harmonics suppression and reactive power compensation using the supply current as reference. The proposed APF has a simple control circuit; it consists of detecting the supply current instead of the load current. The advantages of this APF are simplicity of control circuits and low implementation cost. The simulation results show that the proposed APF can compensate the reactive power and suppress current harmonics with two types of non-linear loads.

Keywords: active power filter, current harmonics and reactive power compensation, PWM inverter, Total Harmonic Distortion, power quality

Procedia PDF Downloads 588
16804 Human Activities Recognition Based on Expert System

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

Recognition of human activities from sensor data is an active research area, and the main objective is to obtain a high recognition rate. In this work, we propose a recognition system based on expert systems. The proposed system makes the recognition based on the objects, object states, and gestures, taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions, and the activity). This work focuses on complex activities which are decomposed into simple easy to recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 140
16803 Semantic Data Schema Recognition

Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia

Abstract:

The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.

Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns

Procedia PDF Downloads 418
16802 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 224
16801 Regulation, Supervision and Accounting Conservatism: Interaction of the Three Pillars of Basel II to Achieve Quality of Reporting Earnings in Worldwide Banks

Authors: I. Diaz Sanchez, I. M. Martinez-Conesa, M. Illueca

Abstract:

Accounting conservatism is a desirable quality of earnings that is positively associated with the stridency of regulatory and supervisory regimen and high market discipline. But how these three pillars interact each other is the main research question that is not empirically solved. We analyze how regulatory and supervisory regimes interact with the market discipline measures, such as listing status, ownership and market concentration using a sample of 14,651 bank-year observations covering 54 countries over the period 1997-2009. We evidence that regulation a supervision and extend on which they are enforcement is a strong mechanism to achieved accounting conservatism in those countries or situations where the market discipline fails. Generally, the supervisory power reinforces the effect of listing status, ownership and concentration on conservatism, while capital regulatory mitigates the effect of market discipline on conservatism. This paper may contribute to debate about the mechanism introduced by Basel III that strongly increases the regulation, his enforcement, and the supervisory power after long deregulation period. Although Market discipline is relevant to achieve the financial stability, strong Pillar I and II can ensure the quality of the accounting earnings to prevent bank failures.

Keywords: accounting conservatism, bank regulation, bank supervision, loan loss recognition, market discipline

Procedia PDF Downloads 172
16800 Evaluating the Effects of Microwaves and Polymers on the Quality of Some Iranian Export Products

Authors: Reza Sadeghi

Abstract:

Storage pests with quantitative, qualitative, and hygienic losses to storage products lead to heavy damage to these products. One of the best methods of controlling storage pests is microwave heating, which is an environmentally friendly method and can be used to replace chemical methods to control storage pests. Pistachios and almonds are the most important dried fruit items in Iran, which account for a significant part of Iran's exports every year. In this study, which along with Pistachio and almond samples were exposed to microwave radiation at 320, 720, 900 watts with times of 10, 20, 30 seconds. Qualitative evaluation of product changes due to the above treatments was performed in the form of changes in colorimetric factors and organoleptic properties of the product. The results showed that in microwave treatment, power, and time factors had a significant effect on the taste and overall acceptance of pistachio product, polymer and power interaction, polymer and time, time and power had no significant effect on pistachio product quality. In almond products, the factors of polymer, time, power, interaction of polymer and power, polymer and time, and power had no significant effect on almond quality.

Keywords: microwave, qualitative, pistachio, almond

Procedia PDF Downloads 6
16799 Enhanced Face Recognition with Daisy Descriptors Using 1BT Based Registration

Authors: Sevil Igit, Merve Meric, Sarp Erturk

Abstract:

In this paper, it is proposed to improve Daisy descriptor based face recognition using a novel One-Bit Transform (1BT) based pre-registration approach. The 1BT based pre-registration procedure is fast and has low computational complexity. It is shown that the face recognition accuracy is improved with the proposed approach. The proposed approach can facilitate highly accurate face recognition using DAISY descriptor with simple matching and thereby facilitate a low-complexity approach.

Keywords: face recognition, Daisy descriptor, One-Bit Transform, image registration

Procedia PDF Downloads 367
16798 The Influence of Disturbances Generated by Arc Furnaces on the Power Quality

Authors: Z. Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips.

Keywords: power quality, arc furnaces, propagation of voltage fluctuations, disturbances

Procedia PDF Downloads 138
16797 Self-Tuning-Filter and Fuzzy Logic Control for Shunt Active Power Filter

Authors: Kaddari Faiza, Mazari Benyounes, Mihoub Youcef, Safa Ahmed

Abstract:

Active filtering of electric power has now become a mature technology for reactive power and harmonic compensation caused by the proliferation of power electronics devices used for industrial, commercial and residential purposes. The aim of this study is to enhance the power quality by improving the performances of shunt active power filter in harmonic mitigation to obtain sinusoidal source currents with very weak ripples. A power circuit configuration and control scheme for shunt active power filter are described with an improved method for harmonics compensation using self-tuning-filter for harmonics identification and fuzzy logic control to generate reference current. Simulation results (using MATLAB/SIMULINK) illustrates the compensation characteristics of the proposed control strategy. Analysis of these results proves the feasibility and effectiveness of this method to improve the power quality and also show the performances of fuzzy logic control which provides flexibility, high precision and fast response. The total harmonic distortion (THD %) for the simulations found to be within the recommended imposed IEEE 519-1992 harmonic standard.

Keywords: Active Powers Filter (APF), Self-Tuning-Filter (STF), fuzzy logic control, hysteresis-band control

Procedia PDF Downloads 739
16796 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.

Procedia PDF Downloads 154
16795 Harmonics and Flicker Levels at Substation

Authors: Ali Borhani Manesh, Sirus Mohammadi

Abstract:

Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear device is one in which the current is not proportional to the applied voltage. Harmonic distortion is present to some degree on all power systems. Proactive monitoring of power quality disturbance levels by electricity utilities is vital to allow cost-effective mitigation when disturbances are perceived to be approaching planning levels and also to protect the security of customer installations. Ensuring that disturbance levels are within limits at the HV and EHV points of supply of the network is essential if satisfactory levels downstream are to be maintained. This paper presents discussion on a power quality monitoring campaign performed at the sub-transmission point of supply of a distribution network with the objective of benchmarking background disturbance levels prior to modifications to the substation and to ensure emissions from HV customers and the downstream MV networks are within acceptable levels. Some discussion on the difficulties involved in such a study is presented. This paper presents a survey of voltage and current harmonic distortion levels at transmission system in Kohgiloye and Boyrahmad. The effects of harmonics on capacitors and power transformers are discussed.

Keywords: power quality, harmonics, flicker, measurement, substation

Procedia PDF Downloads 696
16794 Review of Speech Recognition Research on Low-Resource Languages

Authors: XuKe Cao

Abstract:

This paper reviews the current state of research on low-resource languages in the field of speech recognition, focusing on the challenges faced by low-resource language speech recognition, including the scarcity of data resources, the lack of linguistic resources, and the diversity of dialects and accents. The article reviews recent progress in low-resource language speech recognition, including techniques such as data augmentation, end to-end models, transfer learning, and multi-task learning. Based on the challenges currently faced, the paper also provides an outlook on future research directions. Through these studies, it is expected that the performance of speech recognition for low resource languages can be improved, promoting the widespread application and adoption of related technologies.

Keywords: low-resource languages, speech recognition, data augmentation techniques, NLP

Procedia PDF Downloads 13
16793 Modern Machine Learning Conniptions for Automatic Speech Recognition

Authors: S. Jagadeesh Kumar

Abstract:

This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition.

Keywords: automatic speech recognition, deep learning methods, machine learning archetypes, Bayesian learning, supervised and unsupervised learning

Procedia PDF Downloads 448
16792 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 478
16791 Biometric Recognition Techniques: A Survey

Authors: Shabir Ahmad Sofi, Shubham Aggarwal, Sanyam Singhal, Roohie Naaz

Abstract:

Biometric recognition refers to an automatic recognition of individuals based on a feature vector(s) derived from their physiological and/or behavioral characteristic. Biometric recognition systems should provide a reliable personal recognition schemes to either confirm or determine the identity of an individual. These features are used to provide an authentication for computer based security systems. Applications of such a system include computer systems security, secure electronic banking, mobile phones, credit cards, secure access to buildings, health and social services. By using biometrics a person could be identified based on 'who she/he is' rather than 'what she/he has' (card, token, key) or 'what she/he knows' (password, PIN). In this paper, a brief overview of biometric methods, both unimodal and multimodal and their advantages and disadvantages, will be presented.

Keywords: biometric, DNA, fingerprint, ear, face, retina scan, gait, iris, voice recognition, unimodal biometric, multimodal biometric

Procedia PDF Downloads 756