Search results for: bidirectional encoder representations from transformers
679 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study
Authors: Shilpesh R. Rajpurohit, Harshit K. Dave
Abstract:
Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.Keywords: additive manufacturing, fused deposition modeling, unidirectional, bidirectional, raster angle, tensile strength
Procedia PDF Downloads 185678 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model
Authors: Tory Erickson
Abstract:
The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics
Procedia PDF Downloads 86677 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 314676 Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers
Authors: Yogendra Sisodia
Abstract:
Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results.Keywords: legal contracts, multiple negative ranking loss, natural language inference, sentence transformers, semantic textual similarity
Procedia PDF Downloads 107675 Extending Image Captioning to Video Captioning Using Encoder-Decoder
Authors: Sikiru Ademola Adewale, Joe Thomas, Bolanle Hafiz Matti, Tosin Ige
Abstract:
This project demonstrates the implementation and use of an encoder-decoder model to perform a many-to-many mapping of video data to text captions. The many-to-many mapping occurs via an input temporal sequence of video frames to an output sequence of words to form a caption sentence. Data preprocessing, model construction, and model training are discussed. Caption correctness is evaluated using 2-gram BLEU scores across the different splits of the dataset. Specific examples of output captions were shown to demonstrate model generality over the video temporal dimension. Predicted captions were shown to generalize over video action, even in instances where the video scene changed dramatically. Model architecture changes are discussed to improve sentence grammar and correctness.Keywords: decoder, encoder, many-to-many mapping, video captioning, 2-gram BLEU
Procedia PDF Downloads 108674 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad
Abstract:
Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.Keywords: optimization, voltage transformer, ferroresonance, modeling, damper
Procedia PDF Downloads 101673 Representations of Childcare Robots as a Controversial Issue
Authors: Raya A. Jones
Abstract:
This paper interrogates online representations of robot companions for children, including promotional material by manufacturers, media articles and technology blogs. The significance of the study lies in its contribution to understanding attitudes to robots. The prospect of childcare robots is particularly controversial ethically, and is associated with emotive arguments. The sampled material is restricted to relatively recent posts (the past three years) though the analysis identifies both continuous and changing themes across the past decade. The method extrapolates social representations theory towards examining the ways in which information about robotic products is provided for the general public. Implications for social acceptance of robot companions for the home and robot ethics are considered.Keywords: acceptance of robots, childcare robots, ethics, social representations
Procedia PDF Downloads 252672 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.Keywords: convolutional image, lower knee, gait
Procedia PDF Downloads 202671 Applying Wavelet Transform to Ferroresonance Detection and Protection
Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang
Abstract:
Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer
Procedia PDF Downloads 496670 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 348669 Breakdown Voltage Measurement of High Voltage Transformers Oils Using an Active Microwave Resonator Sensor
Authors: Ahmed A. Al-Mudhafar, Ali A. Abduljabar, Hayder Jawad Albattat
Abstract:
This work suggests a new microwave resonator sensor (MRS) device for measuring the oil’s breakdown voltage of high voltage transformers. A precise high-sensitivity sensor is designed and manufactured based on a microstrip split ring resonator (SRR). To improve the sensor sensitivity, a RF amplifier of 30 dB gain is linked through a transmission line of 50Ω.The sensor operates at a microwave band (L) with a quality factor of 1.35x105 when it is loaded with an empty tube. In this work, the sensor has been tested with three samples of high voltage transformer oil of different ages (new, middle, and damaged) where the quality factor differs with each sample. A mathematical model was built to calculate the breakdown voltage of the transformer oils and the accuracy of the results was higher than 90%.Keywords: active resonator sensor, oil breakdown voltage, transformers oils, quality factor
Procedia PDF Downloads 269668 Pre-Service Teachers’ Conceptual Representations of Heat and Temperature
Authors: Abdeljalil Métioui
Abstract:
The purpose of this paper is to present the results of research on the conceptual representations of 128 Quebec (Canada) pre-service teachers enrolled in their third year of university in a program to train elementary teachers about heat and temperature. To identify their conceptual representations about heat and temperature, we constructed a multiple-choice questionnaire consisting of five questions. For each question, they had to explain their choice of an answer. At the methodological level, this step is essential to be able to identify the student conceptual representations. It should be noted that the selected questions were based: (1) on the works have done worldwide on primary and secondary students’ misconceptions about heat and temperature; (2) on the notions prescribed in the curriculum related to the physical world and (3) on student’s everyday contexts. As illustrations, the following are the erroneous conceptual representations identified in our analysis of the data collected: (1) The change of state of the matter does not require a constant temperature, (2) The temperature is a measure in degrees to indicate the level of heat of an object or person, (3) The mercury contained in a thermometer expands when it is heated so that the particles which constitute it expand and (4) The sensation of cold (or warm) is related to the difference in temperature. In conclusion, we will see that it is possible to develop situations of conflict, dealing specifically with the limits of the analogy between heat and temperature. These situations must consider the conceptual representations of the pre-service teachers, as well as the relevant scientific understanding of the concept of heat and temperature.Keywords: conceptual representation, heat, temperature, pre-service teachers
Procedia PDF Downloads 132667 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model
Authors: Navid Daryasafar, Nima Farshidfar
Abstract:
In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation
Procedia PDF Downloads 539666 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses
Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas
Abstract:
We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.Keywords: transient noise pulses, noise reduction, dynamic time warping, speech recognition
Procedia PDF Downloads 558665 Impact of Instrument Transformer Secondary Connections on Performance of Protection System: Experiences from Indian POWERGRID
Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh, Sandeep Yadav
Abstract:
Protective relays are commonly connected to the secondary windings of instrument transformers, i.e., current transformers (CTs) and/or capacitive voltage transformers (CVTs). The purpose of CT and CVT is to provide galvanic isolation from high voltages and reduce primary currents and voltages to a nominal quantity recognized by the protective relays. Selecting the correct instrument transformers for an application is imperative: failing to do so may compromise the relay’s performance, as the output of the instrument transformer may no longer be an accurately scaled representation of the primary quantity. Having an accurately rated instrument transformer is of no use if these devices are not properly connected. The performance of the protective relay is reliant on its programmed settings and on the current and voltage inputs from the instrument transformers secondary. This paper will help in understanding the fundamental concepts of the connections of Instrument Transformers to the protection relays and the effect of incorrect connection on the performance of protective relays. Multiple case studies of protection system mal-operations due to incorrect connections of instrument transformers will be discussed in detail in this paper. Apart from the connection issue of instrument transformers to protective relays, this paper will also discuss the effect of multiple earthing of CTs and CVTs secondary on the performance of the protection system. Case studies presented in this paper will help the readers to analyse the problem through real-world challenges in complex power system networks. This paper will also help the protection engineer in better analysis of disturbance records. CT and CVT connection errors can lead to undesired operations of protection systems. However, many of these operations can be avoided by adhering to industry standards and implementing tried-and-true field testing and commissioning practices. Understanding the effect of missing neutral of CVT, multiple earthing of CVT secondary, and multiple grounding of CT star points on the performance of the protection system through real-world case studies will help the protection engineer in better commissioning the protection system and maintenance of the protection system.Keywords: bus reactor, current transformer, capacitive voltage transformer, distance protection, differential protection, directional earth fault, disturbance report, instrument transformer, ICT, REF protection, shunt reactor, voltage selection relay, VT fuse failure
Procedia PDF Downloads 81664 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities
Authors: Pranjal Johri, Misbah Ul-Islam
Abstract:
Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing: From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage. During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor. A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing. Extended over excitation test to be done in case above propositions are observed to be violated during testing.Keywords: power transfoemrs, no load current, DGA, power factor
Procedia PDF Downloads 104663 Cultural and Group Understandings of Disability and Sexuality
Authors: Luke Galvani
Abstract:
The cultural representations of people with disabilities are frequently biased which can lead to a general misunderstanding of disability. Representations of disabled deviance are especially problematic given that they typify or generally abstract disability as being abnormal, which then begin to take root in the cultural mind. This study utilizes critical discourse analysis to investigate how discourses of disabled sexual deviance are promoted within two major films that portray disabled sexual subjects. The findings indicate that perceptions of disabled sexual deviance are heightened by cinematic representations of sex and disability, which characterize disabled sexual expression as being undesirable due to the ephemeral and abnormal qualities ascribed to it.Keywords: deviance, disability, discourse analysis, sexuality
Procedia PDF Downloads 168662 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks
Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE
Abstract:
Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network
Procedia PDF Downloads 121661 Undocumented Migrants on the Northern Border of Mexico: Social Imaginary, and Social Representations
Authors: César Enrique Jiménez Yañez, Yessica Martinez Soto
Abstract:
In the present work, the phenomenon of undocumented migration in the northern border of Mexico is analyzed through the graphic representation of the experience of people who migrate in an undocumented way to the United States. 33 of them drew what it meant for them to migrate. Our objective is to analyze the social phenomenon of migration through the drawings of migrants, using the concepts of social imaginary and social representations, identifying the different significant elements with which this symbolically builds their experience. Drawing, as a methodological tool, will help us to understand the migratory experience beyond words.Keywords: Mexico, social imaginary, social representations, undocumented migrants
Procedia PDF Downloads 401660 Measurement of Viscosity and Moisture of Oil in Supradistribution Transformers Using Ultrasonic Waves
Authors: Ehsan Kadkhodaie, Shahin Parvar, Soroush Senemar, Mostafa Shriat, Abdolrasoul Malekpour
Abstract:
The role of oil in supra distribution transformers is so critical and, several standards in determining the quality of oil have been offered. So far, moisture, viscosity and insulation protection of the oil have been measured based on mechanical and chemical methods and systems such as kart fisher, falling ball and TDM 4000 that most of these techniques are destructive and have many problems such as pollution. In this study, due to the properties of oil and also physical behavior of ultrasound wave new method was designed to in the determination of oil indicators including viscosity and moisture. The results show the oil viscosity can be found from the relationship μ = 42.086/√EE and moisture from (PLUS+) = −15.65 (PPM) + 26040 relationship.Keywords: oil, viscosity, moisture, ultrasonic waves
Procedia PDF Downloads 581659 Unsupervised Learning of Spatiotemporally Coherent Metrics
Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun
Abstract:
Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.Keywords: machine learning, pattern clustering, pooling, classification
Procedia PDF Downloads 456658 Analyzing Current Transformer’s Transient and Steady State Behavior for Different Burden’s Using LabVIEW Data Acquisition Tool
Abstract:
Current transformers (CTs) are used to transform large primary currents to a small secondary current. Since most standard equipment’s are not designed to handle large primary currents the CTs have an important part in any electrical system for the purpose of Metering and Protection both of which are integral in Power system. Now a days due to advancement in solid state technology, the operation times of the protective relays have come to a few cycles from few seconds. Thus, in such a scenario it becomes important to study the transient response of the current transformers as it will play a vital role in the operating of the protective devices. This paper shows the steady state and transient behavior of current transformers and how it changes with change in connected burden. The transient and steady state response will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer characteristics with changes in burden will be discussed.Keywords: accuracy, accuracy limiting factor, burden, current transformer, instrument security factor
Procedia PDF Downloads 343657 Representational Conference Profile of Secondary Students in Understanding Selected Chemical Principles
Authors: Ryan Villafuerte Lansangan
Abstract:
Assessing students’ understanding in the microscopic level of an abstract subject like chemistry poses a challenge to teachers. Literature reveals that the use of representations serves as an essential avenue of measuring the extent of understanding in the discipline as an alternative to traditional assessment methods. This undertaking explored the representational competence profile of high school students from the University of Santo Tomas High School in understanding selected chemical principles and correlate this with their academic profile in chemistry based on their performance in the academic achievement examination in chemistry administered by the Center for Education Measurement (CEM). The common misconceptions of the students on the selected chemistry principles based on their representations were taken into consideration as well as the students’ views regarding their understanding of the role of chemical representations in their learning. The students’ level of representation task instrument consisting of the main lessons in chemistry with a corresponding scoring guide was prepared and utilized in the study. The study revealed that most of the students under study are unanimously rated as Level 2 (symbolic level) in terms of their representational competence in understanding the selected chemical principles through the use of chemical representations. Alternative misrepresentations were most observed on the students’ representations on chemical bonding concepts while the concept of chemical equation appeared to be the most comprehensible topic in chemistry for the students. Data implies that teachers’ representations play an important role in helping the student understand the concept in a microscopic level. Results also showed that the academic achievement in the chemistry of the students based on the standardized CEM examination has a significant association with the students’ representational competence. In addition, the students’ responses on the students’ views in chemical representations questionnaire evidently showed a good understanding of what a chemical representation or a mental model is by drawing a negative response that these tools should be an exact replica. Moreover, the students confirmed a greater appreciation that chemical representations are explanatory tools.Keywords: chemical representations, representational competence, academic profile in chemistry, secondary students
Procedia PDF Downloads 406656 An Application of Bidirectional Option Contract to Coordinate a Dyadic Fashion Apparel Supply Chain
Authors: Arnab Adhikari, Arnab Bisi
Abstract:
Since the inception, the fashion apparel supply chain is facing the problem of high demand uncertainty. Often the demand volatility compels the corresponding supply chain member to incur substantial holding cost and opportunity cost in case of the overproduction and the underproduction scenario, respectively. It leads to an uncoordinated fashion apparel supply chain. There exist several scholarly works to achieve coordination in the fashion apparel supply chain by employing the different contracts such as the buyback contract, the revenue sharing contract, the option contract, and so on. Specially, the application of option contract in the apparel industry becomes prevalent with the changing global scenario. Exploration of existing literature related to the option contract reveals that most of the research works concentrate on the one direction demand adjustment i.e. either to match the demand upwards or downwards. Here, we present a holistic approach to coordinate a dyadic fashion apparel supply chain comprising one manufacturer and one retailer with the help of bidirectional option contract. We show a combination of wholesale price contract and bidirectional option contract can coordinate the under expanded supply chain. We also propose a framework that captures the variation of the apparel retailer’s order quantity and the apparel manufacturer’s production quantity with the changing exercise price for the different ranges of the option price. We analytically explore that corresponding cost parameters of the supply chain members along with the nature of demand distribution play an instrumental role in the coordination as well as the retailer’s ordering decision.Keywords: fashion apparel supply chain, supply chain coordination, wholesale price contract, bidirectional option contract
Procedia PDF Downloads 441655 Host-Guest Interaction in a Homestay Setting a Study Based on Homestays in Sabah and Sarawak, Malaysia
Authors: Lau Sing Yew
Abstract:
The purpose of this research is to investigate and analyse the host-guests interaction in a homestay setting with the sub context of cultural exchange and cultural differences between both parties. The research were carried out in Malaysia, specifically in the state of Sabah and Sarawak which are more well-known for its’ rural tourism and homestay programs. The research problem addressed here is on the suitability of the homestay setting as a platform for intercultural communication between the host and foreign tourists. The key issues that were discussed include ‘cultural representations’, ‘touristic representations’ and ‘social representations’ which contoured the image that tourists form about destinations and local communities while debating on the benefits and disbenefits of cultural exchange. These issues were deliberated through observation and interviews and it was found that the homestay setting in Malaysia though there are varied types available acts as a suitable platform to encourage intercultural interaction between tourists and local communities.Keywords: homestay program, Malaysia, host-guest interactions, cultural representations
Procedia PDF Downloads 340654 Automata-Based String Analysis for Detecting Malware in Android Programs
Authors: Assad Maalouf, Lunjin Lu, James Lynott
Abstract:
We design and implement a precise model of string operations using finite state machine transformers and state transformers to approximate the values string variables can take throughout the execution of the program.We use our model to analyze Android program string variables. Our experimental results show that our string analysis is very efficient at detecting the contextual effect of string operations on the string variables. Our model proved to be very useful when it came to verifying statements about the string variables of the program.Keywords: abstract interpretation, android, static analysis, string analysis
Procedia PDF Downloads 179653 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays
Authors: Swati Tyagi, Syed Abbas
Abstract:
Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability
Procedia PDF Downloads 364652 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation
Procedia PDF Downloads 175651 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics
Authors: O. P. Rahi, Manoj Kumar
Abstract:
Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic
Procedia PDF Downloads 412650 Frobenius Manifolds Pairing and Invariant Theory
Authors: Zainab Al-Maamari, Yassir Dinar
Abstract:
The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds.Keywords: invariant ring, Frobenius manifold, inversion, representation theory
Procedia PDF Downloads 98