Search results for: genotypic identification
2971 UEMSD Risk Identification: Case Study
Authors: K. Sekulová, M. Šimon
Abstract:
The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upper-extremities musculoskeletal disorders.Keywords: case study, upper-extremity musculoskeletal disorders, ergonomics, risk identification
Procedia PDF Downloads 4992970 An Improved Parameter Identification Method for Three Phase Induction Motor
Authors: Liang Zhao, Chong-quan Zhong
Abstract:
In order to improve the control performance of vector inverter, an improved parameter identification solution for induction motor is proposed in this paper. Dc or AC voltage is applied to the induction motor using the SVPWM through the inverter. Then stator resistance, stator leakage inductance, rotor resistance, rotor leakage inductance and mutual inductance are obtained according to the signal response. The discrete Fourier transform (DFT) is used to deal with the noise and harmonic. The impact on parameter identification caused by delays in the inverter switch tube, tube voltage drop and dead-time is avoided by effective compensation measures. Finally, the parameter identification experiment is conducted based on the vector inverter which using TMS320F2808 DSP as the core processor and results show that the strategy is verified.Keywords: vector inverter, parameter identification, SVPWM; DFT, dead-time compensation
Procedia PDF Downloads 4612969 Modeling of a UAV Longitudinal Dynamics through System Identification Technique
Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad
Abstract:
System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error
Procedia PDF Downloads 3252968 Morphological and Biological Identification of Fusarium Species Associated with Ear Rot Disease of Maize in Indonesia and Malaysia
Authors: Darnetty Baharuddin Salleh
Abstract:
Fusarium ear rot disease is one of the most important diseases of maize and not only causes significant losses but also produced harmful mycotoxins to animals and humans. A total of 141 strains of Fusarium species were isolated from maize plants showing typical ear rot symptoms in Indonesia, and Malaysia by using the semi-selective medium (peptone pentachloronitrobenzene agar, PPA). These strains were identified morphologically. For strains in Gibberella fujikuroi species complex (Gfsc), the identification was continued by using biological identification. Three species of Fusarium were morphologically identified as Fusarium in Gibberella species complex (105 strains, 74.5%), F. verticillioides (78 strains), F. proliferatum (24 strains) and F. subglutinans (3 strains) and five species from other section (36 strains, 25.5%), F. graminearum (14 strains), F. oxysporum (8 strains), F. solani ( 1 strain), and F. semitectum (13 strains). Out of 105 Fusarium species in Gfsc, 63 strains were identified as MAT-1, 25 strains as MAT-2 and 17 strains could not be identified and in crosses with nine standard testers, three mating populations of Fusarium were identified as MP-A, G. moniliformis (68 strains, 64.76%), MP-D, G. intermedia (21 strains, 20%) and MP-E, G. subglutinans (3 strains, 2.9%), and 13 strains (12.38%) could not be identified. All trains biologically identified as MP-A, MP-D, and MP-E, were identified morphologically as F. verticillioides, F. proliferatum, and F. subglutinans, respectively. Thus, the results of this study indicated that identification based on biological identification were consistent with those of morphological identification. This is the first report on the presence of MP-A, MP-D, and MP-E on ear rot-infected maize in Indonesia; MP-A and MP-E in Malaysia.Keywords: Fusarium, MAT-1, MAT-2, MP-A, MP-D, MP-E
Procedia PDF Downloads 3102967 The Impact of the Cross Race Effect on Eyewitness Identification
Authors: Leah Wilck
Abstract:
Eyewitness identification is arguably one of the most utilized practices within our legal system; however, exoneration cases indicate that this practice may lead to accuracy and conviction errors. The purpose of this study was to examine the effects of the cross-race effect, the phenomena in which people are able to more easily and accurately identify faces from within their racial category, on the accuracy of eyewitness identification. Participants watched three separate videos of a perpetrator trying to steal a bicycle. In each video, the perpetrator was of a different race and gender. Participants watched a video where the perpetrator was a Black male, a White male, and a White female. Following the completion of watching each video, participants were asked to recall everything they could about the perpetrator they witnessed. The initial results of the study did not find the expected cross-race effect impacted the eyewitness identification accuracy. These surprising results are discussed in terms of cross-race bias and recognition theory as well as applied implications.Keywords: cross race effect, eyewitness identification, own-race bias, racial profiling
Procedia PDF Downloads 1642966 New Approach for Constructing a Secure Biometric Database
Authors: A. Kebbeb, M. Mostefai, F. Benmerzoug, Y. Chahir
Abstract:
The multimodal biometric identification is the combination of several biometric systems. The challenge of this combination is to reduce some limitations of systems based on a single modality while significantly improving performance. In this paper, we propose a new approach to the construction and the protection of a multimodal biometric database dedicated to an identification system. We use a topological watermarking to hide the relation between face image and the registered descriptors extracted from other modalities of the same person for more secure user identification.Keywords: biometric databases, multimodal biometrics, security authentication, digital watermarking
Procedia PDF Downloads 3902965 Early Talent Identification and Its Impact on Children’s Growth and Development: An Examination of “The Social Learning Theory, by Albert Bandura"
Authors: Michael Subbey, Kwame Takyi Danquah
Abstract:
Finding a child's exceptional skills and abilities at a young age and nurturing them is a challenging process. The Social Learning Theory (SLT) of Albert Bandura is used to analyze the effects of early talent identification on children's growth and development. The study examines both the advantages and disadvantages of early talent identification and stresses the significance of a moral strategy that puts the welfare of the child first. The paper emphasizes the value of a balanced approach to early talent identification that takes into account individual differences, cultural considerations, and the child's social environment.Keywords: early talent development, social learning theory, child development, child welfare
Procedia PDF Downloads 1082964 Urban and Rural Children’s Knowledge on Biodiversity in Bizkaia: Tree Identification Skills and Animal and Plant Listing
Authors: Joserra Díez, Ainhoa Meñika, Iñaki Sanz-Azkue, Arritokieta Ortuzar
Abstract:
Biodiversity provides humans with a great range of ecosystemic services; it is therefore an indispensable resource and a legacy to coming generations. However, in the last decades, the increasing exploitation of the Planet has caused a great loss of biodiversity and its acquaintance has decreased remarkably; especially in urbanized areas, due to the decreasing attachment of humans to nature. Yet, the Primary Education curriculum primes the identification of flora and fauna to guarantee the knowledge of children on their surroundings, so that they care for the environment as well as for themselves. In order to produce effective didactic material that meets the needs of both teachers and pupils, it is fundamental to diagnose the current situation. In the present work, the knowledge on biodiversity of 3rd cycle Primary Education students in Biscay (n=98) and its relation to the size of the town/city of their school is discussed. Two tests have been used with such aim: one for tree identification and the other one so that the students enumerated the species of trees and animals they knew. Results reveal that knowledge of students on tree identification is scarce regardless the size of the city/town and of their school. On the other hand, animal species are better known than tree species.Keywords: biodiversity, population, tree identification, animal identification
Procedia PDF Downloads 1972963 Ultracapacitor State-of-Energy Monitoring System with On-Line Parameter Identification
Authors: N. Reichbach, A. Kuperman
Abstract:
The paper describes a design of a monitoring system for super capacitor packs in propulsion systems, allowing determining the instantaneous energy capacity under power loading. The system contains real-time recursive-least-squares identification mechanism, estimating the values of pack capacitance and equivalent series resistance. These values are required for accurate calculation of the state-of-energy.Keywords: real-time monitoring, RLS identification algorithm, state-of-energy, super capacitor
Procedia PDF Downloads 5352962 Kalman Filter Design in Structural Identification with Unknown Excitation
Authors: Z. Masoumi, B. Moaveni
Abstract:
This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied.Keywords: Kalman filter (KF), least square estimation (LSE), structural health monitoring (SHM), structural system identification
Procedia PDF Downloads 3172961 Size-Reduction Strategies for Iris Codes
Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl
Abstract:
Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple sub-sampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two stage identification approach, using small-sized iris code templates in a pre-selection satge, and full resolution templates for final identification, which shows promising recognition behaviour.Keywords: iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification
Procedia PDF Downloads 4402960 The Impact of Internal and External CSR on Organizational Citizenship Behavior and Performance: Mediation of Organizational Identification and Moderation of Ethical Leadership. A Cross-Cultural Study
Authors: Huma Sarwar, Muhammad Ishtiaq Ishaq, Junaid Aftab
Abstract:
The hospitality sector contributes significantly to the global economy but it is also responsible for imposing adverse influences both environmentally and socially. The objective of this research is two-fold: (1) examining the direct impact of internal CSR and external CSR and indirect impact via organizational identification on creative performance and organizational citizenship behavior (OCB), and (2) determining the moderating role of ethical leadership in the relationships of internal- and external- CSR with organizational identification in a cross-cultural context. The data was were collected using multi-respondents and time-lagged data from 260 Pakistani and 239 UK respondents working in upscale hotels of the United Kingdom and Pakistan. The results demonstrate significant differences in both cultures as external CSR has a more substantial impact on organizational identification in the UK, whereas organizational identification has a relatively stronger influence on OCB and creative performance in collectivistic culture (i.e., Pakistan). The findings also confirmed that ethical leadership significantly moderates the relationship of internal- and external - CSR on organizational identification.Keywords: Huma Sarwar, Muhammad Ishtiaq Ishaq, Junaid Aftab
Procedia PDF Downloads 1482959 Variability Parameters for Growth and Yield Characters in Fenugreek, Trigonella spp. Genotypes
Authors: Anita Singh, Richa Naula, Manoj Raghav
Abstract:
India is a leading producer and consumer of fenugreek for its culinary uses and medicinal application. In India, most of the people are of vegetarian class. In such a situation, a leafy vegetable, such as fenugreek is of chief concern due to its high nutritional property, medicinal values and industrial uses. One of the most important factors restricting their large scale production and development of superior varieties is that very scanty knowledge about their genetic diversity, inter and intraspecific variability and genetic relationship among the species. Improvement of the crop depends upon the magnitude of genetic variability for economic characters. Therefore, the present research work was carried out to analyse the variability parameters for growth and yield character in twenty-eight fenugreek genotypes along with two standard checks Pant Ragini and Pusa Early Bunching. The experiment was laid out in Randomized Block Design with three replication during rabi season 2015-2016 at Pantnagar Centre for Plant Genetic Resources, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand. The analysis of variance revealed highly significant differences among all the genotypes for all traits. High genotypic and phenotypic coefficient variation were observed for characters, namely the number of primary branches per plant, number of leaves at 30, 45 and 60 DAS, green leaf yield per plant, green leaf yield q/ha . The genetic advance recorded highest in green leaf yield q/ha (33.93) followed by green leaf yield per plant (21.20g). Highest percent of heritability were shown by 1000 seed weight (99.12%) followed by the number of primary branches per plant (97.18%). Green leaf yield q/ha showed high heritability and high genetic advance. These superior genotypes can be further used in crop improvement programs of fenugreek.Keywords: genetic advance, genotypic coefficient variation, heritability, phenotypic coefficient variation
Procedia PDF Downloads 3212958 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 3602957 Gender Identification Using Digital Forensics
Authors: Vinod C. Nayak
Abstract:
In day-to-day forensic practice, identification is always a difficult task. Availability of anti-mortem and postmortem records plays a major rule in facilitating this tough task. However, the advent of digital forensic is a boon for forensic experts. This study has made use of digital forensics to establish identity by radiological dimensions of maxillary sinus using workstation software. The findings suggest a significant association between maxillary sinus dimensions and human gender. The author will be discussing the methods and results of the study in this e-poster.Keywords: digital forensics, identification, maxillary sinus, radiology
Procedia PDF Downloads 4192956 Lateral Cephalometric Radiograph to Determine Sex in Forensic Investigations
Authors: Paulus Maulana
Abstract:
Forensic identification is to help investigators determine a person's identity. Personal identification is often a problem in civil and criminal cases. Orthodontists like all other dental professionals can play a major role by maintaining lateral cephalogram and thus providing important or vital information or can clues to the legal authorities in order to help them in their search. Radiographic lateral cephalometry is a measurement method which focused on the anatomical points of human lateral skull. Sex determination is one of the most important aspects of the personal identification in forensic. Lateral cephalogram is a valuable tool in identification of sex as reveal morphological details of the skull on single radiograph. This present study evaluates the role of lateral cephalogram in identification of sex that parameters of lateral cephalogram are linear measurement and angle measurement. The linear measurements are N-S ( Anterior cranial length), Sna-Snp (Palatal plane length), Me-Go (menton-gonion), N-Sna ( Midfacial anterior height ), Sna-Me (Lower anterior face height), Co-Gn (total mandibular length). The angle measurements are SNA, SNB, ANB, Gonial, Interincical, and facial.Keywords: lateral cephalometry, cephalogram, sex, forensic, parameter
Procedia PDF Downloads 1902955 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.Keywords: long-short-term memory, re-identification, security critical application, spatial-temporal awareness
Procedia PDF Downloads 1122954 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 1402953 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation
Procedia PDF Downloads 7322952 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification
Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.
Abstract:
Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet
Procedia PDF Downloads 742951 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 1292950 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 1602949 Person Re-Identification using Siamese Convolutional Neural Network
Authors: Sello Mokwena, Monyepao Thabang
Abstract:
In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.Keywords: camera network, convolutional neural network topology, person tracking, person re-identification, siamese
Procedia PDF Downloads 722948 Genotypic Characterization of Gram-Positive Bacteria Isolated on Ornamental Animals Feed
Authors: C. Miranda, R. Soares, S. Cunha, L. Ferreira, G. Igrejas, P. Poeta
Abstract:
Different animal species, including ornamental animals, are reported as potential reservoirs of antibiotic resistance genes. Consequently, these resistances can be disseminated in the environment and transferred to humans. Moreover, multidrug-resistant bacteria reduce the efficacy of antibiotics, as the case of vancomycin-resistant enterococci. Enterococcus faecalis and E. faecium are described as the main nosocomial pathogens. In this line, the aim of this study was to characterize resistance and virulence genes of enterococci species isolated from samples of food supplied to ornamental animals during 2020. The 29 enterococci isolates (10 E. faecalis and 19 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB and ermC), tetracycline (tetL, tetM, tetK and tetO), quinupristin/dalfopristin (vatD and vatE), gentamicin (aac(6’)-aph(2’’)-Ia), chloramphenicol (catA), streptomycin (ant(6)-Ia) and vancomycin (vanA and vanB). The same isolates were also tested for 10 virulence factors genes (esp, ace, gelE, agg, fsr, cpd, cylA, cylB, cylM and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. The most prevalent resistance genes detected in both enterococci species were ermB (n=15, 52%), ermC (n=7, 24%), tetK (n=8, 28%) and vatE (n=4, 14%). Resistance genes for vancomycin were found in ten (34%) E. faecalis and ten (34%) E. faecium isolates. Only E. faecium isolates showed the presence of ermA (n=2, 7%), tetL (n=13, 45%) and ant(6)-Ia gene (n=4, 14%). A total of nine (31%) enterococci isolates were classified as multidrug-resistant bacteria (3 E. faecalis and 6 E. faecium). In three E. faecalis and one E. faecium were not detected resistance genes. The virulence genes detected in both species were agg (n=6, 21%) and cylLL (n=11, 38%). In general, each isolate showed only one of these virulence genes. Five E. faecalis and eleven E. faecium isolates were negative for all analyzed virulence genes. These preliminary results showed the presence of multidrug-resistant enterococci in food supplied to ornamental animals, in particular vancomycin-resistant enterococci. This genotypic characterization reinforces the relevance to public health in the control of antibiotic-resistant bacteria.Keywords: antibiotic resistance, enterococci, feed, ornamental animals
Procedia PDF Downloads 1962947 Molecular Characterization of Dirofilaria repens in Dogs from Karnataka, India
Authors: D. S. Malatesh, K. J. Ananda, C. Ansar Kamran, K. Ganesh Udupa
Abstract:
Dirofilaria repens is a mosquito-borne filarioid nematode of dogs and other carnivores and accidentally affects humans. D. repens is reported in many countries, including India. Subcutaneous dirofilariosis caused by D. repens is a zoonotic disease, widely distributed throughout Europe, Asia, and Africa, with higher prevalence reported in dogs from Sri Lanka (30-60%), Iran (61%) and Italy (21-25%). Dirofilariasis in dogs was diagnosed by detection of microfilariae in blood. Identification of different Dirofilaria species was done by using molecular methods like polymerase chain reaction (PCR). Even though many researchers reported molecular evidence of D. repens across India, to our best knowledge there is no data available on molecular diagnosis of D. repens in dogs and its zoonotic implication in Karnataka state a southern state in India. The aim of the present study was to identify the Dirofilaria species occurring in dogs from Karnataka, India. Out of 310 samples screened for the presence of microfilariae using traditional diagnostic methods, 99 (31.93%) were positive for the presence of microfilariae. Based on the morphometry, the microfilariae were identified as D. repens. For confirmation of species, the samples were subjected to PCR using pan filarial primers (DIDR-F1, DIDR-R1) for amplification of internal transcribed spacer region 2 (ITS2) of the ribosomal DNA. The PCR product of 484 base pairs on agarose gel was indicative of D. repens. Hence, a single PCR reaction using pan filarial primers can be used to differentiate filarial species found in dogs. The present study confirms that dirofilarial species occurring in dogs from Karnataka is D. repens and further sequencing studies are needed for genotypic characterization of D. repens.Keywords: Dirofilaria repens, molecular characterization, polymerase chain reaction, Karnataka, India
Procedia PDF Downloads 1422946 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification
Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo
Abstract:
The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.Keywords: the bluff body wakes, low-order modeling, neural network, system identification
Procedia PDF Downloads 1802945 Identifying Promoters and Their Types Based on a Two-Layer Approach
Authors: Bin Liu
Abstract:
Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.Keywords: promoter, promoter type, random forest, sequence information
Procedia PDF Downloads 1842944 Speech Identification Test for Individuals with High-Frequency Sloping Hearing Loss in Telugu
Authors: S. B. Rathna Kumar, Sandya K. Varudhini, Aparna Ravichandran
Abstract:
Telugu is a south central Dravidian language spoken in Andhra Pradesh, a southern state of India. The available speech identification tests in Telugu have been developed to determine the communication problems of individuals having a flat frequency hearing loss. These conventional speech audiometric tests would provide redundant information when used on individuals with high-frequency sloping hearing loss because of better hearing sensitivity in the low- and mid-frequency regions. Hence, conventional speech identification tests do not indicate the true nature of the communication problem of individuals with high-frequency sloping hearing loss. It is highly possible that a person with a high-frequency sloping hearing loss may get maximum scores if conventional speech identification tests are used. Hence, there is a need to develop speech identification test materials that are specifically designed to assess the speech identification performance of individuals with high-frequency sloping hearing loss. The present study aimed to develop speech identification test for individuals with high-frequency sloping hearing loss in Telugu. Individuals with high-frequency sloping hearing loss have difficulty in perception of voiceless consonants whose spectral energy is above 1000 Hz. Hence, the word lists constructed with phonemes having mid- and high-frequency spectral energy will estimate speech identification performance better for such individuals. The phonemes /k/, /g/, /c/, /ṭ/ /t/, /p/, /s/, /ś/, /ṣ/ and /h/are preferred for the construction of words as these phonemes have spectral energy distributed in the frequencies above 1000 KHz predominantly. The present study developed two word lists in Telugu (each word list contained 25 words) for evaluating speech identification performance of individuals with high-frequency sloping hearing loss. The performance of individuals with high-frequency sloping hearing loss was evaluated using both conventional and high-frequency word lists under recorded voice condition. The results revealed that the developed word lists were found to be more sensitive in identifying the true nature of the communication problem of individuals with high-frequency sloping hearing loss.Keywords: speech identification test, high-frequency sloping hearing loss, recorded voice condition, Telugu
Procedia PDF Downloads 4192943 Harnessing the Power of Loss: On the Discriminatory Dynamic of Non-Emancipatory Organization Identity
Authors: Rickard Grassman
Abstract:
In this paper, Lacanian theory will be used to illustrate the way discourses interact with the material by way of reifying antagonisms to shape our sense of identities in and around organizations. The ability to ‘sustain the loss’ is, in this view, the common structure here discerned in the very texture of a discourse, which reifies ‘lack’ as an ontological condition into something contingently absent (loss) that the subject hopes to overcome (desire). These fundamental human tendencies of identification are illustrated in the paper by examples drawn from history, cinema, and literature. Turning to a select sample of empirical accounts from a management consultancy firm, it is argued that this ‘sustaining the loss’ operates in discourse to enact identification in an organizational context.Keywords: Lacan, identification, discourse, desire, loss
Procedia PDF Downloads 952942 Identification of Impact Load and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem
Procedia PDF Downloads 122