Search results for: graded interface
1593 Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials
Authors: Gennady M. Kulikov, Svetlana V. Plotnikova
Abstract:
This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity.Keywords: electroelasticity, functionally graded material, laminated piezoelectric shell, sampling surfaces method
Procedia PDF Downloads 6891592 Mechanical and Thermal Stresses in A Functionally Graded Cylinders
Authors: Ali Kurşun, Emre Kara, Erhan Çetin, Şafak Aksoy, Ahmet Kesimli
Abstract:
In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.Keywords: functionally graded materials, thermoelasticity, thermomechanical load, hollow cylinder.
Procedia PDF Downloads 4581591 Revolutionizing Product Packaging: The Impact of Transparent Graded Lanes on Ketchup and Edible Oils Containers on Consumer Behavior
Authors: Saeid Asghari
Abstract:
The growing interest in sustainability and healthy lifestyles has stimulated the development of solutions that promote mindful consumption and healthier choices. One such solution is the use of transparent graded lanes in product packaging, which enables consumers to visually track their product consumption and encourages portion control. However, the extent to which this packaging affects consumer behavior, trust, and loyalty towards a product or brand, as well as the effectiveness of messaging on the graded lanes, remains unclear. The research aims to examine the impact of transparent graded lanes on consumer behavior, trust, and loyalty towards products or brands in the context of the Janbo chain supermarket in Tehran, Iran, focusing on Ketchup and edible oils containers. A representative sample of 720 respondents is selected using quota sampling based on sex, age, and financial status. The study assesses the effect of messaging on the graded lanes in enhancing consumer recall and recognition of the product at the time of purchase, increasing repeat purchases, and fostering long-term relationships with customers. Furthermore, the potential outcomes of using transparent graded lanes, including the promotion of healthy consumption habits and the reduction of food waste, are also considered. The findings and results can inform the development of effective messaging strategies for graded lanes and suggest ways to enhance consumer engagement with product packaging. Moreover, the study's outcomes can contribute to the broader discourse on sustainable consumption and healthy lifestyles, highlighting the potential role of packaging innovations in promoting these values. We used four theories (social cognitive theory, self-perception theory, nudge theory, and marketing and consumer behavior) to examine the effect of these transparent graded lanes on consumer behavior. The conceptual model integrates the use of transparent graded lanes, consumer behavior, trust and loyalty, messaging, and promotion of healthy consumption habits. The study aims to provide insights into how transparent graded lanes can promote mindful consumption, increase consumer recognition and recall of the product, and foster long-term relationships with customers. Findings suggest that the use of transparent graded lanes on Ketchup and edible oils containers can have a positive impact on consumer behavior, trust, and loyalty towards a product or brand, as well as promote mindful consumption and healthier choices. The messaging on the graded lanes is also found to be effective in promoting recall and recognition of the product at the time of purchase and encouraging repeat purchases. However, the impact of transparent graded lanes may be limited by factors such as cultural norms, personal values, and financial status. Broadly speaking, the investigation provides valuable insights into the potential benefits and challenges of using transparent graded lanes in product packaging, as well as effective strategies for promoting healthy consumption habits and building long-term relationships with customers.Keywords: packaging customer behavior, purchase, brand loyalty, healthy consumption
Procedia PDF Downloads 2521590 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements
Authors: Mohamad Molavi Nojumi, Xiaodong Wang
Abstract:
In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.Keywords: finite element, fracture mechanics, functionally graded materials, graded element
Procedia PDF Downloads 1741589 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method
Authors: A. Selmi
Abstract:
Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.Keywords: differential transformation method, functionally graded material, mode shape, natural frequency
Procedia PDF Downloads 3091588 Natural Frequency Analysis of Spinning Functionally Graded Cylindrical Shells Subjected to Thermal Loads
Authors: Esmaeil Bahmyari
Abstract:
The natural frequency analysis of the functionally graded (FG) rotating cylindrical shells subjected to thermal loads is studied based on the three-dimensional elasticity theory. The temperature-dependent assumption of the material properties is graded in the thickness direction, which varies based on the simple power law distribution. The governing equations and the appropriate boundary conditions, which include the effects of initial thermal stresses, are derived employing Hamilton’s principle. The initial thermo-mechanical stresses are obtained by the thermo-elastic equilibrium equation’s solution. As an efficient and accurate numerical tool, the differential quadrature method (DQM) is adopted to solve the thermo-elastic equilibrium equations, free vibration equations and natural frequencies are obtained. The high accuracy of the method is demonstrated by comparison studies with those existing solutions in the literature. Ultimately, the parametric studies are performed to demonstrate the effects of boundary conditions, temperature rise, material graded index, the thickness-to-length and the aspect ratios for the rotating cylindrical shells on the natural frequency.Keywords: free vibration, DQM, elasticity theory, FG shell, rotating cylindrical shell
Procedia PDF Downloads 841587 Electronic States at SnO/SnO2 Heterointerfaces
Authors: A. Albar, U. Schwingenschlogel
Abstract:
Device applications of transparent conducting oxides require a thorough understanding of the physical and chemical properties of the involved interfaces. We use ab-initio calculations within density functional theory to investigate the electronic states at the SnO/SnO2 hetero-interface. Tin dioxide and monoxide are transparent materials with high n-type and p-type mobilities, respectively. This work aims at exploring the modifications of the electronic states, in particular the charge transfer, in the vicinity of the hetero-interface. The (110) interface is modeled by a super-cell approach in order to minimize the mismatch between the lattice parameters of the two compounds. We discuss the electronic density of states as a function of the distance to the interface.Keywords: density of states, ab-initio calculations, interface states, charge transfer
Procedia PDF Downloads 4181586 The Effect of Culture on User Interface Design of Social Media- A Case Study on Preferences of Saudi Arabian on the Arabic User Interface of Facebook
Authors: Hana Almakky, Reza Sahandi, Jacqui Taylor
Abstract:
Social media continue to grow, and user interfaces may become more appealing if cultural characteristics are incorporated into their design. Facebook was designed in the west, and the original language was English. Subsequently, the words in the user interface were translated to other languages, including Arabic. Arabic words are written from right to left, and English is written from left to right. The translated version may misrepresent the original design and users preferences may influence their culture, which should be considered in the user interface design. Previous research indicates that users are more comfortable when interacting with a user interface, which relates to their own culture. Therefore, this paper, using a survey investigates the preferences of Saudi Arabian on the Arabic version of user interface of Facebook.Keywords: culture, social media, user interface design, Facebook, Saudi Arabia
Procedia PDF Downloads 3981585 Element-Independent Implementation for Method of Lagrange Multipliers
Authors: Gil-Eon Jeong, Sung-Kie Youn, K. C. Park
Abstract:
Treatment for the non-matching interface is an important computational issue. To handle this problem, the method of Lagrange multipliers including classical and localized versions are the most popular technique. It essentially imposes the interface compatibility conditions by introducing Lagrange multipliers. However, the numerical system becomes unstable and inefficient due to the Lagrange multipliers. The interface element-independent formulation that does not include the Lagrange multipliers can be obtained by modifying the independent variables mathematically. Through this modification, more efficient and stable system can be achieved while involving equivalent accuracy comparing with the conventional method. A numerical example is conducted to verify the validity of the presented method.Keywords: element-independent formulation, interface coupling, methods of Lagrange multipliers, non-matching interface
Procedia PDF Downloads 4031584 Growth of Non-Polar a-Plane AlGaN Epilayer with High Crystalline Quality and Smooth Surface Morphology
Authors: Abbas Nasir, Xiong Zhang, Sohail Ahmad, Yiping Cui
Abstract:
Non-polar a-plane AlGaN epilayers of high structural quality have been grown on r-sapphire substrate by using metalorganic chemical vapor deposition (MOCVD). A graded non-polar AlGaN buffer layer with variable aluminium concentration was used to improve the structural quality of the non-polar a-plane AlGaN epilayer. The characterisations were carried out by high-resolution X-ray diffraction (HR-XRD), atomic force microscopy (AFM) and Hall effect measurement. The XRD and AFM results demonstrate that the Al-composition-graded non-polar AlGaN buffer layer significantly improved the crystalline quality and the surface morphology of the top layer. A low root mean square roughness 1.52 nm is obtained from AFM, and relatively low background carrier concentration down to 3.9× cm-3 is obtained from Hall effect measurement.Keywords: non-polar AlGaN epilayer, Al composition-graded AlGaN layer, root mean square, background carrier concentration
Procedia PDF Downloads 1421583 Out-of-Plane Free Vibration of Functionally Graded Circular Curved Beams with Temperature Dependent Material Properties in Thermal Environment
Authors: M. M. Atashi, P. Malekzadeh
Abstract:
A first known formulation for the out-of-plane free vibration analysis of functionally graded (FG) circular curved beams in thermal environment and with temperature dependent material properties is presented. The formulation is based on the first order shear deformation theory (FSDT), which includes the effects of shear deformation and rotary inertia due to both torsional and flexural vibrations. The material properties are assumed to be temperature dependent and graded in the direction normal to the plane of the beam curvature. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle. Differential quadrature method (DQM), as an efficient and accurate numerical method, is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The fast rate of convergence of the method is investigated and the formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic circular curved beams. In addition, for FG circular curved beams with soft simply supported edges, the results are compared with the obtained exact solutions. Then, the effects of temperature rise, boundary conditions, material and geometrical parameters on the natural frequencies are investigated.Keywords: out of plane, free vibration, curved beams, functionally graded, thermal environment
Procedia PDF Downloads 3571582 Thermal Buckling of Functionally Graded Panel Based on Mori-Tanaka Scheme
Authors: Seok-In Bae, Young-Hoon Lee, Ji-Hwan Kim
Abstract:
Due to the asymmetry of the material properties of the Functionally Graded Materials(FGMs) in the thickness direction, neutral surface of the model is not the same as the mid-plane of the symmetric structure. In order to investigate the thermal bucking behavior of FGMs, neutral surface is chosen as a reference plane. In the model, material properties are assumed to be temperature dependent, and varied continuously in the thickness direction of the plate. Further, the effective material properties such as Young’s modulus and Poisson’s ratio are homogenized using Mori-Tanaka scheme which considers the interaction among adjacent inclusions. In this work, the finite element methods are used, and the first-order shear deformation theory of plate are accounted. The thermal loads are assumed to be uniform, linear and non-linear distribution through the thickness directions, respectively. Also, the effects of various parameters for thermal buckling behavior of FGM panel are discussed in detail.Keywords: functionally graded plate, thermal buckling analysis, neutral surface
Procedia PDF Downloads 4011581 Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load
Authors: Elisaveta Kirilova, Wilfried Becker, Jordanka Ivanova, Tatyana Petrova
Abstract:
The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed.Keywords: genetic algorithm, minimal delamination, optimal gap position, shear lag solution
Procedia PDF Downloads 3001580 Development of Sound Tactile Interface by Use of Human Sensation of Stiffness
Authors: K. Doi, T. Nishimura, M. Umeda
Abstract:
There are very few sound interfaces that both healthy people and hearing handicapped people can use to play together. In this study, we developed a sound tactile interface that makes use of the human sensation of stiffness. The interface comprises eight elastic objects having varying degrees of stiffness. Each elastic object is shaped like a column. When people with and without hearing disabilities press each elastic object, different sounds are produced depending on the stiffness of the elastic object. The types of sounds used were “Do Re Mi sounds.” The interface has a major advantage in that people with or without hearing disabilities can play with it. We found that users were able to recognize the hardness sensation and relate it to the corresponding Do Re Mi sounds.Keywords: tactile sense, sound interface, stiffness perception, elastic object
Procedia PDF Downloads 2851579 On Radially Symmetric Vibrations of Bi-Directional Functionally Graded Circular Plates on the Basis of Mindlin’s Theory and Neutral Axis
Authors: Rahul Saini, Roshan Lal
Abstract:
The present paper deals with the free axisymmetric vibrations of bi-directional functionally graded circular plates using Mindlin’s plate theory and physical neutral surface. The temperature-dependent, as well as temperature-independent mechanical properties of the plate material, varies in radial and transverse directions. Also, temperature profile for one- and two-dimensional temperature variations has been obtained from the heat conduction equation. A simple computational formulation for the governing differential equation of motion for such a plate model has been derived using Hamilton's principle for the clamped and simply supported plates at the periphery. Employing the generalized differential quadrature method, the corresponding frequency equations have been obtained and solved numerically to retain their lowest three roots as the natural frequencies for the first three modes. The effect of various other parameters such as temperature profile, functionally graded indices, and boundary conditions on the vibration characteristics has been presented. In order to validate the accuracy and efficiency of the method, the results have been compared with those available in the literature.Keywords: bi-directionally FG, GDQM, Mindlin’s circular plate, neutral axis, vibrations
Procedia PDF Downloads 1301578 CONDUCTHOME: Gesture Interface Control of Home Automation Boxes
Authors: J. Branstett, V. Gagneux, A. Leleu, B. Levadoux, J. Pascale
Abstract:
This paper presents the interface CONDUCTHOME which controls home automation systems with a Leap Motion using ‘invariant gesture protocols’. The function of this interface is to simplify the interaction of the user with its environment. A hardware part allows the Leap Motion to be carried around the house. A software part interacts with the home automation box and displays the useful information for the user. An objective of this work is the development a natural/invariant/simple gesture control interface to help elder people/people with disabilities.Keywords: automation, ergonomics, gesture recognition, interoperability
Procedia PDF Downloads 4311577 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker
Authors: G. Roshan Deen, J. S. Pedersen
Abstract:
Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering
Procedia PDF Downloads 4271576 A Pull-Out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites, the Influence of the Processing Temperature
Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay
Abstract:
This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find a molding temperature of 183°C leads to better interface properties. Above or below this temperature the interface strength is reduced.Keywords: composite, hemp, interface, pull-out, processing, polypropylene, temperature
Procedia PDF Downloads 3921575 A Comparative Study of Linearly Graded and without Graded Photonic Crystal Structure
Authors: Rajeev Kumar, Angad Singh Kushwaha, Amritanshu Pandey, S. K. Srivastava
Abstract:
Photonic crystals (PCs) have attracted much attention due to its electromagnetic properties and potential applications. In PCs, there is certain range of wavelength where electromagnetic waves are not allowed to pass are called photonic band gap (PBG). A localized defect mode will appear within PBG, due to change in the interference behavior of light, when we create a defect in the periodic structure. We can also create different types of defect structures by inserting or removing a layer from the periodic layered structure in two and three-dimensional PCs. We can design microcavity, waveguide, and perfect mirror by creating a point defect, line defect, and palanar defect in two and three- dimensional PC structure. One-dimensional and two-dimensional PCs with defects were reported theoretically and experimentally by Smith et al.. in conventional photonic band gap structure. In the present paper, we have presented the defect mode tunability in tilted non-graded photonic crystal (NGPC) and linearly graded photonic crystal (LGPC) using lead sulphide (PbS) and titanium dioxide (TiO2) in the infrared region. A birefringent defect layer is created in NGPC and LGPC using potassium titany phosphate (KTP). With the help of transfer matrix method, the transmission properties of proposed structure is investigated for transverse electric (TE) and transverse magnetic (TM) polarization. NGPC and LGPC without defect layer is also investigated. We have found that a photonic band gap (PBG) arises in the infrared region. An additional defect layer of KTP is created in NGPC and LGPC structure. We have seen that an additional transmission mode appers in PBG region. It is due to the addition of defect layer. We have also seen the effect, linear gradation in thickness, angle of incidence, tilt angle, and thickness of defect layer, on PBG and additional transmission mode. We have observed that the additional transmission mode and PBG can be tuned by changing the above parameters. The proposed structure may be used as channeled filter, optical switches, monochromator, and broadband optical reflector.Keywords: defect modes, graded photonic crystal, photonic crystal, tilt angle
Procedia PDF Downloads 3761574 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4831573 Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media
Authors: Karen B. Ghazaryan
Abstract:
Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out.Keywords: surface shear waves, magneto-electro-elastic composites, piezoactive crystals, functionally graded elastic materials
Procedia PDF Downloads 2151572 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells
Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves
Abstract:
Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations
Procedia PDF Downloads 651571 Effect of the Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System
Authors: Jui-Pui Hung, Yu-Sheng Lai, Tzuo-Liang Luo, Kung-Da Wu, Yun-Ji Zhan
Abstract:
This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance.Keywords: dynamic stiffness, spindle-tool holder, interface stiffness, drawbar force
Procedia PDF Downloads 3971570 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices
Authors: Roisul H. Galib, Prabhakar R. Bandaru
Abstract:
In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance
Procedia PDF Downloads 1541569 Stress Variation around a Circular Hole in Functionally Graded Plate under Bending
Authors: Parveen K. Saini, Mayank Kushwaha
Abstract:
The influence of material property variation on stress concentration factor (SCF) due to the presence of a circular hole in a functionally graded material (FGM) plate is studied in this paper. A numerical method based on complex variable theory of elasticity is used to investigate the problem. To achieve the material property, variation plate is decomposed into a number of rings. In this research work, Young's modulus is assumed to be varying exponentially and it is found that stress concentration factor can be reduced by increasing Young’s modulus progressively away from the hole.Keywords: stress concentration, circular hole, FGM plate, bending
Procedia PDF Downloads 3061568 A New Proposed Framework for the Development of Interface Design for Malaysian Interactive Courseware
Authors: Norfadilah Kamaruddin
Abstract:
This paper introduces a new proposed framework for the development process of interface design for Malaysian interactive courseware by exploring four established model in the recent research literature, existing Malaysian government guidelines and Malaysian developers practices. In particular, the study looks at the stages and practices throughout the development process. Significant effects of each of the stages are explored and documented, and significant interrelationships among them suggested. The results of analysis are proposed as potential model that helps in establishing and designing a new version of Malaysian interactive courseware.Keywords: development processes, interaction with interface, interface design, social sciences
Procedia PDF Downloads 3791567 Graphic User Interface Design Principles for Designing Augmented Reality Applications
Authors: Afshan Ejaz, Syed Asim Ali
Abstract:
The reality is a combination of perception, reconstruction, and interaction. Augmented Reality is the advancement that layer over consistent everyday existence which includes content based interface, voice-based interfaces, voice-based interface and guide based or gesture-based interfaces, so designing augmented reality application interfaces is a difficult task for the maker. Designing a user interface which is not only easy to use and easy to learn but its more interactive and self-explanatory which have high perceived affordability, perceived usefulness, consistency and high discoverability so that the user could easily recognized and understand the design. For this purpose, a lot of interface design principles such as learnability, Affordance, Simplicity, Memorability, Feedback, Visibility, Flexibly and others are introduced but there no such principles which explain the most appropriate interface design principles for designing an Augmented Reality application interfaces. Therefore, the basic goal of introducing design principles for Augmented Reality application interfaces is to match the user efforts and the computer display (‘plot user input onto computer output’) using an appropriate interface action symbol (‘metaphors’) or to make that application easy to use, easy to understand and easy to discover. In this study by observing Augmented reality system and interfaces, few of well-known design principle related to GUI (‘user-centered design’) are identify and through them, few issues are shown which can be determined through the design principles. With the help of multiple studies, our study suggests different interface design principles which makes designing Augmented Reality application interface more easier and more helpful for the maker as these principles make the interface more interactive, learnable and more usable. To accomplish and test our finding, Pokémon Go an Augmented Reality game was selected and all the suggested principles are implement and test on its interface. From the results, our study concludes that our identified principles are most important principles while developing and testing any Augmented Reality application interface.Keywords: GUI, augmented reality, metaphors, affordance, perception, satisfaction, cognitive burden
Procedia PDF Downloads 1691566 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load
Authors: Morteza Raminnia
Abstract:
In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers
Procedia PDF Downloads 4191565 A Sharp Interface Model for Simulating Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)
Authors: Abdelkader Hachemi, Boualem Remini
Abstract:
Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.Keywords: seawater intrusion, sharp interface, coastal aquifer, algeria
Procedia PDF Downloads 1191564 Experimental Investigation on the Effect of Bond Thickness on the Interface Behaviour of Fibre Reinforced Polymer Sheet Bonded to Timber
Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews
Abstract:
The bond mechanism between timber and fibre reinforced polymer (FRP) is relatively complex and is influenced by a number of variables including bond thickness, bond width, bond length, material properties, and geometries. This study investigates the influence of bond thickness on the behaviour of interface, failure mode, and bond strength of externally bonded FRP-to-timber interface. In the present study, 106 single shear joint specimens have been investigated. Experiment results showed that higher layers of FRP increase the ultimate load carrying capacity of interface; conversely, such increase led to decrease the slip of interface. Moreover, samples with more layers of FRPs may fail in a brittle manner without noticeable warning that collapse is imminent.Keywords: fibre reinforced polymer, FRP, single shear test, bond thickness, bond strength
Procedia PDF Downloads 229