Search results for: evolutionary optimization techniques
874 Optimization Parameters Using Response Surface Method on Biomechanical Analysis for Malaysian Soccer Players
Authors: M. F. M. Ali, A. R. Ismail, B. M. Deros
Abstract:
Soccer is very popular and ranked as the top sports in the world as well as in Malaysia. Although soccer sport in Malaysia is currently professionalized, but it’s plunging achievements within recent years continue and are not to be proud of. After review, the Malaysian soccer players are still weak in terms of kicking techniques. The instep kick is a technique, which is often used in soccer for the purpose of short passes and making a scoring. This study presents the 3D biomechanics analysis on a soccer player during performing instep kick. This study was conducted to determine the optimization value for approach angle, distance of supporting leg from the ball and ball internal pressure respect to the knee angular velocity of the ball on the kicking leg. Six subjects from different categories using dominant right leg and free from any injury were selected to take part in this study. Subjects were asked to perform one step instep kick according to the setting for the variables with different parameter. Data analysis was performed using 3 Dimensional “Qualisys Track Manager” system and will focused on the bottom of the body from the waist to the ankle. For this purpose, the marker will be attached to the bottom of the body before the kicking is perform by the subjects. Statistical analysis was conducted by using Minitab software using Response Surface Method through Box-Behnken design. The results of this study found the optimization values for all three parameters, namely the approach angle, 53.6º, distance of supporting leg from the ball, 8.84sm and ball internal pressure, 0.9bar with knee angular velocity, 779.27 degrees/sec have been produced.Keywords: biomechanics, instep kick, soccer, optimization
Procedia PDF Downloads 230873 Micro-CT Imaging Of Hard Tissues
Authors: Amir Davood Elmi
Abstract:
From the earliest light microscope to the most innovative X-ray imaging techniques, all of them have refined and improved our knowledge about the organization and composition of living tissues. The old techniques are time consuming and ultimately destructive to the tissues under the examination. In recent few decades, thanks to the boost of technology, non-destructive visualization techniques, such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), selective plane illumination microscopy (SPIM), and optical projection tomography (OPT), have come to the forefront. Among these techniques, CT is excellent for mineralized tissues such as bone or dentine. In addition, CT it is faster than other aforementioned techniques and the sample remains intact. In this article, applications, advantages, and limitations of micro-CT is discussed, in addition to some information about micro-CT of soft tissue.Keywords: Micro-CT, hard tissue, bone, attenuation coefficient, rapid prototyping
Procedia PDF Downloads 142872 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure
Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold
Abstract:
Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure has been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1 m length, 8 mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.Keywords: heat pipe, inclination, optimization, ratio
Procedia PDF Downloads 328871 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization
Procedia PDF Downloads 187870 Security System for Safe Transmission of Medical Image
Authors: Mohammed Jamal Al-Mansor, Kok Beng Gan
Abstract:
This paper develops an optimized embedding of payload in medical image by using genetic optimization. The goal is to preserve region of interest from being distorted because of the watermark. By using this developed system there is no need of manual defining of region of interest through experts as the system will apply the genetic optimization to select the parts of image that can carry the watermark with guaranteeing less distortion. The experimental results assure that genetic based optimization is useful for performing steganography with less mean square error percentage.Keywords: AES, DWT, genetic algorithm, watermarking
Procedia PDF Downloads 411869 Hybridized Simulated Annealing with Chemical Reaction Optimization for Solving to Sequence Alignment Problem
Authors: Ernesto Linan, Linda Cruz, Lucero Becerra
Abstract:
In this paper, a new hybridized algorithm based on Chemical Reaction Optimization and Simulated Annealing is proposed to solve the alignment sequence Problem. The Chemical Reaction Optimization is a population-based meta-heuristic algorithm based on the principles of a chemical reaction. Simulated Annealing is applied to solve a large number of combinatorial optimization problems of general-purpose. In this paper, we propose hybridization between Chemical Reaction Optimization algorithm and Simulated Annealing in order to solve the Sequence Alignment Problem. An initial population of molecules is defined at beginning of the proposed algorithm, where each molecule represents a sequence alignment problem. In order to simulate inter-molecule collisions, the process of Chemical Reaction is placed inside the Metropolis Cycle at certain values of temperature. Inside this cycle, change of molecules is done due to collisions; some molecules are accepted by applying Boltzmann probability. The results with the hybrid scheme are better than the results obtained separately.Keywords: chemical reaction optimization, sequence alignment problem, simulated annealing algorithm, metaheuristics
Procedia PDF Downloads 211868 Technical and Practical Aspects of Sizing a Autonomous PV System
Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba
Abstract:
The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.Keywords: solar panel, solar radiation, inverter, optimization
Procedia PDF Downloads 608867 Optimized and Secured Digital Watermarking Using Fuzzy Entropy, Bezier Curve and Visual Cryptography
Authors: R. Rama Kishore, Sunesh
Abstract:
Recent development in the usage of internet for different purposes creates a great threat for the copyright protection of the digital images. Digital watermarking can be used to address the problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field of secured, robust and imperceptible watermarking. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (2, 2) share visual cryptography and Bezier curve based algorithm to improve the security of the watermark. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method. The algorithm is optimized using fuzzy entropy for better results.Keywords: digital watermarking, fractional transform, visual cryptography, Bezier curve, fuzzy entropy
Procedia PDF Downloads 365866 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 382865 Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO
Authors: Mahmoud Nadir, Adel Ghenaiet
Abstract:
The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods.Keywords: combined cycle, HRSG thermodynamic modeling, optimization, PSO, steam cycle specific work
Procedia PDF Downloads 382864 Quadrature Mirror Filter Bank Design Using Population Based Stochastic Optimization
Authors: Ju-Hong Lee, Ding-Chen Chung
Abstract:
The paper deals with the optimal design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using a metaheuristic based optimization technique. Based on the theory of two-channel QMF banks using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the group delay error of the designed QMF bank and the magnitude response error of the designed low-pass analysis filter. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a particle swarm optimization algorithm. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.Keywords: quadrature mirror filter bank, digital all-pass filter, weighted least squares algorithm, particle swarm optimization
Procedia PDF Downloads 520863 Improved 3D Structure Prediction of Beta-Barrel Membrane Proteins by Using Evolutionary Coupling Constraints, Reduced State Space and an Empirical Potential Function
Authors: Wei Tian, Jie Liang, Hammad Naveed
Abstract:
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They carry out diverse biological functions, including pore formation, membrane anchoring, enzyme activity, and bacterial virulence. In addition, beta-barrel membrane proteins increasingly serve as scaffolds for bacterial surface display and nanopore-based DNA sequencing. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank and computational methods can help to understand their biophysical principles. We have developed a novel computational method to predict the 3D structure of beta-barrel membrane proteins using evolutionary coupling (EC) constraints and a reduced state space. Combined with an empirical potential function, we can successfully predict strand register at > 80% accuracy for a set of 49 non-homologous proteins with known structures. This is a significant improvement from previous results using EC alone (44%) and using empirical potential function alone (73%). Our method is general and can be applied to genome-wide structural prediction.Keywords: beta-barrel membrane proteins, structure prediction, evolutionary constraints, reduced state space
Procedia PDF Downloads 618862 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification
Authors: Rujia Chen, Ajit Narayanan
Abstract:
Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels
Procedia PDF Downloads 186861 Optimization of Municipal Solid Waste Management in Peshawar Using Mathematical Modelling and GIS with Focus on Incineration
Authors: Usman Jilani, Ibad Khurram, Irshad Hussain
Abstract:
Environmentally sustainable waste management is a challenging task as it involves multiple and diverse economic, environmental, technical and regulatory issues. Municipal Solid Waste Management (MSWM) is more challenging in developing countries like Pakistan due to lack of awareness, technology and human resources, insufficient funding, inefficient collection and transport mechanism resulting in the lack of a comprehensive waste management system. This work presents an overview of current MSWM practices in Peshawar, the provincial capital of Khyber Pakhtunkhwa, Pakistan and proposes a better and sustainable integrated solid waste management system with incineration (Waste to Energy) option. The diverted waste would otherwise generate revenue; minimize land fill requirement and negative impact on the environment. The proposed optimized solution utilizing scientific techniques (like mathematical modeling, optimization algorithms and GIS) as decision support tools enhances the technical & institutional efficiency leading towards a more sustainable waste management system through incorporating: - Improved collection mechanisms through optimized transportation / routing and, - Resource recovery through incineration and selection of most feasible sites for transfer stations, landfills and incineration plant. These proposed methods shift the linear waste management system towards a cyclic system and can also be used as a decision support tool by the WSSP (Water and Sanitation Services Peshawar), agency responsible for the MSWM in Peshawar.Keywords: municipal solid waste management, incineration, mathematical modeling, optimization, GIS, Peshawar
Procedia PDF Downloads 375860 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator
Authors: Mohammad Ruhul Amin, Nusrat Jahan
Abstract:
Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization
Procedia PDF Downloads 498859 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach
Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi
Abstract:
Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty
Procedia PDF Downloads 231858 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization
Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder
Abstract:
In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening
Procedia PDF Downloads 301857 Optimization of Vertical Axis Wind Turbine
Authors: C. Andreu Sabater, D. Drago, C. Key-aberg, W. Moukrim, B. Naccache
Abstract:
Present study concerns the optimization of a new vertical axis wind turbine system associated to a dynamoelectric motor. The system is composed by three Savonius wind turbines, arranged in an equilateral triangle. The idea is to propose a new concept of wind turbines through a technical approach allowing find a specific power never obtained before and therefore, a significant reduction of installation costs. In this work different wind flows across the system have been simulated, as well as precise definition of parameters and relations established between them. It will allow define the optimal rotor specific power for a given volume. Calculations have been developed with classical Savonius dimensions.Keywords: VAWT, savonius, specific power, optimization, weibull
Procedia PDF Downloads 330856 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain
Authors: Vijay H. Ingole, Efthimia Lioliou
Abstract:
Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.Keywords: indirubin, bacterial strain, fermentation, HPLC
Procedia PDF Downloads 27855 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone
Authors: Xinhuang Wu, Yousef Sardahi
Abstract:
A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones
Procedia PDF Downloads 73854 Descent Algorithms for Optimization Algorithms Using q-Derivative
Authors: Geetanjali Panda, Suvrakanti Chakraborty
Abstract:
In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method
Procedia PDF Downloads 398853 Personalization of Context Information Retrieval Model via User Search Behaviours for Ranking Document Relevance
Authors: Kehinde Agbele, Longe Olumide, Daniel Ekong, Dele Seluwa, Akintoye Onamade
Abstract:
One major problem of most existing information retrieval systems (IRS) is that they provide even access and retrieval results to individual users specially based on the query terms user issued to the system. When using IRS, users often present search queries made of ad-hoc keywords. It is then up to IRS to obtain a precise representation of user’s information need, and the context of the information. In effect, the volume and range of the Internet documents is growing exponentially and consequently causes difficulties for a user to obtain information that precisely matches the user interest. Diverse combination techniques are used to achieve the specific goal. This is due, firstly, to the fact that users often do not present queries to IRS that optimally represent the information they want, and secondly, the measure of a document's relevance is highly subjective between diverse users. In this paper, we address the problem by investigating the optimization of IRS to individual information needs in order of relevance. The paper addressed the development of algorithms that optimize the ranking of documents retrieved from IRS. This paper addresses this problem with a two-fold approach in order to retrieve domain-specific documents. Firstly, the design of context of information. The context of a query determines retrieved information relevance using personalization and context-awareness. Thus, executing the same query in diverse contexts often leads to diverse result rankings based on the user preferences. Secondly, the relevant context aspects should be incorporated in a way that supports the knowledge domain representing users’ interests. In this paper, the use of evolutionary algorithms is incorporated to improve the effectiveness of IRS. A context-based information retrieval system that learns individual needs from user-provided relevance feedback is developed whose retrieval effectiveness is evaluated using precision and recall metrics. The results demonstrate how to use attributes from user interaction behavior to improve the IR effectiveness.Keywords: context, document relevance, information retrieval, personalization, user search behaviors
Procedia PDF Downloads 463852 Heterogeneous Artifacts Construction for Software Evolution Control
Authors: Mounir Zekkaoui, Abdelhadi Fennan
Abstract:
The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture
Procedia PDF Downloads 445851 Variants of Mathematical Induction as Strong Proof Techniques in Theory of Computing
Authors: Ahmed Tarek, Ahmed Alveed
Abstract:
In the theory of computing, there are a wide variety of direct and indirect proof techniques. However, mathematical induction (MI) stands out to be one of the most powerful proof techniques for proving hypotheses, theorems, and new results. There are variations of mathematical induction-based proof techniques, which are broadly classified into three categories, such as structural induction (SI), weak induction (WI), and strong induction (SI). In this expository paper, several different variants of the mathematical induction techniques are explored, and the specific scenarios are discussed where a specific induction technique stands out to be more advantageous as compared to other induction strategies. Also, the essential difference among the variants of mathematical induction are explored. The points of separation among mathematical induction, recursion, and logical deduction are precisely analyzed, and the relationship among variations of recurrence relations, and mathematical induction are being explored. In this context, the application of recurrence relations, and mathematical inductions are considered together in a single framework for codewords over a given alphabet.Keywords: alphabet, codeword, deduction, mathematical, induction, recurrence relation, strong induction, structural induction, weak induction
Procedia PDF Downloads 163850 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables
Procedia PDF Downloads 373849 Optimization of Cacao Fermentation in Davao Philippines Using Sustainable Method
Authors: Ian Marc G. Cabugsa, Kim Ryan Won, Kareem Mamac, Manuel Dee, Merlita Garcia
Abstract:
An optimized cacao fermentation technique was developed for the cacao farmers of Davao City Philippines. Cacao samples with weights ranging from 150-250 kilograms were collected from various cacao farms in Davao City and Zamboanga City Philippines. Different fermentation techniques were used starting with design of the sweat box, prefermentation conditionings, number of days for fermentation and number of turns. As the beans are being fermented, its temperature was regularly monitored using a digital thermometer. The resultant cacao beans were assessed using physical and chemical means. For the physical assessment, the bean cut test, bean count tests, and sensory test were used. Quantification of theobromine, caffeine, and antioxidants in the form of equivalent quercetin was used for chemical assessment. Both the theobromine and caffeine were analyzed using HPLC method while the antioxidant was analyzed spectrometrically. To come up with the best fermentation procedure, the different assessment were given priority coefficients wherein the physical tests – taste test, cut, and bean count tests were given priority over the results of the chemical test. The result of the study was an optimized fermentation protocol that is readily adaptable and transferable to any cacao cooperatives or groups in Mindanao or even Philippines as a whole.Keywords: cacao, fermentation, HPLC, optimization, Philippines
Procedia PDF Downloads 452848 Grid Computing for Multi-Objective Optimization Problems
Authors: Aouaouche Elmaouhab, Hassina Beggar
Abstract:
Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing
Procedia PDF Downloads 485847 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 512846 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications
Authors: Chee Sun Won
Abstract:
This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication
Procedia PDF Downloads 418845 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization
Authors: Anam Gopi
Abstract:
The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.Keywords: teaching learning based optimization, direct torque control, PI controller
Procedia PDF Downloads 585