Search results for: clinical decision support sytem
13185 Framework for the Modeling of the Supply Chain Collaborative Planning Process
Authors: D. Pérez, M. M. E. Alemany
Abstract:
In this work a Framework to model the Supply Chain (SC) Collaborative Planning (CP) Process is proposed, and particularly its Decisional view. The main Framework contributions with regards to previous related works are the following, 1) the consideration of not only the Decision view, the most important one due to the Process type, but other additional three views which are the Physical, Organisation and Information ones, closely related and complementing the Decision View, 2) the joint consideration of two interdependence types, the Temporal (among Decision Centres belonging to different Decision Levels) and Spatial (among Decision Centres belonging to the same Decision Level) to support the distributed Decision-Making process in SC where several decision Centres interact among them in a collaborative manner.Keywords: collaborative planning, decision view, distributed decision-making, framework
Procedia PDF Downloads 46713184 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI
Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer
Abstract:
In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting
Procedia PDF Downloads 52013183 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System
Authors: Latif Yanar, Muammer Kaçan
Abstract:
Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations
Procedia PDF Downloads 59113182 Clinical Advice Services: Using Lean Chassis to Optimize Nurse-Driven Telephonic Triage of After-Hour Calls from Patients
Authors: Eric Lee G. Escobedo-Wu, Nidhi Rohatgi, Fouzel Dhebar
Abstract:
It is challenging for patients to navigate through healthcare systems after-hours. This leads to delays in care, patient/provider dissatisfaction, inappropriate resource utilization, readmissions, and higher costs. It is important to provide patients and providers with effective clinical decision-making tools to allow seamless connectivity and coordinated care. In August 2015, patient-centric Stanford Health Care established Clinical Advice Services (CAS) to provide clinical decision support after-hours. CAS is founded on key Lean principles: Value stream mapping, empathy mapping, waste walk, takt time calculations, standard work, plan-do-check-act cycles, and active daily management. At CAS, Clinical Assistants take the initial call and manage all non-clinical calls (e.g., appointments, directions, general information). If the patient has a clinical symptom, the CAS nurses take the call and utilize standardized clinical algorithms to triage the patient to home, clinic, urgent care, emergency department, or 911. Nurses may also contact the on-call physician based on the clinical algorithm for further direction and consultation. Since August 2015, CAS has managed 228,990 calls from 26 clinical specialties. Reporting is built into the electronic health record for analysis and data collection. 65.3% of the after-hours calls are clinically related. Average clinical algorithm adherence rate has been 92%. An average of 9% of calls was escalated by CAS nurses to the physician on call. An average of 5% of patients was triaged to the Emergency Department by CAS. Key learnings indicate that a seamless connectivity vision, cascading, multidisciplinary ownership of the problem, and synergistic enterprise improvements have contributed to this success while striving for continuous improvement.Keywords: after hours phone calls, clinical advice services, nurse triage, Stanford Health Care
Procedia PDF Downloads 17413181 Impact of Self-Efficacy, Resilience, and Social Support on Vicarious Trauma among Clinical Psychologists, Counselors, and Teachers of Special Schools
Authors: Hamna Hamid, Kashmala Zaman
Abstract:
The aim of this study was to evaluate the relationship between self-efficacy, resilience, and social support among clinical psychologists, counselors, and teachers of special schools. The study also assesses the gender differences in self-efficacy, resilience, social support, and vicarious trauma and also vicarious trauma differences among three professions, i.e., clinical psychologists, counselors, and teachers of special schools. A sample of 150 women and 97 men were handed out a set questionnaire to complete: a General Self-Efficacy Scale, Brief Resilience Scale, Multidimensional Scale of Perceived Social Support, and Vicarious Trauma Scale. Results showed that there is a significant negative correlation between self-efficacy, resilience, and vicarious trauma. Women experience higher levels of vicarious trauma as compared to men. At the same time, clinical psychologists and counselors experience higher levels of vicarious trauma as compared to teachers of special schools. The moderation effect of social support is not significant towards resilience and vicarious trauma.Keywords: self-efficacy, resilience, vicarious-trauma social-support, social support
Procedia PDF Downloads 8013180 Fuzzy Decision Support System for Human-Realistic Overtaking in Railway Traffic Simulations
Authors: Tomáš Vyčítal
Abstract:
In a simulation model of a railway system it is important, besides other crucial algorithms, to have correct behaviour of train overtaking in stochastic conditions. This problem is being addressed in many simulation tools focused on railway traffic, however these are not very human-realistic. The goal of this paper is to create a more human-realistic overtaking decision support system for the use in railway traffic simulations. A fuzzy system has been chosen for this task as fuzzy systems are well-suited for human-like decision making. The fuzzy system designed takes into account timetables, train positions, delays and buffer times as inputs and provides an instruction to overtake or not overtake.Keywords: decision-making support, fuzzy systems, simulation, railway, transport
Procedia PDF Downloads 13913179 A Multi-criteria Decision Support System for Migrating Legacies into Open Systems
Authors: Nasser Almonawer
Abstract:
Timely reaction to an evolving global business environment and volatile market conditions necessitates system and process flexibility, which in turn demands agile and adaptable architecture and a steady infusion of affordable new technologies. On the contrary, a large number of organizations utilize systems characterized by inflexible and obsolete legacy architectures. To effectively respond to the dynamic contemporary business environments, such architectures must be migrated to robust and modular open architectures. To this end, this paper proposes an integrated decision support system for a seamless migration to open systems. The proposed decision support system (DSS) integrates three well-established quantitative and qualitative decision-making models—namely, the Delphi method, Analytic Hierarchy Process (AHP) and Goal Programming (GP) to (1) assess risks and establish evaluation criteria; (2) formulate migration strategy and rank candidate systems; and (3) allocate resources among the selected systems.Keywords: decision support systems, open systems architecture, analytic hierarchy process (AHP), goal programming (GP), delphi method
Procedia PDF Downloads 4613178 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States
Authors: Angela Meyer
Abstract:
The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines
Procedia PDF Downloads 16713177 Impact of Self-Efficacy, Resilience and Social Support on Vicarious Trauma among Clinical Psychologists, Counselors and Teachers of Special Schools
Authors: Hamna Hamid, Kashmala Zaman
Abstract:
The aim of this study was to evaluate the relationship between self-efficacy, resilience and social support among clinical psychologists, counselors and teachers of special schools. The study also assesses the gender differences on self-efficacy, resilience, social support and vicarious trauma and also vicarious trauma differences among three professions i.e. clinical psychologists, counselors and teachers of special schools. A sample of 150 women and 97 men were handed out a set questionnaire to complete: General Self-Efficacy Scale, Brief Resilience Scale, Multidimensional Scale of Perceived Social Support and Vicarious Trauma Scale. Results showed that there is significant negative correlation between self-efficacy, resilience and vicarious trauma. Women experiences higher levels of vicarious trauma as compared to men. While clinical psychologists and counselors experience higher levels of vicarious trauma as compared to teachers of special schools. Moderation effect of social support is not significant towards resilience and vicarious trauma.Keywords: self-efficacy, resilience, vicarious trauma, social-support
Procedia PDF Downloads 7213176 Framework for Decision Support Tool for Quality Control and Management in Botswana Manufacturing Companies
Authors: Mogale Sabone, Thabiso Ntlole
Abstract:
The pressure from globalization has made manufacturing organizations to move towards three major competitive arenas: quality, cost, and responsiveness. Quality is a universal value and has become a global issue. In order to survive and be able to provide customers with good products, manufacturing organizations’ supporting systems, tools, and structures it uses must grow or evolve. The majority of quality management concepts and strategies that are practiced recently are aimed at detecting and correcting problems which already exist and serve to limit losses. In agile manufacturing environment there is no room for defect and error so it needs a quality management which is proactively directed at problem prevention. This proactive quality management avoids losses by focusing on failure prevention, virtual elimination of the possibility of premature failure, mistake-proofing, and assuring consistently high quality in the definition and design of creation processes. To achieve this, a decision support tool for quality control and management is suggested. Current decision support tools/methods used by most manufacturing companies in Botswana for quality management and control are not integrated, for example they are not consistent since some tests results data is recorded manually only whilst others are recorded electronically. It is only a set of procedures not a tool. These procedures cannot offer interactive decision support. This point brings to light the aim of this research which is to develop a framework which will help manufacturing companies in Botswana build a decision support tool for quality control and management.Keywords: decision support tool, manufacturing, quality control, quality management
Procedia PDF Downloads 56613175 Decision Support System for Solving Multi-Objective Routing Problem
Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal
Abstract:
This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.Keywords: bus scheduling problem, decision support system, genetic algorithm, shortest path
Procedia PDF Downloads 41413174 The Importance of Reflection and Collegial Support for Clinical Instructors When Evaluating Failing Students in a Clinical Nursing Course
Authors: Maria Pratt, Lynn Martin
Abstract:
Context: In nursing education, clinical instructors are crucial in assessing and evaluating students' performance in clinical courses. However, instructors often struggle when assigning failing grades to students at risk of failing. Research Aim: This qualitative study aims to understand clinical instructors' experiences evaluating students with unsatisfactory performance, including how reflection and collegial support impact this evaluation process. Methodology, Data Collection, and Analysis Procedures: This study employs Gadamer's Hermeneutic Inquiry as the research methodology. A purposive maximum variation sampling technique was used to recruit eight clinical instructors from a collaborative undergraduate nursing program in Southwestern Ontario. Semi-structured, open-ended, and audio-taped interviews were conducted with the participants. The hermeneutic analysis was applied to interpret the interview data to allow for a thorough exploration and interpretation of the instructors' experiences evaluating failing students. Findings: The main findings of this qualitative research indicate that evaluating failing students was emotionally draining for the clinical instructors who experienced multiple challenges, uncertainties, and negative feelings associated with assigning failing grades. However, the analysis revealed that ongoing reflection and collegial support played a crucial role in mitigating the challenges they experienced. Conclusion: This study contributes to the theoretical understanding of nursing education by shedding light on clinical instructors' challenges in evaluating failing students. It emphasizes the emotional toll associated with this process and the role that reflection and collegial support play in alleviating those challenges. The findings underscore the need for ongoing professional development and support for instructors in nursing education. By understanding and addressing clinical instructors' experiences, nursing education programs can better equip them to effectively evaluate struggling students and provide the necessary support for their professional growth.Keywords: clinical instructor, student evaluation, nursing, reflection, support
Procedia PDF Downloads 9313173 Risk-Realistic Decision Support Intervention for Women in the Workplace
Authors: Joshua Midha
Abstract:
This paper provides an evaluation of an intervention designed to promote a risk-realistic environment for women in the workplace and regulate their risk-related decision-making. In past research, women -specifically women of color- are highly risk-averse, and this may prove to be an innate obstacle in gender progress in corporations. By helping women see the risks and the benefits and increasing potential benefits, we can increase the chances of success in the workplace. Our intervention was a success and significantly increased comfort, trust, and frequency in the use of decision-making skills in the workplace. In this paper, we explore the intervention, the methods, the results, and the implications.Keywords: behavioral economics, decision support, risk, gender equality
Procedia PDF Downloads 22113172 Virtual Simulation as a Teaching Method for Community Health Nursing: An Investigation of Student Performance
Authors: Omar Mayyas
Abstract:
Clinical decision-making (CDM) is essential to community health nursing (CHN) education. For this reason, nursing educators are responsible for developing these skills among nursing students because nursing students are exposed to highly critical conditions after graduation. However, due to limited exposure to real-world situations, many nursing students need help developing clinical decision-making skills in this area. Therefore, the impact of Virtual Simulation (VS) on community health nursing students' clinical decision-making in nursing education has to be investigated. This study aims to examine the difference in CDM ability among CHN students who received traditional education compared to those who received VS classes, to identify the factors that may influence CDM ability differences between CHN students who received a traditional education and VS classes, and to provide recommendations for educational programs that can enhance the CDM ability of CHN students and improve the quality of care provided in community settings. A mixed-method study will conduct. A randomized controlled trial will compare the CDM ability of CHN students who received 1hr traditional class with another group who received 1hr VS scenario about diabetic patient nursing care. Sixty-four students in each group will randomly select to be exposed to the intervention from undergraduate nursing students who completed the CHN course at York University. The participants will receive the same Clinical Decision Making in Nursing Scale (CDMNS) questionnaire. The study intervention will follow the Medical Research Council (MRC) approach. SPSS and content analysis will use for data analysis.Keywords: clinical decision-making, virtual simulation, community health nursing students, community health nursing education
Procedia PDF Downloads 6713171 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management
Authors: Darius Danesh, Michael J. Ryan, Alireza Abbasi
Abstract:
Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible option to improve the decision-making outcomes in the organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.Keywords: analytic hierarchy process, decision support systems, multi-criteria decision making, project portfolio management
Procedia PDF Downloads 32113170 Cascade Screening for Beta-Thalassemia in Pakistan: Relatives’ Experiences of a Decision Support Intervention in Routine Practice
Authors: Shenaz Ahmed, Hussain Jafri, Muhammed Faran, Wajeeha Naseer Ahmed, Yasmin Rashid, Yasmin Ehsan, Shabnam Bashir, Mushtaq Ahmed
Abstract:
Low uptake of cascade screening for βeta-Thalassaemia Major (β-TM) in the ‘Punjab Thalassaemia Prevention Project’ (PTPP) in Pakistan led to the development of a ‘decision support intervention for relatives’ (DeSIRe). This paper presents the experiences of relatives of children with β-TM of the DeSIRe following its use by PTPP field officers in routine clinical practice. Fifty-four semi-structured qualitative interviews were conducted (April to June 2021) with relatives in seven cities in the Punjab province (Lahore, Sheikhupura, Nankana Sahab, Kasur, Gujranwala, Multan, and Faisalabad). Thematic analysis shows that participants were satisfied with the content of the DeSIRe and its delivery by the field officers in a family meeting. They understood the main purpose of the DeSIRe was to improve their knowledge of β-TM and its inheritance, to enable them to make decisions about thalassemia carrier testing, particularly before marriage. While participants raised concerns about the stigma of testing positive, they believed the DeSIRe was an appropriate intervention, which supported relatives to make informed decisions. Our findings show the DeSIRe is appropriate for use by healthcare professionals in routine practice in a low-middle income country and has the potential to facilitate shared decision-making about cascade screening for thalassemia. Further research is needed to prove the efficacy of the DeSIRe.Keywords: thalassemia, Pakistan, cascade screening, decision support
Procedia PDF Downloads 24013169 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data
Authors: Michelangelo Sofo, Giuseppe Labianca
Abstract:
In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm
Procedia PDF Downloads 2313168 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users
Authors: Devon Brown, Liu Chunmei
Abstract:
This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework
Procedia PDF Downloads 2013167 The Impact of the Knowledge-Sharing Factors on Improving Decision Making at Sultan Qaboos University Libraries
Authors: Aseela Alhinaai, Suliman Abdullah, Adil Albusaidi
Abstract:
Knowledge has been considered an important asset in private and public organizations. It is utilized in the libraries sector to run different operations of technical services and administrative works. As a result, the International Federation of Library Association (IFLA) established a department “Knowledge Management” in December 2003 to provide a deep understanding of the KM concept for professionals. These are implemented through different programs, workshops, and activities. This study aims to identify the impact of the knowledge-sharing factors (technology, collaboration, management support) to improve decision-making at Sultan Qaboos University Libraries. This study conducted a quantitative method using a questionnaire instrument to measure the impact of technology, collaboration, and management support on knowledge sharing that lead to improved decision-making. The study population is the (SQU) libraries (Main Library, Medical Library, College of Economic and political science library, and Art Library). The results showed that management support, collaboration, and technology use have a positive impact on the knowledge-sharing process, and knowledge-sharing positively affects the decision making process.Keywords: knowledge sharing, decision-making, information technology, management support, corroboration, Sultan Qaboos University
Procedia PDF Downloads 7913166 Patient Progression at Discharge: A Communication, Coordination, and Accountability Gap among Hospital Teams
Authors: Nana Benma Osei
Abstract:
Patient discharge can be a hectic process. Patients are sometimes sent to the wrong location or forgotten in lounges in the waiting room. This ends up compromising patient care because the delay in picking the patients can affect how they adhere to medication. Patients may fail to take their medication, and this will lead to negative outcomes. The situation highlights the demands of modern-day healthcare, and the use of technology can help in reducing such challenges and in enhancing the patient’s experience, leading to greater satisfaction with the care provided. The paper contains the proposed changes to a healthcare facility by introducing the clinical decision support system, which will be needed to improve coordination and communication during patient discharge. This will be done under Kurt Lewin’s Change Management Model, which recognizes the different phases in the change process. A pilot program is proposed initially before the program can be implemented in the entire organization. This allows for the identification of challenges and ways of managing them. The paper anticipates some of the possible challenges that may arise during implementation, and a multi-disciplinary approach is considered the most effective. Opposition to the change is likely to arise because staff members may lack information on how the changes will affect them and the skills they will need to learn to use the new system. Training will occur before the technology can be implemented. Every member will go for training, and adequate time is allocated for training purposes. A comparison of data will determine whether the project has succeeded.Keywords: patient discharge, clinical decision support system, communication, collaboration
Procedia PDF Downloads 10313165 The Role of Marketing Information System on Decision-Making: An Applied Study on Algeria Telecoms Mobile "MOBILIS"
Authors: Benlakhdar Mohamed Larbi, Yagoub Asma
Abstract:
Purpose: This study aims at highlighting the significance and importance of utilizing marketing information system (MKIS) on decision-making, by clarifying the need for quick and efficient decision-making due to time saving and preventing of duplication of work. Design, methodology, approach: The study shows the roles of each part of MKIS for developing marketing strategy, which present a real challenge to individuals and institutions in an era characterized by uncertainty and clarifying the importance of each part separately, depending on decision type and the nature of the situation. The empirical research method was evaluated by specialized experts, conducted by means of questionnaires. Correlation analysis was employed to test the validity of the procedure. Results: The empirical study findings confirmed positive relationships between the level of utilizing and adopting ‘decision support system and marketing intelligence’ and the success of an organizational decision-making, and provide the organization with a competitive advantage as it allows the organization to solve problems. Originality/value: The study offer better understanding of performance- increasing market share as an organizational decision making based on marketing information system.Keywords: database, marketing research, marketing intelligence, decision support system, decision-making
Procedia PDF Downloads 33013164 A Decision Support System for Flight Disruptions Management
Authors: Burak Erkayman, Emin Gundogar, Hayrettin Evirgen, Murat Sarı
Abstract:
With the increasing competition in recent years, airline companies tend to manage their operations aiming fewer losses in a robust manner. Airline operations are complex operations and have the necessity of being performed just in time and more knock-on relevant elements in the event of a disruption. In this study a knowledge based decision support system is suggested and software is developed. The developed software includes knowledge bases which are based on expert experience and government regulations, model bases and data bases. The results of the suggested approach are presented and improvable aspects of the approach are discussed.Keywords: knowledge based systems, irregular operations, decision support systems, flight disruptions management
Procedia PDF Downloads 31513163 An Intelligent Decision Support System Approach for New Product Development by Using QFD and Its Application in Metal Plating Industry
Authors: Ufuk Cebeci, Onur Doğan
Abstract:
New product becomes critical in competitive environment shortening a product's lifecycle due to the rapidly changing technology and increasing consumer requirements. Quality Function Deployment is one of the first steps of NPD process. The study presents an intelligent QFD application in metal plating industry. For application, an intelligent decision support system was developed. By intelligent system, house of quality was drawn and some calculations were shown. According to the results, some recommendations are given to end user. One of the purposes of this system is to give some advices to firms which do not know technical details of QFD and guide them about first steps of the new product development process.Keywords: intelligent decision support systems, metal plating, quality function deployment, QFD software, new product development
Procedia PDF Downloads 39813162 Modeling of International Financial Integration: A Multicriteria Decision
Authors: Zouari Ezzeddine, Tarchoun Monaem
Abstract:
Despite the multiplicity of advanced approaches, the concept of financial integration couldn’t be an explicit analysis. Indeed, empirical studies appear that the measures of international financial integration are one-dimensional analyses. For the ambivalence of the concept and its multiple determinants, it must be analyzed in multidimensional level. The interest of this research is a proposal of a decision support by multicriteria approach for determining the positions of countries according to their international and financial dependencies links with the behavior of financial actors (trying to make governance decisions or diversification strategies of international portfolio ...Keywords: financial integration, decision support, behavior, multicriteria approach, governance and diversification
Procedia PDF Downloads 52613161 Computing Machinery and Legal Intelligence: Towards a Reflexive Model for Computer Automated Decision Support in Public Administration
Authors: Jacob Livingston Slosser, Naja Holten Moller, Thomas Troels Hildebrandt, Henrik Palmer Olsen
Abstract:
In this paper, we propose a model for human-AI interaction in public administration that involves legal decision-making. Inspired by Alan Turing’s test for machine intelligence, we propose a way of institutionalizing a continuous working relationship between man and machine that aims at ensuring both good legal quality and higher efficiency in decision-making processes in public administration. We also suggest that our model enhances the legitimacy of using AI in public legal decision-making. We suggest that case loads in public administration could be divided between a manual and an automated decision track. The automated decision track will be an algorithmic recommender system trained on former cases. To avoid unwanted feedback loops and biases, part of the case load will be dealt with by both a human case worker and the automated recommender system. In those cases an experienced human case worker will have the role of an evaluator, choosing between the two decisions. This model will ensure that the algorithmic recommender system is not compromising the quality of the legal decision making in the institution. It also enhances the legitimacy of using algorithmic decision support because it provides justification for its use by being seen as superior to human decisions when the algorithmic recommendations are preferred by experienced case workers. The paper outlines in some detail the process through which such a model could be implemented. It also addresses the important issue that legal decision making is subject to legislative and judicial changes and that legal interpretation is context sensitive. Both of these issues requires continuous supervision and adjustments to algorithmic recommender systems when used for legal decision making purposes.Keywords: administrative law, algorithmic decision-making, decision support, public law
Procedia PDF Downloads 21613160 A Social Decision Support Mechanism for Group Purchasing
Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh
Abstract:
With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.Keywords: social network, group decision, text mining, group commerce
Procedia PDF Downloads 48513159 Contribution to the Decision-Making Process for Selecting the Suitable Maintenance Policy
Authors: Nasser Y. Mahamoud, Pierre Dehombreux, Hassan E. Robleh
Abstract:
Industrial companies may be confronted with questions about their choice of maintenance policy. This choice must be guided by several numbers of decision criteria or objectives related to their production or service activities but also to their level of development and their investment prospects. A decision-support methodology to choose a maintenance policy (corrective, systematic or conditional preventive, predictive, opportunistic or not) is proposed to facilitate this choice using the main categories of the most important decision criteria. The different steps of this methodology are illustrated using theoretical case: identification of the different maintenance alternatives, determining the structure of the most important categories of the decision criteria, assessing the different maintenance policies on to the criteria by using an ordinal preference relation, and finally ranking the different maintenance policies.Keywords: maintenance policy, decision criteria, decision-making process, AHP
Procedia PDF Downloads 33213158 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 55813157 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 21713156 Establishment of Decision Support Center for Managing Natural Hazard Consequence in Kuwait
Authors: Abdullah Alenezi, Mane Alsudrawi, Rafat Misak
Abstract:
Kuwait is faced with a potentially wide and harmful range of both natural and anthropogenic hazardous events such as dust storms, floods, fires, nuclear accidents, earthquakes, oil spills, tsunamis and other disasters. For Kuwait can be highly vulnerable to these complex environmental risks, an up-to-date and in-depth understanding of their typology, genesis, and impact on the Kuwaiti society is needed. Adequate anticipation and management of environmental crises further require a comprehensive system of decision support to the benefit of decision makers to further bridge the gap between (technical) risk understanding and public action. For that purpose, the Kuwait Institute for Scientific Research (KISR), intends to establish a decision support center for management of the environmental crisis in Kuwait. The center will support policy makers, stakeholders and national committees with technical information that helps them efficiently and effectively assess, monitor to manage environmental disasters using decision support tools. These tools will build on state of the art quantification and visualization techniques, such as remote sensing information, Geographical Information Systems (GIS), simulation and prediction models, early warning systems, etc. The center is conceived as a central facility which will be designed, operated and managed by KISR in coordination with national authorities and decision makers of the country. Our vision is that by 2035 the center will be recognized as a leading national source of scientific advice on national risk management in Kuwait and build unity of effort among Kuwaiti’s institutions, government agencies, public and private organizations through provision and sharing of information. The project team now focuses on capacity building through upgrading some KISR facilities manpower development, build strong collaboration with international alliance.Keywords: decision support, environment, hazard, Kuwait
Procedia PDF Downloads 312