Search results for: kernels
33 Agricultural Waste Recovery For Industrial Effluent Treatment And Environmental Protection
Authors: Salim Ahmed
Abstract:
In many countries, water pollution from industrial effluents is a real problem. It may have a negative impact on the environment. To minimize the adverse effects of these contaminants, various methods are used to improve effluent purification, including physico-chemical processes such as adsorption.The present study focuses on applying a naturally biodegradable adsorbent based on argan (southern Morocco) in a physico-chemical adsorption process to reduce the harmful effects of pollutants on the environment. Tests were carried out with the cationic dye methylene blue (MB) and revealed that removal is significantly higher within the first 15 minutes. The parameters studied in this study are adsorbent mass and concentration. The Freundlich model provides an excellent example of the adsorption phenomenon of BMs over argan powder. The results of this study show that argan kernels are a highly beneficial alternative for local communities, as they help to achieve a triple objective: pollution reduction, waste recovery and water recycling.Keywords: environmental protection, activated carbon, water treatment, adsorption
Procedia PDF Downloads 6632 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models
Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti
Abstract:
This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm
Procedia PDF Downloads 41631 Predicting Bridge Pier Scour Depth with SVM
Authors: Arun Goel
Abstract:
Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)
Procedia PDF Downloads 45330 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.Keywords: connected components, embrace threads, local weighted kernel, structuring elements
Procedia PDF Downloads 44329 1D Convolutional Networks to Compute Mel-Spectrogram, Chromagram, and Cochleogram for Audio Networks
Authors: Elias Nemer, Greg Vines
Abstract:
Time-frequency transformation and spectral representations of audio signals are commonly used in various machine learning applications. Training networks on frequency features such as the Mel-Spectrogram or Cochleogram have been proven more effective and convenient than training on-time samples. In practical realizations, these features are created on a different processor and/or pre-computed and stored on disk, requiring additional efforts and making it difficult to experiment with different features. In this paper, we provide a PyTorch framework for creating various spectral features as well as time-frequency transformation and time-domain filter-banks using the built-in trainable conv1d() layer. This allows computing these features on the fly as part of a larger network and enabling easier experimentation with various combinations and parameters. Our work extends the work in the literature developed for that end: First, by adding more of these features and also by allowing the possibility of either starting from initialized kernels or training them from random values. The code is written as a template of classes and scripts that users may integrate into their own PyTorch classes or simply use as is and add more layers for various applications.Keywords: neural networks Mel-Spectrogram, chromagram, cochleogram, discrete Fourrier transform, PyTorch conv1d()
Procedia PDF Downloads 24028 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 19727 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 28126 Closed Form Solution for 4-D Potential Integrals for Arbitrary Coplanar Polygonal Surfaces
Authors: Damir Latypov
Abstract:
A closed-form solution for 4-D double surface integrals arising in boundary integrals equations of a potential theory is obtained for arbitrary coplanar polygonal surfaces. The solution method is based on the construction of exact differential forms followed by the application of Stokes' theorem for each surface integral. As a result, the 4-D double surface integral is reduced to a 2-D double line integral. By an appropriate change of variables, the integrand is transformed into a separable function of integration variables. The closed-form solutions to the corresponding 1-D integrals are readily available in the integration tables. Previously closed-form solutions were known only for the case of coincident triangle surfaces and coplanar rectangles. Solutions for these cases were obtained by surface-specific ad-hoc methods, while the present method is general. The method also works for non-polygonal surfaces. As an example, we compute in closed form the 4-D integral for the case of coincident surfaces in the shape of a circular disk. For an arbitrarily shaped surface, the proposed method provides an efficient quadrature rule. Extensions of the method for non-coplanar surfaces and other than 1/R integral kernels are also discussed.Keywords: boundary integral equations, differential forms, integration, stokes' theorem
Procedia PDF Downloads 31425 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision
Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari
Abstract:
In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.Keywords: breakage, computer vision, husking, rice kernel
Procedia PDF Downloads 38624 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines
Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.
Abstract:
Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition
Procedia PDF Downloads 57723 A Low Cost Non-Destructive Grain Moisture Embedded System for Food Safety and Quality
Authors: Ritula Thakur, Babankumar S. Bansod, Puneet Mehta, S. Chatterji
Abstract:
Moisture plays an important role in storage, harvesting and processing of food grains and related agricultural products. It is an important characteristic of most agricultural products for maintenance of quality. Accurate knowledge of the moisture content can be of significant value in maintaining quality and preventing contamination of cereal grains. The present work reports the design and development of microcontroller based low cost non-destructive moisture meter, which uses complex impedance measurement method for moisture measurement of wheat using parallel plate capacitor arrangement. Moisture can conveniently be sensed by measuring the complex impedance using a small parallel-plate capacitor sensor filled with the kernels in-between the two plates of sensor, exciting the sensor at 30 KHz and 100 KHz frequencies. The effects of density and temperature variations were compensated by providing suitable compensations in the developed algorithm. The results were compared with standard dry oven technique and the developed method was found to be highly accurate with less than 1% error. The developed moisture meter is low cost, highly accurate, non-destructible method for determining the moisture of grains utilizing the fast computing capabilities of microcontroller.Keywords: complex impedance, moisture content, electrical properties, safety of food
Procedia PDF Downloads 46822 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains
Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh
Abstract:
The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.Keywords: machine vision, fuzzy logic, rice, quality
Procedia PDF Downloads 42321 Bound State Problems and Functional Differential Geometry
Authors: S. Srednyak
Abstract:
We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems.Keywords: functional equations, quantum field theory, holomorphic functions, Yang Mills mass gap problem, quantum chaos
Procedia PDF Downloads 7520 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification
Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane
Abstract:
This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption
Procedia PDF Downloads 5019 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells
Authors: Saheed O. Akinwale, Olufemi A. Koya
Abstract:
Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness
Procedia PDF Downloads 23218 Isotopes Used in Comparing Indigenous and International Walnut (Juglans regia L.) Varieties
Authors: Raluca Popescu, Diana Costinel, Elisabeta-Irina Geana, Oana-Romina Botoran, Roxana-Elena Ionete, Yazan Falah Jadee 'Alabedallat, Mihai Botu
Abstract:
Walnut production is high in Romania, different varieties being cultivated dependent on high yield, disease resistance or quality of produce. Walnuts have a highly nutritional composition, the kernels containing essential fatty acids, where the unsaturated fraction is higher than in other types of nuts, quinones, tannins, minerals. Walnut consumption can lower the cholesterol, improve the arterial function and reduce inflammation. The purpose of this study is to determine and compare the composition of walnuts of indigenous and international varieties all grown in Romania, in order to identify high-quality indigenous varieties. Oil has been extracted from the nuts of 34 varieties, the fatty acids composition and IV (iodine value) being afterwards measured by NMR. Furthermore, δ13C of the extracted oil had been measured by IRMS to find specific isotopic fingerprints that can be used in authenticating the varieties. Chemometrics had been applied to the data in order to identify similarities and differences between the varieties. The total saturated fatty acids content (SFA) varied between n.d. and 23% molar, oleic acid between 17 and 35%, linoleic acid between 38 and 59%, linolenic acid between 8 and 14%, corresponding to iodine values (IV - total amount of unsaturation) ranging from 100 to 135. The varieties separated in four groups according to the fatty acids composition, each group containing an international variety, making possible the classification of the indigenous ones. At both ends of the unsaturation spectrum, international varieties had been found.Keywords: δ13C-IRMS, fatty acids composition, 1H-NMR, walnut varieties
Procedia PDF Downloads 31717 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 8516 Effect of Burdock Root Extract Concentration on Physiochemical Property of Coated Jasmine Rice by Using Top-Spay Fluidized Bed Coating Technique
Authors: Donludee Jaisut, Norihisa Kato, Thanutchaporn Kumrungsee, Kiyoshi Kawai, Somkiat Prachayawarakorn, Patchalee Tungtrakul
Abstract:
Jasmine Rice is a principle food of Thai people. However, glycemic index of jasmine rice is in high level, risk of type II diabetes after consuming. Burdock root is a good source of non-starch polysaccharides such as inulin. Inulin acts as prebiotic and helps reduce blood-sugar level. The purpose of this research was to reduce digestion rate of jasmine rice by coating burdock root extract on rice surface, using top-spay fluidized bed coating technique. Coating experiments were performed by spraying burdock root solution onto Jasmine rice kernels (Khao Dawk Mali-105; KDML), which had an initial moisture content of 11.6% wet basis, suspended in the fluidized bed. The experimental conditions were: solution spray rates of 31.7 mL/min, atomization pressure of 1.5 bar, spray time of 10 min, time of drying after spraying of 30 s, superficial air velocity of 3.2 m/s and drying temperatures of 60°C. The coated rice quality was evaluated in terms of the moisture content, texture, whiteness and digestion rate. The results showed that initial and final moisture contents of samples were the same in concentration 8% (v/v) and 10% (v/v). The texture was insignificantly changed from that of uncoated sample. The whiteness values were varied on concentration of burdock root extract. Coated samples were slower digested.Keywords: burdock root, digestion, drying, rice
Procedia PDF Downloads 29615 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 6914 The Hidden Role of Interest Rate Risks in Carry Trades
Authors: Jingwen Shi, Qi Wu
Abstract:
We study the role played interest rate risk in carry trade return in order to understand the forward premium puzzle. In this study, our goal is to investigate to what extent carry trade return is indeed due to compensation for risk taking and, more important, to reveal the nature of these risks. Using option data not only on exchange rates but also on interest rate swaps (swaptions), our first finding is that, besides the consensus currency risks, interest rate risks also contribute a non-negligible portion to the carry trade return. What strikes us is our second finding. We find that large downside risks of future exchange rate movements are, in fact, priced significantly in option market on interest rates. The role played by interest rate risk differs structurally from the currency risk. There is a unique premium associated with interest rate risk, though seemingly small in size, which compensates the tail risks, the left tail to be precise. On the technical front, our study relies on accurately retrieving implied distributions from currency options and interest rate swaptions simultaneously, especially the tail components of the two. For this purpose, our major modeling work is to build a new international asset pricing model where we use an orthogonal setup for pricing kernels and specify non-Gaussian dynamics in order to capture three sets of option skew accurately and consistently across currency options and interest rate swaptions, domestic and foreign, within one model. Our results open a door for studying forward premium anomaly through implied information from interest rate derivative market.Keywords: carry trade, forward premium anomaly, FX option, interest rate swaption, implied volatility skew, uncovered interest rate parity
Procedia PDF Downloads 44813 Phytochemical Screening, Antimicrobial and Antioxidant Efficacy of the Endocarps Fruits of Argania spinosa (L.) Skeels (Sapotaceae) in Mostaganem
Authors: Sebaa H., Cherifi F., Djabeur Abderrezak M.
Abstract:
Argania spinosa, Sapotaceae sole representative in Algeria and Morocco; hence it is endemic in these regions. However, it is a recognised oil, forage, and timber tree highly adapted to aridity. The exploitation of the argan fruits produces considerable amounts of under or related products. These products, such as the endocarps of a fruit, recuperated after the use of kernels to extract oil. This research studies in detail the contents of total phenolic content was determined by Folin Ciocalteu reagent and Flavonoids by aluminum chloride colorimetric assay). Antioxidant activity of extracts was expressed as the percentage of DPPH radical inhibition and IC50 values (μg/mL). Antimicrobial activity evaluated using agar disk diffusion method against reference Pseudomonas aeruginosa ATTC 27453, Escherichia coli ATCC 23922. Immature endocarps showed a higher polyphenol content than mature endocarps. The total phenolic content in immature endocarps was found to vary from 983,75+ /- 0.45 to 980,1 +/- 0.43 mg gallic acid equivalents/g dry weight, whereas in mature endocarps, the polyphenol content ranged from 100,58 mg/g +/- 0.42 to 105 +/- 0.55% mg gallic acid equivalent / g dry weight. The flavonoid content was 16.5 mg equivalent catechin/g dry weight and 9.81mg equivalent catechin /g dry weight for immature and mature endocarp fruits, respectively. DPPH assay of the endocarps extract yielded a half-maximal effective concentration (IC50) value in the immature endocarps (549.33 μg/mL) than in mature endocarps (322 μg/mL). This result can be attributed to the higher phenolics and flavonoid compounds in the immature endocarps. Methanol extract of immature endocarps exhibited antibacterial activity against E.colie (inhibition zone, 11mm).Keywords: antioxidant activity, antimicrobial activity, total phenolic content, DPPH assay
Procedia PDF Downloads 12112 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods
Procedia PDF Downloads 43311 The Use of Beneficial Microorganisms from Diverse Environments for the Management of Aflatoxin in Maize
Authors: Mathias Twizeyimana, Urmila Adhikari, Julius P. Sserumaga, David Ingham
Abstract:
The management of aflatoxins (naturally occurring toxins produced by certain fungi, most importantly Aspergillus flavus and A. parasiticus) relies mostly on the use of best cultural practices and, in some cases, the use of the biological control consisting of atoxigenic strains inhibiting the toxigenic strains through competition resulting in considerable toxin reduction. At AgBiome, we have built a core collection of over 100,000 fully sequenced microbes from diverse environments and employ both the microbes and their sequences in the discovery of new biological products for disease and pest control. The most common approach to finding beneficial microbes consists of isolating microorganisms from samples collected from diverse environments, selecting antagonistic strains through empirical screening, studying modes of action, and stabilization through the formulation of selected microbial isolates. A total of 608 diverse bacterial strains were screened using a high-throughput assay (48-well assay) to identify strains that inhibit toxigenic A. flavus growth on maize kernels. Active strains in 48-well assay had their pathogen inhibiting activity confirmed using the Flask Assay and were concurrently tested for their ability to reduce the aflatoxin content in maize grains. Strains with best growth inhibition and reduction of aflatoxin were tested in the greenhouse and field trials. From the field trials, three bacterial strains, AFS000009 (Pseudomonas chlororaphis), AFS032321 (Bacillus subtilis), AFS024683 (Bacillus velezensis), had aflatoxin concentrations (ppb) values that were significantly lower than those of inoculated control. The identification of biological products with high efficacy in inhibiting pathogen growth and eventually reducing the aflatoxin content will provide a valuable alternative to control strategies used in aflatoxin contamination management.Keywords: aflatoxin, microorganism bacteria, biocontrol, beneficial microbes
Procedia PDF Downloads 18810 In vitro Method to Evaluate the Effect of Steam-Flaking on the Quality of Common Cereal Grains
Authors: Wanbao Chen, Qianqian Yao, Zhenming Zhou
Abstract:
Whole grains with intact pericarp are largely resistant to digestion by ruminants because entire kernels are not conducive to bacterial attachment. But processing methods makes the starch more accessible to microbes, and increases the rate and extent of starch degradation in the rumen. To estimate the feasibility of applying a steam-flaking as the processing technique of grains for ruminants, cereal grains (maize, wheat, barley and sorghum) were processed by steam-flaking (steam temperature 105°C, heating time, 45 min). And chemical analysis, in vitro gas production, volatile fatty acid concentrations, and energetic values were adopted to evaluate the effects of steam-flaking. In vitro cultivation was conducted for 48h with the rumen fluid collected from steers fed a total mixed ration consisted of 40% hay and 60% concentrates. The results showed that steam-flaking processing had a significant effect on the contents of neutral detergent fiber and acid detergent fiber (P < 0.01). The concentration of starch gelatinization degree in all grains was also great improved in steam-flaking grains, as steam-flaking processing disintegrates the crystal structure of cereal starch, which may subsequently facilitate absorption of moisture and swelling. Theoretical maximum gas production after steam-flaking processing showed no great difference. However, compared with intact grains, total gas production at 48 h and the rate of gas production were significantly (P < 0.01) increased in all types of grain. Furthermore, there was no effect of steam-flaking processing on total volatile fatty acid, but a decrease in the ratio between acetate and propionate was observed in the current in vitro fermentation. The present study also found that steam-flaking processing increased (P < 0.05) organic matter digestibility and energy concentration of the grains. The collective findings of the present study suggest that steam-flaking processing of grains could improve their rumen fermentation and energy utilization by ruminants. In conclusion, the utilization of steam-flaking would be practical to improve the quality of common cereal grains.Keywords: cereal grains, gas production, in vitro rumen fermentation, steam-flaking processing
Procedia PDF Downloads 2759 Biological Control of Karnal Bunt by Pseudomonas fluorescens
Authors: Geetika Vajpayee, Sugandha Asthana, Pratibha Kumari, Shanthy Sundaram
Abstract:
Pseudomonas species possess a variety of promising properties of antifungal and growth promoting activities in the wheat plant. In the present study, Pseudomonas fluorescens MTCC-9768 is tested against plant pathogenic fungus Tilletia indica, causing Karnal bunt, a quarantine disease of wheat (Triticum aestivum) affecting kernels of wheat. It is one of the 1/A1 harmful diseases of wheat worldwide under EU legislation. This disease develops in the growth phase by the spreading of microscopically small spores of the fungus (teliospores) being dispersed by the wind. The present chemical fungicidal treatments were reported to reduce teliospores germination, but its effect is questionable since T. indica can survive up to four years in the soil. The fungal growth inhibition tests were performed using Dual Culture Technique, and the results showed inhibition by 82.5%. The interaction of antagonist bacteria-fungus causes changes in the morphology of hyphae, which was observed using Lactophenol cotton blue staining and Scanning Electron Microscopy (SEM). The rounded and swollen ends, called ‘theca’ were observed in interacted fungus as compared to control fungus (without bacterial interaction). This bacterium was tested for its antagonistic activity like protease, cellulose, HCN production, Chitinase, etc. The growth promoting activities showed increase production of IAA in bacteria. The bacterial secondary metabolites were extracted in different solvents for testing its growth inhibiting properties. The characterization and purification of the antifungal compound were done by Thin Layer Chromatography, and Rf value was calculated (Rf value = 0.54) and compared to the standard antifungal compound, 2, 4 DAPG (Rf value = 0.54). Further, the in vivo experiments showed a significant decrease in the severity of disease in the wheat plant due to direct injection method and seed treatment. Our results indicate that the extracted and purified compound from the antagonist bacteria, P. fluorescens MTCC-9768 may be used as a potential biocontrol agent against T. indica. This also concludes that the PGPR properties of the bacteria may be utilized by incorporating it into bio-fertilizers.Keywords: antagonism, Karnal bunt, PGPR, Pseudomonas fluorescens
Procedia PDF Downloads 4088 Isolation and Screening of Antagonistic Bacteria against Wheat Pathogenic Fungus Tilletia indica
Authors: Sugandha Asthana, Geetika Vajpayee, Pratibha Kumari, Shanthy Sundaram
Abstract:
An economically important disease of wheat in North Western region of India is Karnal Bunt caused by smut fungus Tilletia indica. This fungal pathogen spreads by air, soil and seed borne sporodia at the time of flowering, which ultimately leads to partial bunting of wheat kernels with fishy odor and taste to wheat flour. It has very serious effects due to quarantine measures which have to be applied for grain exports. Chemical fungicides such as mercurial compounds and Propiconazole applied to the control of Karnal bunt have been only partially successful. Considering the harmful effects of chemical fungicides on man as well as environment, many countries are developing biological control as the superior substitute to chemical control. Repeated use of fungicides can be responsible for the development of resistance in fungal pathogens against certain chemical compounds. The present investigation is based on the isolation and evaluation of antifungal properties of some isolated (from natural manure) and commercial bacterial strains against Tilletia indica. Total 23 bacterial isolates were obtained and antagonistic activity of all isolates and commercial bacterial strains (Bacillus subtilis MTCC8601, Bacillus pumilus MTCC 8743, Pseudomonas aeruginosa) were tested against T. indica by dual culture plate assay (pour plate and streak plate). Test for the production of antifungal volatile organic compounds (VOCs) by antagonistic bacteria was done by sealed plate method. Amongst all s1, s3, s5, and B. subtilis showed more than 80% inhibition. Production of extracellular hydrolytic enzymes such as protease, beta 1, 4 glucanase, HCN and ammonia was studied for confirmation of antifungal activity. s1, s3, s5 and B. subtilis were found to be the best for protease activity and s5 and B. subtilis for beta 1, 4 glucanase activity. Bacillus subtilis was significantly effective for HCN whereas s3, s5 and Bacillus subtilis for ammonia production. Isolates were identified as Pseudomonas aeruginosa (s1) and B. licheniformis (s3, s5) by various biochemical assays and confirmed by16s rRNA sequencing. Use of microorganisms or their secretions as biocontrol agents to avoid plant diseases is ecologically safe and may offer long term of protection to crop. The above study reports the promising effects of these strains in better pathogen free crop production and quality maintenance as well as prevention of the excessive use of synthetic fungicides.Keywords: antagonistic, antifungal, biocontrol, Karnal bunt
Procedia PDF Downloads 2877 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 1516 Chemical Composition and Insecticidal Activity of Three Essential Oil and Beauvericin Nanogel on Plodia Interpunctella (Lepidoptera: Pyralidae)
Authors: Magda Mahmoud Amin Sabbour, El-Sayed H. Shaurub
Abstract:
The Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), of stored grain pests which destroy the seed completely. Their larval stages feed on the nutrient germinating kernels part found in the seeds grain. This leads to a reduction causing a badness to seed germination and seed viability. It controlled by many insecticides which pollute and cusses a harmful diseases to human being. Three tested oils were evaluated on this target pests. Plant extracts, essential oils and medical oils are materials which used to control many stored pests. Plant oils extracts have a lower effects on parasites and predators and not pollute the medium. By using the apparatus gas chromatography flame ionization detector gas chromatography–analysis of three essential oil tested. This research was point to explore and appreciation the activity of three oils and nano gel Beauvericin against P. interpunctella in the laboratory conditions and in the store conditions. The three essential oil tested proved that, percentage of α-Pinene recoded 7.76, 7.72 and 6.66 for C. cyminum, A. squamosal and G. officinale respectively. The composition of the β-Pinene recoded 4.61, 8.92 and 30.63 for the corresponding oils tested. Results showed that after analytically the oils tested, the effective compound of C. cyminum oil are p-cyinene and Terpinene. Results obtained show that the LC50 recorded 125, 112, 55 and 20 ppm after P. interpunctella treated with medical oils of Guaiacum officinale, Annona squamosa, Cuminum cyminum and Beauvericin 3% respectively. The accumulative mortality of P. interpunctella after treated with A.squamosa oil-loaded nanogels which showed that it is the highest oils from infestations recoded when the seed treated with 3% after 48 days, the accumulations obtained 44% at followed by 24 after24 days of storage. Results, cleared that the seed protection by G. officinale recorded 40% at concentrations of 3% after 48 days of storage seeds. C. cyminum was the highest mortality by 98, at concentrations 3%. The highest seed protection proved after C. cyminum oil-loaded nanogels 14% followed by G. officinale 29% and A.squamosa 44%.when the seeds treated with Beauvericin 3%. Results of this work cleared that the essential medical oils have a useful action effect on target insects. Plant essential and medical oils, their active ingredient have potentially high bioactivity against on P. interpunctella. The medical and essential oils incorporation and usage the nano-formulation release stopped the highly degradation vaporization and the increasing in the constancy, and save the lower effectiveness of the dosage/application. The research results proved that the highest seed protection obtained after C. cyminum oil-loaded nanogels followed by G. officinale and A.squamosa. It could be complemented that P. interpunctella were more susceptible to medical oils loaded nanogel (MOLNs ) than medical oils only (MO). MOLNs had best lower amount of the residual activity than MO only. MOLNs might mend the insecticidal action of the medical oil tested by the slow effective release of the medical oils to control P. interpunctella mostly at the lower doses.Keywords: Cuminum cyminum, annona squamosa, guaiacum officinale, beauvericin 3 %, plodia interpunctella
Procedia PDF Downloads 1255 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings
Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir
Abstract:
Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine
Procedia PDF Downloads 1644 Study on Aerosol Behavior in Piping Assembly under Varying Flow Conditions
Authors: Anubhav Kumar Dwivedi, Arshad Khan, S. N. Tripathi, Manish Joshi, Gaurav Mishra, Dinesh Nath, Naveen Tiwari, B. K. Sapra
Abstract:
In a nuclear reactor accident scenario, a large number of fission products may release to the piping system of the primary heat transport. The released fission products, mostly in the form of the aerosol, get deposited on the inner surface of the piping system mainly due to gravitational settling and thermophoretic deposition. The removal processes in the complex piping system are controlled to a large extent by the thermal-hydraulic conditions like temperature, pressure, and flow rates. These parameters generally vary with time and therefore must be carefully monitored to predict the aerosol behavior in the piping system. The removal process of aerosol depends on the size of particles that determines how many particles get deposit or travel across the bends and reach to the other end of the piping system. The released aerosol gets deposited onto the inner surface of the piping system by various mechanisms like gravitational settling, Brownian diffusion, thermophoretic deposition, and by other deposition mechanisms. To quantify the correct estimate of deposition, the identification and understanding of the aforementioned deposition mechanisms are of great importance. These mechanisms are significantly affected by different flow and thermodynamic conditions. Thermophoresis also plays a significant role in particle deposition. In the present study, a series of experiments were performed in the piping system of the National Aerosol Test Facility (NATF), BARC using metal aerosols (zinc) in dry environments to study the spatial distribution of particles mass and number concentration, and their depletion due to various removal mechanisms in the piping system. The experiments were performed at two different carrier gas flow rates. The commercial CFD software FLUENT is used to determine the distribution of temperature, velocity, pressure, and turbulence quantities in the piping system. In addition to the in-built models for turbulence, heat transfer and flow in the commercial CFD code (FLUENT), a new sub-model PBM (population balance model) is used to describe the coagulation process and to compute the number concentration along with the size distribution at different sections of the piping. In the sub-model coagulation kernels are incorporated through user-defined function (UDF). The experimental results are compared with the CFD modeled results. It is found that most of the Zn particles (more than 35 %) deposit near the inlet of the plenum chamber and a low deposition is obtained in piping sections. The MMAD decreases along the length of the test assembly, which shows that large particles get deposited or removed in the course of flow, and only fine particles travel to the end of the piping system. The effect of a bend is also observed, and it is found that the relative loss in mass concentration at bends is more in case of a high flow rate. The simulation results show that the thermophoresis and depositional effects are more dominating for the small and larger sizes as compared to the intermediate particles size. Both SEM and XRD analysis of the collected samples show the samples are highly agglomerated non-spherical and composed mainly of ZnO. The coupled model framed in this work could be used as an important tool for predicting size distribution and concentration of some other aerosol released during a reactor accident scenario.Keywords: aerosol, CFD, deposition, coagulation
Procedia PDF Downloads 147