Search results for: non-linear differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3971

Search results for: non-linear differential equations

3941 Generalization of Tau Approximant and Error Estimate of Integral Form of Tau Methods for Some Class of Ordinary Differential Equations

Authors: A. I. Ma’ali, R. B. Adeniyi, A. Y. Badeggi, U. Mohammed

Abstract:

An error estimation of the integrated formulation of the Lanczos tau method for some class of ordinary differential equations was reported. This paper is concern with the generalization of tau approximants and their corresponding error estimates for some class of ordinary differential equations (ODEs) characterized by m + s =3 (i.e for m =1, s=2; m=2, s=1; and m=3, s=0) where m and s are the order of differential equations and number of overdetermination, respectively. The general result obtained were validated with some numerical examples.

Keywords: approximant, error estimate, tau method, overdetermination

Procedia PDF Downloads 606
3940 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 399
3939 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.

Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision

Procedia PDF Downloads 488
3938 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions

Authors: Ebru Dural, M. Zulfu Asık

Abstract:

Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.

Keywords: laminated glass, mathematical model, nonlinear behavior, PVB

Procedia PDF Downloads 319
3937 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions.

Keywords: ıntegro-differential equations, quartic B-spline wavelet, operational matrices, dual functions

Procedia PDF Downloads 456
3936 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: block method, first order ordinary differential equations, hybrid, self-starting

Procedia PDF Downloads 482
3935 Numerical Iteration Method to Find New Formulas for Nonlinear Equations

Authors: Kholod Mohammad Abualnaja

Abstract:

A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.

Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms

Procedia PDF Downloads 545
3934 Integral Image-Based Differential Filters

Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama

Abstract:

We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.

Keywords: integral images, differential images, differential filters, image fusion

Procedia PDF Downloads 506
3933 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions

Authors: Yacine Arioua

Abstract:

In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.

Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness

Procedia PDF Downloads 264
3932 Magnetohydrodynamic Flow over an Exponentially Stretching Sheet

Authors: Raj Nandkeolyar, Precious Sibanda

Abstract:

The flow of a viscous, incompressible, and electrically conducting fluid under the influence of aligned magnetic field acting along the direction of fluid flow over an exponentially stretching sheet is investigated numerically. The nonlinear partial differential equations governing the flow model is transformed to a set of nonlinear ordinary differential equations using suitable similarity transformation and the solution is obtained using a local linearization method followed by the Chebyshev spectral collocation method. The effects of various parameters affecting the flow and heat transfer as well as the induced magnetic field are discussed using suitable graphs and tables.

Keywords: aligned magnetic field, exponentially stretching sheet, induced magnetic field, magnetohydrodynamic flow

Procedia PDF Downloads 454
3931 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov

Abstract:

In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr\"odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.

Keywords: Heisenberg Ferromagnet equations, soliton equations, equivalence, Lax representation

Procedia PDF Downloads 457
3930 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis

Procedia PDF Downloads 434
3929 A Study on Approximate Controllability of Impulsive Integrodifferential Systems with Non Local Conditions

Authors: Anandhi Santhosh

Abstract:

In order to describe various real-world problems in physical and engineering sciences subject to abrupt changes at certain instants during the evolution process, impulsive differential equations has been used to describe the system model. In this article, the problem of approximate controllability for nonlinear impulsive integrodifferential equations with state-dependent delay is investigated. We study the approximate controllability for nonlinear impulsive integrodifferential system under the assumption that the corresponding linear control system is approximately controllable. Using methods of functional analysis and semigroup theory, sufficient conditions are formulated and proved. Finally, an example is provided to illustrate the proposed theory.

Keywords: approximate controllability, impulsive differential system, fixed point theorem, state-dependent delay

Procedia PDF Downloads 383
3928 Existence of positive periodic solutions for certain delay differential equations

Authors: Farid Nouioua, Abdelouaheb Ardjouni

Abstract:

In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results.

Keywords: delay differential equations, positive periodic solutions, integral equations, Krasnoselskii fixed point theorem

Procedia PDF Downloads 438
3927 The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind

Authors: Melusi Khumalo, Anastacia Dlamini

Abstract:

In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method.

Keywords: finite element method, Galerkin approach, Fredholm integral equations, nonlinear integral equations

Procedia PDF Downloads 376
3926 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman

Abstract:

The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations

Procedia PDF Downloads 489
3925 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y^'''= f(x,y,y^',y^'' ), y(α)=y_0,〖y〗^' (α)=β,y^('' ) (α)=μ with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non-stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.

Keywords: block method, hybrid, linear multistep, self-starting, third order ordinary differential equations

Procedia PDF Downloads 271
3924 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections

Authors: G. Akgun, I. Algul, H. Kurtaran

Abstract:

In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.

Keywords: generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section

Procedia PDF Downloads 295
3923 Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions

Authors: Fakhreddin Abedi, Wah June Leong

Abstract:

Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results.

Keywords: exponential stability in probability, stochastic differential equations, Lyapunov technique, Ito's formula

Procedia PDF Downloads 52
3922 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 132
3921 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations

Authors: K. P. Mredula, D. C. Vakaskar

Abstract:

The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.

Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods

Procedia PDF Downloads 299
3920 On Boundary Value Problems of Fractional Differential Equations Involving Stieltjes Derivatives

Authors: Baghdad Said

Abstract:

Differential equations of fractional order have proved to be important tools to describe many physical phenomena and have been used in diverse fields such as engineering, mathematics as well as other applied sciences. On the other hand, the theory of differential equations involving the Stieltjes derivative (SD) with respect to a non-decreasing function is a new class of differential equations and has many applications as a unified framework for dynamic equations on time scales and differential equations with impulses at fixed times. The aim of this paper is to investigate the existence, uniqueness, and generalized Ulam-Hyers-Rassias stability (UHRS) of solutions for a boundary value problem of sequential fractional differential equations (SFDE) containing (SD). This study is based on the technique of noncompactness measures (MNCs) combined with Monch-Krasnoselski fixed point theorems (FPT), and the results are proven in an appropriate Banach space under sufficient hypotheses. We also give an illustrative example. In this work, we introduced a class of (SFDE) and the results are obtained under a few hypotheses. Future directions connected to this work could focus on another problem with different types of fractional integrals and derivatives, and the (SD) will be assumed under a more general hypothesis in more general functional spaces.

Keywords: SFDE, SD, UHRS, MNCs, FPT

Procedia PDF Downloads 40
3919 Exact Soliton Solutions of the Integrable (2+1)-Dimensional Fokas-Lenells Equation

Authors: Meruyert Zhassybayeva, Kuralay Yesmukhanova, Ratbay Myrzakulov

Abstract:

Integrable nonlinear differential equations are an important class of nonlinear wave equations that admit exact soliton solutions. All these equations have an amazing property which is that their soliton waves collide elastically. One of such equations is the (1+1)-dimensional Fokas-Lenells equation. In this paper, we have constructed an integrable (2+1)-dimensional Fokas-Lenells equation. The integrability of this equation is ensured by the existence of a Lax representation for it. We obtained its bilinear form from the Hirota method. Using the Hirota method, exact one-soliton and two-soliton solutions of the (2 +1)-dimensional Fokas-Lenells equation were found.

Keywords: Fokas-Lenells equation, integrability, soliton, the Hirota bilinear method

Procedia PDF Downloads 224
3918 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy

Abstract:

The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: difference equations, differential equations, singular perturbations, boundary layer

Procedia PDF Downloads 199
3917 Magnetohydrodynamic Flow of Viscoelastic Nanofluid and Heat Transfer over a Stretching Surface with Non-Uniform Heat Source/Sink and Non-Linear Radiation

Authors: Md. S. Ansari, S. S. Motsa

Abstract:

In this paper, an analysis has been made on the flow of non-Newtonian viscoelastic nanofluid over a linearly stretching sheet under the influence of uniform magnetic field. Heat transfer characteristics is analyzed taking into the effect of nonlinear radiation and non-uniform heat source/sink. Transport equations contain the simultaneous effects of Brownian motion and thermophoretic diffusion of nanoparticles. The relevant partial differential equations are non-dimensionalized and transformed into ordinary differential equations by using appropriate similarity transformations. The transformed, highly nonlinear, ordinary differential equations are solved by spectral local linearisation method. The numerical convergence, error and stability analysis of iteration schemes are presented. The effects of different controlling parameters, namely, radiation, space and temperature-dependent heat source/sink, Brownian motion, thermophoresis, viscoelastic, Lewis number and the magnetic force parameter on the flow field, heat transfer characteristics and nanoparticles concentration are examined. The present investigation has many industrial and engineering applications in the fields of coatings and suspensions, cooling of metallic plates, oils and grease, paper production, coal water or coal–oil slurries, heat exchangers’ technology, and materials’ processing and exploiting.

Keywords: magnetic field, nonlinear radiation, non-uniform heat source/sink, similar solution, spectral local linearisation method, Rosseland diffusion approximation

Procedia PDF Downloads 372
3916 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Roslinda Nazar, Ezad Hafidz Hafidzuddin, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: boundary layer, exponentially stretching/shrinking sheet, generalized slip, heat transfer, numerical solutions

Procedia PDF Downloads 432
3915 Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method

Authors: Kamel Al-Khaled

Abstract:

In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method.

Keywords: Nonlinear coupled KdV equations, Soliton solutions, Sinc-collocation method, Sinc functions

Procedia PDF Downloads 524
3914 Geometric Nonlinear Dynamic Analysis of Cylindrical Composite Sandwich Shells Subjected to Underwater Blast Load

Authors: Mustafa Taskin, Ozgur Demir, M. Mert Serveren

Abstract:

The precise study of the impact of underwater explosions on structures is of great importance in the design and engineering calculations of floating structures, especially those used for military purposes, as well as power generation facilities such as offshore platforms that can become a target in case of war. Considering that ship and submarine structures are mostly curved surfaces, it is extremely important and interesting to examine the destructive effects of underwater explosions on curvilinear surfaces. In this study, geometric nonlinear dynamic analysis of cylindrical composite sandwich shells subjected to instantaneous pressure load is performed. The instantaneous pressure load is defined as an underwater explosion and the effects of the liquid medium are taken into account. There are equations in the literature for pressure due to underwater explosions, but these equations have been obtained for flat plates. For this reason, the instantaneous pressure load equations are arranged to be suitable for curvilinear structures before proceeding with the analyses. Fluid-solid interaction is defined by using Taylor's Plate Theory. The lower and upper layers of the cylindrical composite sandwich shell are modeled as composite laminate and the middle layer consists of soft core. The geometric nonlinear dynamic equations of the shell are obtained by Hamilton's principle, taken into account the von Kàrmàn theory of large displacements. Then, time dependent geometric nonlinear equations of motion are solved with the help of generalized differential quadrature method (GDQM) and dynamic behavior of cylindrical composite sandwich shells exposed to underwater explosion is investigated. An algorithm that can work parametrically for the solution has been developed within the scope of the study.

Keywords: cylindrical composite sandwich shells, generalized differential quadrature method, geometric nonlinear dynamic analysis, underwater explosion

Procedia PDF Downloads 192
3913 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects

Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti

Abstract:

This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.

Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects

Procedia PDF Downloads 213
3912 Investigation of Flexural – Torsion Instability of Struts Using Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

Differential equations are of fundamental importance in engineering and applied mathematics, since many physical laws and relations appear mathematically in the form of such equations. The equilibrium state of structures consisting of one-dimensional elements can be described by an ordinary differential equation. The response of these kinds of structures under the loading, namely relationship between the displacement field and loading field, can be predicted by the solution of these differential equations and on satisfying the given boundary conditions. When the effect of change of geometry under loading is taken into account in modeling of equilibrium state, then these differential equations are partially integrable in quartered. They also exhibit instability characteristics when the structures are loaded compressively. The purpose of this paper is to represent the ability of the Modified Newmark Method in analyzing flexural-torsional instability of struts for both bifurcation and non-bifurcation structural systems. The results are shown to be very accurate with only a small number of iterations. The method is easily programmed, and has the advantages of simplicity and speeds of convergence and easily is extended to treat material and geometric nonlinearity including no prismatic members and linear and nonlinear spring restraints that would be encountered in frames. In this paper, these abilities of the method will be extended to the system of linear differential equations that govern strut flexural torsional stability.

Keywords: instability, torsion, flexural, buckling, modified newmark method stability

Procedia PDF Downloads 358