Search results for: geometric constraint solver
1210 Three-Stage Multivariate Stratified Sample Surveys with Probabilistic Cost Constraint and Random Variance
Authors: Sanam Haseen, Abdul Bari
Abstract:
In this paper a three stage multivariate programming problem with random survey cost and variances as random variables has been formulated as a non-linear stochastic programming problem. The problem has been converted into an equivalent deterministic form using chance constraint programming and modified E-modeling. An empirical study of the problem has been done at the end of the paper using R-simulation.Keywords: chance constraint programming, modified E-model, stochastic programming, stratified sample surveys, three stage sample surveys
Procedia PDF Downloads 4571209 Investigation of Airship Motion Sensitivity to Geometric Parameters
Authors: Han Ding, Wang Xiaoliang, Duan Dengping
Abstract:
During the process of airship design, the layout and the geometric shape of the hull and fins are crucial to the motion characteristics of the airship. In this paper, we obtained the quantification motion sensitivity of the airship to geometric parameters through turning circles and horizontal/vertical zigzag maneuvers by the parameterization of airship shape and building the dynamic model using Lagrangian approach and MATLAB Simulink program. In the dynamics simulation program, the affection of geometric parameters to the mass, center of gravity, moments of inertia, product of inertia, added mass and the aerodynamic forces and moments have been considered.Keywords: airship, Lagrangian approach, turning circles, horizontal/vertical zigzag maneuvers
Procedia PDF Downloads 4251208 Quality-Of-Service-Aware Green Bandwidth Allocation in Ethernet Passive Optical Network
Authors: Tzu-Yang Lin, Chuan-Ching Sue
Abstract:
Sleep mechanisms are commonly used to ensure the energy efficiency of each optical network unit (ONU) that concerns a single class delay constraint in the Ethernet Passive Optical Network (EPON). How long the ONUs can sleep without violating the delay constraint has become a research problem. Particularly, we can derive an analytical model to determine the optimal sleep time of ONUs in every cycle without violating the maximum class delay constraint. The bandwidth allocation considering such optimal sleep time is called Green Bandwidth Allocation (GBA). Although the GBA mechanism guarantees that the different class delay constraints do not violate the maximum class delay constraint, packets with a more relaxed delay constraint will be treated as those with the most stringent delay constraint and may be sent early. This means that the ONU will waste energy in active mode to send packets in advance which did not need to be sent at the current time. Accordingly, we proposed a QoS-aware GBA using a novel intra-ONU scheduling to control the packets to be sent according to their respective delay constraints, thereby enhancing energy efficiency without deteriorating delay performance. If packets are not explicitly classified but with different packet delay constraints, we can modify the intra-ONU scheduling to classify packets according to their packet delay constraints rather than their classes. Moreover, we propose the switchable ONU architecture in which the ONU can switch the architecture according to the sleep time length, thus improving energy efficiency in the QoS-aware GBA. The simulation results show that the QoS-aware GBA ensures that packets in different classes or with different delay constraints do not violate their respective delay constraints and consume less power than the original GBA.Keywords: Passive Optical Networks, PONs, Optical Network Unit, ONU, energy efficiency, delay constraint
Procedia PDF Downloads 2841207 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability
Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard
Abstract:
The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty
Procedia PDF Downloads 1861206 Constraint-Directed Techniques for Transport Scheduling with Capacity Restrictions of Automotive Manufacturing Components
Authors: Martha Ndeley, John Ikome
Abstract:
In this paper, we expand the scope of constraint-directed techniques to deal with the case of transportation schedule with capacity restrictions where the scheduling problem includes alternative activities. That is, not only does the scheduling problem consist of determining when an activity is to be executed, but also determining which set of alternative activities is to be executed at all level of transportation from input to output. Such problems encompass both alternative resource problems and alternative process plan problems. We formulate a constraint-based representation of alternative activities to model problems containing such choices. We then extend existing constraint-directed scheduling heuristic commitment techniques and propagators to reason directly about the fact that an activity does not necessarily have to exist in a final transportation schedule without being completed. Tentative results show that an algorithm using a novel texture-based heuristic commitment technique propagators achieves the best overall performance of the techniques tested.Keywords: production, transportation, scheduling, integrated
Procedia PDF Downloads 3621205 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications
Authors: Chee Sun Won
Abstract:
This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication
Procedia PDF Downloads 4181204 Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver
Authors: Paolo Sassi, Jorge Freiria, Gabriel Usera
Abstract:
In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development.Keywords: computational fluid dynamics, discrete element method, fishnets, nested overlapping grids
Procedia PDF Downloads 4161203 Structural Analysis of the Burkh Anticline in Fars Zone, in the Zagros Fold-Thrust Belt
Authors: A. Afroogh, R. Ramazani Omali, N. Hafezi Moghaddas, A. Nohegar
Abstract:
Burkh anticline is located in Southeast of Zagros fold-thrust belt in the Fars Province. Geometric analyses of the anticline have been carried out to estimate the closure of the Dehram Group in order to evaluate its potential for gas reservoirs. Geometric analyses of the Burkh anticline indicate that the fold geometry is rather similar to that of the detachment folds. Based on the data from the geometric analysis, seven structural cross section the anticlines are drawn and using the cross sections, a structural contour for Dehram Group is constructed. The calculated values for the anticline closure prohibits this structure as it is not an appropriate host to gas reservoirs.Keywords: Burkh anticline, Zagros fold-thrust belt, geometric analyses, vertical and horizontal closure, Dehram group
Procedia PDF Downloads 3451202 Kýklos Dimensional Geometry: Entity Specific Core Measurement System
Authors: Steven D. P Moore
Abstract:
A novel method referred to asKýklos(Ky) dimensional geometry is proposed as an entity specific core geometric dimensional measurement system. Ky geometric measures can constructscaled multi-dimensionalmodels using regular and irregular sets in IRn. This entity specific-derived geometric measurement system shares similar fractal methods in which a ‘fractal transformation operator’ is applied to a set S to produce a union of N copies. The Kýklos’ inputs use 1D geometry as a core measure. One-dimensional inputs include the radius interval of a circle/sphere or the semiminor/semimajor axes intervals of an ellipse or spheroid. These geometric inputs have finite values that can be measured by SI distance units. The outputs for each interval are divided and subdivided 1D subcomponents with a union equal to the interval geometry/length. Setting a limit of subdivision iterations creates a finite value for each 1Dsubcomponent. The uniqueness of this method is captured by allowing the simplest 1D inputs to define entity specific subclass geometric core measurements that can also be used to derive length measures. Current methodologies for celestial based measurement of time, as defined within SI units, fits within this methodology, thus combining spatial and temporal features into geometric core measures. The novel Ky method discussed here offers geometric measures to construct scaled multi-dimensional structures, even models. Ky classes proposed for consideration include celestial even subatomic. The application of this offers incredible possibilities, for example, geometric architecture that can represent scaled celestial models that incorporates planets (spheroids) and celestial motion (elliptical orbits).Keywords: Kyklos, geometry, measurement, celestial, dimension
Procedia PDF Downloads 1661201 Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices
Authors: Brando Vagenende, Marie-Anne Guerry
Abstract:
For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4.Keywords: eigenvalues of matrices, finite Markov chains, monotone matrices, nonnegative matrices, stochastic matrices
Procedia PDF Downloads 801200 A New Aggregation Operator for Trapezoidal Fuzzy Numbers Based On the Geometric Means of the Left and Right Line Slopes
Authors: Manju Pandey, Nilay Khare, S. C. Shrivastava
Abstract:
This paper is the final in a series, which has defined two new classes of aggregation operators for triangular and trapezoidal fuzzy numbers based on the geometrical characteristics of their fuzzy membership functions. In the present paper, a new aggregation operator for trapezoidal fuzzy numbers has been defined. The new operator is based on the geometric mean of the membership lines to the left and right of the maximum possibility interval. The operator is defined and the analytical relationships have been derived. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TrFN aggregates have also been computed.Keywords: LR fuzzy number, interval fuzzy number, triangular fuzzy number, trapezoidal fuzzy number, apex angle, left apex angle, right apex angle, aggregation operator, arithmetic and geometric mean
Procedia PDF Downloads 4721199 Examining Geometric Thinking Behaviours of Undergraduates in Online Geometry Course
Authors: Peter Akayuure
Abstract:
Geometry is considered an important strand in mathematics due to its wide-ranging utilitarian value and because it serves as a building block for understanding other aspects of undergraduate mathematics, including algebra and calculus. Matters regarding students’ geometric thinking have therefore long been pursued by mathematics researchers and educators globally via different theoretical lenses, curriculum reform efforts, and innovative instructional practices. However, so far, studies remain inconclusive about the instructional platforms that effectively promote geometric thinking. At the University of Education, Winneba, an undergraduate geometry course was designed and delivered on UEW Learning Management System (LMS) using Moodle platform. This study utilizes van Hiele’s theoretical lens to examine the entry and exit’s geometric thinking behaviours of prospective teachers who took the undergraduate geometry course in the LMS platform. The study was a descriptive survey that involved an intact class of 280 first-year students enrolled to pursue a bachelor's in mathematics education at the university. The van Hiele’s Geometric thinking test was used to assess participants’ entry and exit behaviours, while semi-structured interviews were used to obtain data for triangulation. Data were analysed descriptively and displayed in tables and charts. An Independent t-test was used to test for significant differences in geometric thinking behaviours between those who entered the university with a diploma certificate and with senior high certificate. The results show that on entry, more than 70% of the prospective teachers operated within the visualization level of van Hiele’s geometric thinking. Less than 20% reached analysis and abstraction levels, and no participant reached deduction and rigor levels. On exit, participants’ geometric thinking levels increased markedly across levels, but the difference from entry was not significant and might have occurred by chance. The geometric thinking behaviours of those enrolled with diploma certificates did not differ significant from those enrolled directly from senior high school. The study recommends that the design principles and delivery of undergraduate geometry course via LMS should be structured and tackled using van Hiele’s geometric thinking levels to serve as means of bridging the existing learning gaps of undergraduate students.Keywords: geometric thinking, van Hiele’s, UEW learning management system, undergraduate geometry
Procedia PDF Downloads 1281198 Buckling of Plates on Foundation with Different Types of Sides Support
Authors: Ali N. Suri, Ahmad A. Al-Makhlufi
Abstract:
In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied. The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length. To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed. Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition. The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work. The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.Keywords: buckling, finite strip, different sides support, plates on foundation
Procedia PDF Downloads 2431197 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation
Authors: Oğuzhan Urhan
Abstract:
In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.Keywords: fast motion estimation; low-complexity motion estimation, video coding
Procedia PDF Downloads 3161196 Determination of Unsaturated Soil Permeability Based on Geometric Factor Development of Constant Discharge Model
Authors: A. Rifa’i, Y. Takeshita, M. Komatsu
Abstract:
After Yogyakarta earthquake in 2006, the main problem that occurred in the first yard of Prambanan Temple is ponding area that occurred after rainfall. Soil characterization needs to be determined by conducting several processes, especially permeability coefficient (k) in both saturated and unsaturated conditions to solve this problem. More accurate and efficient field testing procedure is required to obtain permeability data that present the field condition. One of the field permeability test equipment is Constant Discharge procedure to determine the permeability coefficient. Necessary adjustments of the Constant Discharge procedure are needed to be determined especially the value of geometric factor (F) to improve the corresponding value of permeability coefficient. The value of k will be correlated with the value of volumetric water content (θ) of an unsaturated condition until saturated condition. The principle procedure of Constant Discharge model provides a constant flow in permeameter tube that flows into the ground until the water level in the tube becomes constant. Constant water level in the tube is highly dependent on the tube dimension. Every tube dimension has a shape factor called the geometric factor that affects the result of the test. Geometric factor value is defined as the characteristic of shape and radius of the tube. This research has modified the geometric factor parameters by using empty material tube method so that the geometric factor will change. Saturation level is monitored by using soil moisture sensor. The field test results were compared with the results of laboratory tests to validate the results of the test. Field and laboratory test results of empty tube material method have an average difference of 3.33 x 10-4 cm/sec. The test results showed that modified geometric factor provides more accurate data. The improved methods of constant discharge procedure provide more relevant results.Keywords: constant discharge, geometric factor, permeability coefficient, unsaturated soils
Procedia PDF Downloads 2941195 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation
Procedia PDF Downloads 3001194 Triangular Geometric Feature for Offline Signature Verification
Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad
Abstract:
Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.Keywords: biometrics, euclidean classifier, features extraction, offline signature verification, voting-based classifier
Procedia PDF Downloads 3781193 An Improved Genetic Algorithm for Traveling Salesman Problem with Precedence Constraint
Authors: M. F. F. Ab Rashid, A. N. Mohd Rose, N. M. Z. Nik Mohamed, W. S. Wan Harun, S. A. Che Ghani
Abstract:
Traveling salesman problem with precedence constraint (TSPPC) is one of the most complex problems in combinatorial optimization. The existing algorithms to solve TSPPC cost large computational time to find the optimal solution. The purpose of this paper is to present an efficient genetic algorithm that guarantees optimal solution with less number of generations and iterations time. Unlike the existing algorithm that generates priority factor as chromosome, the proposed algorithm directly generates sequence of solution as chromosome. As a result, the proposed algorithm is capable of generating optimal solution with smaller number of generations and iteration time compare to existing algorithm.Keywords: traveling salesman problem, sequencing, genetic algorithm, precedence constraint
Procedia PDF Downloads 5601192 Vehicle Type Classification with Geometric and Appearance Attributes
Authors: Ghada S. Moussa
Abstract:
With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.Keywords: appearance attributes, geometric attributes, support vector machine, vehicle classification
Procedia PDF Downloads 3381191 A Survey on Compression Methods for Table Constraints
Authors: N. Gharbi
Abstract:
Constraint Satisfaction problems are mathematical problems that are often used to model many real-world problems for which we look if there exists a solution satisfying all its constraints. Table constraints are important for modeling parts of many problems since they list all combinations of allowed or forbidden values. However, they admit practical limitations because they are sometimes too large to be represented in a direct way. In this paper, we present a survey of the different categories of the proposed approaches to compress table constraints in order to reduce both space and time complexities.Keywords: constraint programming, compression, data mining, table constraints
Procedia PDF Downloads 3251190 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features
Authors: Bo Wang
Abstract:
The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection
Procedia PDF Downloads 2841189 Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures
Authors: Kahil Amar, Nekmouche Aghiles, Titouche Billal, Hamizi Mohand, Hannachi Naceur Eddine
Abstract:
The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings.Keywords: ductility, nonlinear behavior, pushover analysis, geometric slenderness, structural behavior
Procedia PDF Downloads 3891188 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures
Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui
Abstract:
The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.Keywords: multi-cores DSP, scheduling, SMT solver, workflow
Procedia PDF Downloads 2861187 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing
Authors: Divyesh Patel, Tanuja Srivastava
Abstract:
This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.Keywords: discrete tomography, exactly-1-4-adjacency, simulated annealing, binary matrices
Procedia PDF Downloads 4061186 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai
Abstract:
Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities
Procedia PDF Downloads 3171185 Design and Development of Chassis Made of Composite Material
Authors: P. Ravinder Reddy, Chaitanya Vishal Nalli, B. Tulja Lal, Anusha Kankanala
Abstract:
The chassis frame of an automobile with different sections have been considered for different loads. The orthotropic materials are selected to get the stability by varying fiber angle, fiber thickness, laminates, fiber properties, matrix properties and elastic ratios. The geometric model of chassis frame is carried out with parametric modelling approach. The analysis of chassis frame is carried out with ANSYS FEA software. The static and dynamic analysis of chassis frame is carried out by varying geometric parameters, orthotropic properties, materials and various sections. The static and dynamic response is discussed in detail in different sections.Keywords: chassis frame, dynamic response, geometric model, orthotropic materials
Procedia PDF Downloads 3331184 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections
Authors: S. Fominow, C. Dobert
Abstract:
The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis
Procedia PDF Downloads 1561183 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm
Authors: Safayat Ali Shaikh
Abstract:
Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern
Procedia PDF Downloads 2031182 Coupling Concept of Two Parallel Research Codes for Two and Three Dimensional Fluid Structure Interaction Analysis
Authors: Luciano Garelli, Marco Schauer, Jorge D’Elia, Mario A. Storti, Sabine C. Langer
Abstract:
This paper discuss a coupling strategy of two different software packages to provide fluid structure interaction (FSI) analysis. The basic idea is to combine the advantages of the two codes to create a powerful FSI solver for two and three dimensional analysis. The fluid part is computed by a program called PETSc-FEM, a software developed at Centro de Investigación de Métodos Computacionales (CIMEC). The structural part of the coupled process is computed by the research code elementary Parallel Solver (elPaSo) of the Technische Universität Braunschweig, Institut für Konstruktionstechnik (IK).Keywords: computational fluid dynamics (CFD), fluid structure interaction (FSI), finite element method (FEM), software
Procedia PDF Downloads 5521181 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences
Authors: Yuan-Jye Tseng, Ching-Yen Chen
Abstract:
In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.Keywords: cluster analysis, customer preferences, design evaluation, design for customer preferences, product design
Procedia PDF Downloads 191