Search results for: exchange rate forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9884

Search results for: exchange rate forecasting

9854 Financial Liberalization, Exchange Rates and Demand for Money in Developing Economies: The Case of Nigeria, Ghana and Gambia

Authors: John Adebayo Oloyhede

Abstract:

This paper examines effect of financial liberalization on the stability of the demand for money function and its implication for exchange rate behaviour of three African countries. As the demand for money function is regarded as one of the two main building blocks of most exchange rate determination models, the other being purchasing power parity, its stability is required for the monetary models of exchange rate determination to hold. To what extent has the liberalisation policy of these countries, for instance liberalised interest rate, affected the demand for money function and what has been the consequence on the validity and relevance of floating exchange rate models? The study adopts the Autoregressive Instrumental Package (AIV) of multiple regression technique and followed the Almon Polynomial procedure with zero-end constraint. Data for the period 1986 to 2011 were drawn from three developing countries of Africa, namely: Gambia, Ghana and Nigeria, which did not only start the liberalization and floating system almost at the same period but share similar and diverse economic and financial structures. Its findings show that the demand for money was a stable function of income and interest rate at home and abroad. Other factors such as exchange rate and foreign interest rate exerted some significant effect on domestic money demand. The short-run and long-run elasticity with respect to income, interest rates, expected inflation rate and exchange rate expectation are not greater than zero. This evidence conforms to some extent to the expected behaviour of the domestic money function and underscores its ability to serve as good building block or assumption of the monetary model of exchange rate determination. This will, therefore, assist appropriate monetary authorities in the design and implementation of further financial liberalization policy packages in developing countries.

Keywords: financial liberalisation, exchange rates, demand for money, developing economies

Procedia PDF Downloads 374
9853 The Effect of Deficit Financing on Macro-Economic Variables in Nigeria (1970-2013)

Authors: Ezeoke Callistus Obiora, Ezeoke Nneka Angela

Abstract:

The study investigated the effect of deficit financing on macroeconomic variables in Nigeria. The specific objectives included to find out the relationship between deficit financing and GDP, interest rate, inflation rate, money supply, exchange rate and private investment respectively on a time series covering a period of 44 years (1970 – 2013). The Ordinary Least Square multiple regression produced statistics for the coefficient of determination (R2), F-test, t-test used for the interpretation of the study. The findings revealed that Deficit financing has significant positive effect on GDP and exchange rate. Again, deficit financing has a positive and insignificant relationship inflation, money supply and investment. Only interest rate recorded negative yet insignificant relationship with deficit financing. The implications of the findings are that deficit financing can be a veritable tool for boosting economic development in Nigeria, but the influential positively rising exchange rate implies that deficit financing devalues the Naira exchange rate to other currencies indicating that deficit financing can affect Nigerians competitive advantage at the world market. Thus, the study concludes that deficit financing has not encouraged economic growth in Nigeria.

Keywords: deficit financing, money supply, exchange rate, inflation, GDP, investment, Nigeria

Procedia PDF Downloads 482
9852 Commodity Price Shocks and Monetary Policy

Authors: Faisal Algosair

Abstract:

We examine the role of monetary policy in the presence of commodity price shocks using a Dynamic stochastic general equilibrium (DSGE) model with price and wage rigidities. The model characterizes a commodity exporter by its degree of export diversification, and explores the following monetary regimes: flexible domestic inflation targeting; flexible Consumer Price Index inflation targeting; exchange rate peg; and optimal rule. An increase in the degree of diversification is found to mitigate responses to commodity shocks. The welfare comparison suggests that a flexible exchange rate regime under the optimal rule is preferred to an exchange rate peg. However, monetary policy provides limited stabilization effects in an economy with low degree of export diversification.

Keywords: business cycle, commodity price, exchange rate, global financial cycle

Procedia PDF Downloads 98
9851 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework

Authors: Nicola Rubino

Abstract:

This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.

Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points

Procedia PDF Downloads 282
9850 Foreign Exchange Volatilities and Stock Prices: Evidence from London Stock Exchange

Authors: Mahdi Karazmodeh, Pooyan Jafari

Abstract:

One of the most interesting topics in finance is the relation between stock prices and exchange rates. During the past decades different stock markets in different countries have been the subject of study for researches. The volatilities of exchange rates and its effect on stock prices during the past 10 years have continued to be an attractive research topic. The subject of this study is one of the most important indices, FTSE 100. 20 firms with the highest market capitalization in 5 different industries are chosen. Firms are included in oil and gas, mining, pharmaceuticals, banking and food related industries. 5 different criteria have been introduced to evaluate the relationship between stock markets and exchange rates. Return of market portfolio, returns on broad index of Sterling are also introduced. The results state that not all firms are sensitive to changes in exchange rates. Furthermore, a Granger Causality test has been run to observe the route of changes between stock prices and foreign exchange rates. The results are consistent, to some level, with the previous studies. However, since the number of firms is not large, it is suggested that a larger number of firms being used to achieve the best results. However results showed that not all firms are affected by foreign exchange rates changes. After testing Granger Causality, this study found out that in some industries (oil and gas, pharmaceuticals), changes in foreign exchange rate will not cause any changes in stock prices (or vice versa), however, in banking sector the situation was different. This industry showed more reaction to these changes. The results are similar to the ones with Richards and Noel, where a variety of firms in different industries were evaluated.

Keywords: stock prices, foreign exchange rate, exchange rate exposure, Granger Causality

Procedia PDF Downloads 448
9849 Electricity Demand Modeling and Forecasting in Singapore

Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh

Abstract:

In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.

Keywords: power industry, electricity demand, modeling, forecasting

Procedia PDF Downloads 643
9848 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper

Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon

Abstract:

This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.

Keywords: short-term load forecasting, power demand, neural networks, load forecasting

Procedia PDF Downloads 191
9847 The Nexus between Country Risk and Exchange Rate Regimes: A Global Investigation

Authors: Jie Liu, Wei Wei, Chun-Ping Chang

Abstract:

Using a sample of 110 countries over the period 1984-2013, this paper examines the impacts of country risks on choosing a specific exchange rate regime (first by utilizing the Levy-Yeyati and Sturzenegger de facto classification and then robusting it by the IMF de jure measurement) relative to other regimes via the panel multinomial logit approach. Empirical findings are as follows. First, in the full samples case we provide evidence that government is more likely to implement a flexible regime, but less likely to adopt a fixed regime, under a low level of composite and financial risk. Second, we find that Eurozone countries are more likely to choose a fixed exchange rate regime with a decrease in the level of country risk and favor a flexible regime in response to a shock from an increase of risk, which is opposite to non-Eurozone countries. Third, we note that high-risk countries are more likely to choose a fixed regime with a low level of composite and political risk in the government, but do not adjust the exchange rate regime as a shock absorber when facing economic and financial risks. It is interesting to see that those countries with relatively low risk display almost opposite results versus high-risk economies. Overall, we believe that it is critically important to account for political economy variables in a government’s exchange rate policy decisions, especially for country risks. All results are robust to the panel ordered probit model.

Keywords: country risk, political economy, exchange rate regimes, shock absorber

Procedia PDF Downloads 306
9846 Entropy Risk Factor Model of Exchange Rate Prediction

Authors: Darrol Stanley, Levan Efremidze, Jannie Rossouw

Abstract:

We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets.

Keywords: currency trading, entropy, market timing, risk factor model

Procedia PDF Downloads 273
9845 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm

Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu

Abstract:

Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.

Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model

Procedia PDF Downloads 253
9844 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate

Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar

Abstract:

Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.

Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis

Procedia PDF Downloads 199
9843 Collaborative Planning and Forecasting

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Collaborative planning and forecasting are the innovative and systematic approaches towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate collaborative planning and forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment.

Keywords: information transfer, forecasting, optimization, supply chain management

Procedia PDF Downloads 437
9842 Economic Indicators as Correlates of Inward Foreign Direct Investment in Nigeria

Authors: C. F. Popoola, P. Osho, S. B. Babarinde

Abstract:

This study examined economic indicators as correlates of inward FDI. An exploratory research design was used to obtained annual published data on inflation rate, market size, exchange rate, political instability, human development, and infrastructure from Central Bank of Nigeria, National Bureau of Statistics, Nigerian Capital Market, Nigeria Institute of Social and Economic Research, and UNCTAD. Data generated were analyzed using Pearson correlation, analysis of variance and regression. The findings of the study revealed that market size (r = 0.852, p < 0.001), infrastructure (r = 0.264, p < 0.001), human development (r = 0.154, p < 0.01) and exchange rate ( r= 0.178, p < 0.05) correlate positively with inward FDI, while inflation rate (r = -0.88, p < 0.001), and political instability (r= -0.102, p < 0.05) correlate negatively with inward FDI. Findings also revealed that the economic indicators significantly predicted inward FDI (R2 = 0.913; F(1,19) = 29.40; p < 0.05) for Nigeria. It was concluded that exchange rate, market size, human development, and infrastructure positively related to inward FDI while the high level of inflation and political instability negatively related to inward FDI. Therefore, it was suggested that policy makers and government agencies should readdress steps and design policies that would encourage more FDI into the country.

Keywords: exchange rate, foreign direct investment, human development, inflation rate, infrastructure, market size, political instability

Procedia PDF Downloads 416
9841 An Empirical Investigation into the Effect of Macroeconomic Policy on Economic Growth in Nigeria

Authors: Rakiya Abba

Abstract:

This paper investigates the effect of the money supply, exchange and interest rate on economic growth in Nigeria through the application of Augmented Dickey-Fuller technique in testing the unit root property of the series and Granger causality test of causation between GDP, money supply, the exchange, and interest rate. The results of unit root suggest that all the variables in the model are stationary at 1, 5 and 10 percent level of significance, and the results of Causality suggest that money supply and exchange granger cause IR, the result further reveals two – way causation existed between M2 and EXR while IR granger cause GDP the null hypothesis is rejected and GDP does not granger cause IR as indicated by their probability values of 0.4805 and confirmed by F-statistics values of 0.75483. The results revealed that M2 and EXR do not granger causes GDP, the null hypothesis is accepted at 75percent 18percent respectively as indicated by their probability values of 0.7472 and 0.1830 respectively; also, GDP does not granger cause M2 and EXR. The Johansen cointegration result indicates that despite GDP does not granger cause M2, IR, and EXR, but there existed 1 cointegrating equation, implying the existence of long-run relationship between GDP, M2 IR, and EXR. A major policy implication of this result is that economic growth is function of and money supply and exchange rate, effective monetary policies should direct on manipulating instruments and importance should be placed on justification for adopting a particular policy be rationalized in order to increase growth in economy

Keywords: economic growth, money supply, interest rate, exchange rate, causality

Procedia PDF Downloads 270
9840 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index

Authors: Funda Kul, İsmail Gür

Abstract:

Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.

Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution

Procedia PDF Downloads 362
9839 Forecasting Amman Stock Market Data Using a Hybrid Method

Authors: Ahmad Awajan, Sadam Al Wadi

Abstract:

In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.

Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series

Procedia PDF Downloads 133
9838 The Vicissitudes of Monetary Policy Rates and Macro-Economic Variables in the West African Monetary Zone

Authors: Jonathan Olusegun Famoroti, Mathew Ekundayo Rotimi, Mishelle Doorasamy

Abstract:

This study offers an empirical investigation into some selected macroeconomic drivers of the monetary policy rate in member countries of the West African Monetary Zone (WAMZ), considering both internal and external variables. We employed Autoregressive Distributed Lag (ARDL) to carry out the investigation between monetary policy and some macroeconomic variables in both the long-run and short-run relationship. The results suggest that the drivers of the policy rate in this zone, in the long run, include, among others, global oil price, exchange rate, inflation rate, and gross domestic product, while in the short run, federal fund rate, trade openness, exchange rate, inflation rate, and gross domestic product are core determinants of the policy rate. Therefore, in order to ensure long-run stability in the policy rate among the members’ states, these drivers should be given closer consideration so that the trajectory for effective structure can be designed and fused into the economic structure and policy frameworks accordingly.

Keywords: monetary policy rate, macroeconomic variables, WAMZ, ARDL

Procedia PDF Downloads 68
9837 Hybrid Model for Measuring the Hedge Strategy in Exchange Risk in Information Technology Industry

Authors: Yi-Hsien Wang, Fu-Ju Yang, Hwa-Rong Shen, Rui-Lin Tseng

Abstract:

The business is notably related to the market risk according to the increase of liberalization of financial markets. Hence, the company usually utilized high financial leverage of derivatives to hedge the risk. When the company choose different hedging instruments to face a variety of exchange rate risk, we employ the Multinomial Logistic-AHP to analyze the impact of various derivatives. Hence, the research summarized the literature on relevant factors affecting managers selected exchange rate hedging instruments, using Multinomial Logistic Model and and further integrate AHP. Using Experts’ Questionnaires can test multi-level selection and hedging effect of different hedging instruments in order to calculate the hedging instruments and the multi-level factors of weights to understand the gap between the empirical results and practical operation. Finally, the Multinomial Logistic-AHP Model will sort the weights to analyze. The research findings can be a basis reference for investors in decision-making.

Keywords: exchange rate risk, derivatives, hedge, multinomial logistic-AHP

Procedia PDF Downloads 443
9836 Trade Liberalization and Domestic Private Investment in Nigeria

Authors: George-Anokwuru Chioma Chidinma Bernadette

Abstract:

This paper investigated the effect of trade liberalization on domestic private investment in Nigeria from 1981 to 2020. To achieve this objective, secondary data on domestic private investment, trade openness, exchange rate and interest rate were sourced from the statistical bulletin of Nigeria’s apex bank. The Autoregressive Distributed Lag (ARDL) technique was used as the main analytical tool. The ARDL Bounds test revealed the existence of long run association among the variables. The results revealed that trade openness and exchange rate have positive and insignificant relationship with domestic private investment both in the long and short runs. At the same time, interest rate has negative relationship with domestic private investment both in the long and short runs. Therefore, it was concluded that there is no significant relationship between trade openness, exchange rate, interest rate and domestic private investment in Nigeria during the period of study. Based on the findings, the study recommended that government should formulate trade policies that will encourage the growth of domestic private investment in Nigeria. To achieve this, government should ensure consistency in trade policies and at the same time strengthen the existing policies to build investors’ confidence. Also, government should make available an investment-friendly environment, as well as monitor real sector operators to ensure that foreign exchange allocations are not diverted. Government should increase capital investment in education, housing, transportation, agriculture, health, power, road construction, national defense, among others that will help the various sectors of the economy to function very well thereby making the business environment friendly thereby enhancing the growth and development of the country.

Keywords: trade openness, domestic private investment, ARDL, exchange rate

Procedia PDF Downloads 70
9835 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 349
9834 An Impact of Stock Price Movements on Cross Listed Companies: A Study of Indian ADR and Domestic Stock Prices

Authors: Kanhaiya Singh

Abstract:

Indian corporate sector has been raising resources through various international financial instruments important among them are Global depository receipts (GDRs) and American Depository Receipts (ADRs). The purpose of raising resources through such instruments is multifold such as lower cost of capital, increased visibility of the company, liberal tax environment, increased trading liquidity etc. One of the significant reason is also the value addition of the company in terms of market capitalization. Obviously, the stocks of such companies are cross listed, one in India and other at the International stock exchange. The sensitivity and movements of stock prices on one stock exchange as compared to other may have an impact on the price movement of the particular scrip. If there is any relationship exists is an issue of study. Having this in view this study is an attempt to identify the extent of impact of price movement of the scrip on one stock exchange on account of change in the prices on the counter stock exchange. Also there is an attempt to find out the difference between pre and post cross listed domestic firm. The study also analyses the impact of exchange rate movements on stock prices.

Keywords: ADR, GDR, cross listing, liquidity, exchange rate

Procedia PDF Downloads 382
9833 pscmsForecasting: A Python Web Service for Time Series Forecasting

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

pscmsForecasting is an open-source web service that implements a variety of time series forecasting algorithms and exposes them to the user via the ubiquitous HTTP protocol. It allows developers to enhance their applications by adding time series forecasting functionalities through an intuitive and easy-to-use interface. This paper provides some background on time series forecasting and gives details about the implemented algorithms, aiming to enhance the end user’s understanding of the underlying methods before incorporating them into their applications. A detailed description of the web service’s interface and its various parameterizations is also provided. Being an open-source project, pcsmsForecasting can also be easily modified and tailored to the specific needs of each application.

Keywords: time series, forecasting, web service, open source

Procedia PDF Downloads 85
9832 Behavior of Iran Stock Exchange and Impacts of US Oil and Financial Markets

Authors: Erfan Memarian, Seyyed Fazayel Alizadeh

Abstract:

This study aims to evaluate the impacts of the oil and financial markets of the United States on Iran stock exchange and to develop an ARDL model to predict the short and long-term relationship between these markets. In this regard, all 713 weekly data between 28 July 1999 and 20 March 2013 were analyzed by using Microfit4.0 and Eviews7 econometric softwares. The independent variable of the study is the “Price and Yield Index (TEDPIX)” of Tehran Stock Exchange and the independent variables include S & P 500 Index, the US three-month treasury bill rate and West Texas Intermediate oil spot price index. The results show that the West Texas Intermediate oil spot price and the S&P 500 indices have significant positive relationships with Iran's TEDPIX. Also, there exists a significant negative relationship between Iran's TEDPIX and the US three-month Treasury bill rate.

Keywords: TEDPIX; Tehran Stock Exchange; S&P 500 index; USA three-month Treasury bill rate; West Texas Intermediate oil

Procedia PDF Downloads 328
9831 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 318
9830 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 467
9829 Determinants of Financial Performance of South African Businesses in Africa: Evidence from JSE Listed Telecommunications Companies

Authors: Nomakhosi Tshuma, Carley Chetty

Abstract:

This study employed panel regression analysis to investigate the financial performance determinants of MTN and Vodacom’s rest of Africa businesses between 2012 to 2020. It used net profit margin, return on assets (ROA), and return on equity (ROE) as financial performance proxies. Financial performance determinants investigated were asset size, debt ratio, liquidity, number of subscribers, and exchange rate. Data relating to exchange rates were obtained from the World Bank website, while financial data and subscriber information were obtained from the companies’ audited financial statements. The study found statistically significant negative relationships between debt and both ROA and net profit, exchange rate and both ROA and net profit, and subscribers and ROE. It also found significant positive relationships between ROE and both asset size and exchange rate. The study recommends strategic options that optimise on the above findings, and these include infrastructure sharing to reduce infrastructure costs and the minimisation of foreign-denominated debt.

Keywords: financial performance, determinants of financial performance, business in Africa, telecommunications industry

Procedia PDF Downloads 102
9828 An Association between Stock Index and Macro Economic Variables in Bangladesh

Authors: Shamil Mardi Al Islam, Zaima Ahmed

Abstract:

The aim of this article is to explore whether certain macroeconomic variables such as industrial index, inflation, broad money, exchange rate and deposit rate as a proxy for interest rate are interlinked with Dhaka stock price index (DSEX index) precisely after the introduction of new index by Dhaka Stock Exchange (DSE) since January 2013. Bangladesh stock market has experienced rapid growth since its inception. It might not be a very well-developed capital market as compared to its neighboring counterparts but has been a strong avenue for investment and resource mobilization. The data set considered consists of monthly observations, for a period of four years from January 2013 to June 2018. Findings from cointegration analysis suggest that DSEX and macroeconomic variables have a significant long-run relationship. VAR decomposition based on VAR estimated indicates that money supply explains a significant portion of variation of stock index whereas, inflation is found to have the least impact. Impact of industrial index is found to have a low impact compared to the exchange rate and deposit rate. Policies should there aim to increase industrial production in order to enhance stock market performance. Further reasonable money supply should be ensured by authorities to stimulate stock market performance.

Keywords: deposit rate, DSEX, industrial index, VAR

Procedia PDF Downloads 165
9827 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches

Authors: Dimitrios I. Tselentis, Simon P. Washington

Abstract:

Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.

Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches

Procedia PDF Downloads 490
9826 Forecasting of Grape Juice Flavor by Using Support Vector Regression

Authors: Ren-Jieh Kuo, Chun-Shou Huang

Abstract:

The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.

Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China

Procedia PDF Downloads 494
9825 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 174