Search results for: adomian decomposition method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19296

Search results for: adomian decomposition method

19266 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine

Procedia PDF Downloads 108
19265 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing

Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig

Abstract:

Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.

Keywords: empirical mode decomposition (EMD), mode mixing, sifting process, over-sifting

Procedia PDF Downloads 394
19264 Effects of Nitrogen Addition on Litter Decomposition and Nutrient Release in a Temperate Grassland in Northern China

Authors: Lili Yang, Jirui Gong, Qinpu Luo, Min Liu, Bo Yang, Zihe Zhang

Abstract:

Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of N addition on litter decomposition is critical to understand ecosystem carbon cycling and their responses to global climate change. The aim of this study was to investigate the effects of N addition and litter types on litter decomposition of a semi-arid temperate grassland during growing and non-growing seasons in Inner Mongolia, northern China, and to identify the relation between litter decomposition and C: N: P stoichiometry in the litter-soil continuum. Six levels of N addition were conducted: CK, N1 (0 g Nm−2 yr−1), N2 (2 g Nm−2 yr−1), N3 (5 g Nm−2 yr−1), N4 (10 g Nm−2 yr−1) and N5 (25 g Nm−2 yr−1). Litter decomposition rates and nutrient release differed greatly among N addition gradients and litter types. N addition promoted litter decomposition of S. grandis, but exhibited no significant influence on L. chinensis litter, indicating that the S. grandis litter decomposition was more sensitive to N addition than L. chinensis. The critical threshold for N addition to promote mixed litter decomposition was 10 -25g Nm−2 yr−1. N addition altered the balance of C: N: P stoichiometry between litter, soil and microbial biomass. During decomposition progress, the L. chinensis litter N: P was higher in N2-N4 plots compared to CK, while the S. grandis litter C: N was lower in N3 and N4 plots, indicating that litter N or P content doesn’t satisfy microbial decomposers with the increasing of N addition. As a result, S. grandis litter exhibited net N immobilization, while L. chinensis litter net P immobilization. Mixed litter C: N: P stoichiometry satisfied the demand of microbial decomposers, showed net mineralization during the decomposition process. With the increasing N deposition in the future, mixed litter would potentially promote C and nutrient cycling in grassland ecosystem by increasing litter decomposition and nutrient release.

Keywords: C: N: P stoichiometry, litter decomposition, nitrogen addition, nutrient release

Procedia PDF Downloads 485
19263 Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function

Authors: Rogelio Luck, Yucheng Liu

Abstract:

This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.

Keywords: singular value decomposition, impulse response function, Green’s function , Toeplitz matrix , Hankel matrix

Procedia PDF Downloads 156
19262 A Study of Using Multiple Subproblems in Dantzig-Wolfe Decomposition of Linear Programming

Authors: William Chung

Abstract:

This paper is to study the use of multiple subproblems in Dantzig-Wolfe decomposition of linear programming (DW-LP). Traditionally, the decomposed LP consists of one LP master problem and one LP subproblem. The master problem and the subproblem is solved alternatively by exchanging the dual prices of the master problem and the proposals of the subproblem until the LP is solved. It is well known that convergence is slow with a long tail of near-optimal solutions (asymptotic convergence). Hence, the performance of DW-LP highly depends upon the number of decomposition steps. If the decomposition steps can be greatly reduced, the performance of DW-LP can be improved significantly. To reduce the number of decomposition steps, one of the methods is to increase the number of proposals from the subproblem to the master problem. To do so, we propose to add a quadratic approximation function to the LP subproblem in order to develop a set of approximate-LP subproblems (multiple subproblems). Consequently, in each decomposition step, multiple subproblems are solved for providing multiple proposals to the master problem. The number of decomposition steps can be reduced greatly. Note that each approximate-LP subproblem is nonlinear programming, and solving the LP subproblem must faster than solving the nonlinear multiple subproblems. Hence, using multiple subproblems in DW-LP is the tradeoff between the number of approximate-LP subproblems being formed and the decomposition steps. In this paper, we derive the corresponding algorithms and provide some simple computational results. Some properties of the resulting algorithms are also given.

Keywords: approximate subproblem, Dantzig-Wolfe decomposition, large-scale models, multiple subproblems

Procedia PDF Downloads 166
19261 Forecasting Amman Stock Market Data Using a Hybrid Method

Authors: Ahmad Awajan, Sadam Al Wadi

Abstract:

In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.

Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series

Procedia PDF Downloads 129
19260 Catalytic Decomposition of High Energy Materials Using Nanoparticles of Copper Chromite

Authors: M. Sneha Reddy, M. Arun Kumar, V. Kameswara Rao

Abstract:

Chromites are binary transition metal oxides with a general formula of ACr₂O₄, where A = Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, and Cu²⁺. Chromites have a normal-type spinel structure with interesting applications in the areas of applied physics, material sciences, and geophysics. They have attracted great consideration because of their unique physicochemical properties and tremendous technological applications in nanodevices, sensor elements, and high-temperature ceramics with useful optical properties. Copper chromite is one of the most efficient spinel oxides, having pronounced commercial application as a catalyst in various chemical reactions like oxidation, hydrogenation, alkylation, dehydrogenation, decomposition of organic compounds, and hydrogen production. Apart from its usage in chemical industries, CuCr₂O₄ finds its major application as a burn rate modifier in solid propellant processing for space launch vehicles globally. Herein we synthesized the nanoparticles of copper chromite using the co-precipitation method. The synthesized nanoparticles were characterized by XRD, TEM, SEM, BET, and TG-DTA. The synthesized nanoparticles of copper chromites were used as a catalyst for the thermal decomposition of various high-energy materials.

Keywords: copper chromite, coprecipitation method, high energy materials, catalytic thermal decomposition

Procedia PDF Downloads 77
19259 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 69
19258 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition

Authors: Latha Subbiah, Dhanalakshmi Samiappan

Abstract:

In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.

Keywords: curvelet, decomposition, levelset, ultrasound

Procedia PDF Downloads 340
19257 Encryption Image via Mutual Singular Value Decomposition

Authors: Adil Al-Rammahi

Abstract:

Image or document encryption is needed through e- government data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.

Keywords: image cryptography, singular values decomposition

Procedia PDF Downloads 436
19256 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm

Procedia PDF Downloads 123
19255 Analysis of Nonlinear and Non-Stationary Signal to Extract the Features Using Hilbert Huang Transform

Authors: A. N. Paithane, D. S. Bormane, S. D. Shirbahadurkar

Abstract:

It has been seen that emotion recognition is an important research topic in the field of Human and computer interface. A novel technique for Feature Extraction (FE) has been presented here, further a new method has been used for human emotion recognition which is based on HHT method. This method is feasible for analyzing the nonlinear and non-stationary signals. Each signal has been decomposed into the IMF using the EMD. These functions are used to extract the features using fission and fusion process. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques.We evaluated the algorithm on Augsburg University Database; the manually annotated database.

Keywords: intrinsic mode function (IMF), Hilbert-Huang transform (HHT), empirical mode decomposition (EMD), emotion detection, electrocardiogram (ECG)

Procedia PDF Downloads 580
19254 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem

Authors: Ebrahim Asadi-Gangraj

Abstract:

Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.

Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan

Procedia PDF Downloads 188
19253 Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk

Authors: Siti Rohana Mohd Yatim, Ku Halim Ku Hamid, Kamariah Noor Ismail, Zulkifli Abdul Rashid

Abstract:

The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health.

Keywords: volatile organic compounds, decomposition process, food waste, health risk

Procedia PDF Downloads 520
19252 Damage Assessment Based on Full-Polarimetric Decompositions in the 2017 Colombia Landslide

Authors: Hyeongju Jeon, Yonghyun Kim, Yongil Kim

Abstract:

Synthetic Aperture Radar (SAR) is an effective tool for damage assessment induced by disasters due to its all-weather and night/day acquisition capability. In this paper, the 2017 Colombia landslide was observed using full-polarimetric ALOS/PALSAR-2 data. Polarimetric decompositions, including the Freeman-Durden decomposition and the Cloude decomposition, are utilized to analyze the scattering mechanisms changes before and after-landslide. These analyses are used to detect the damaged areas induced by the landslide. Experimental results validate the efficiency of the full polarimetric SAR data since the damaged areas can be well discriminated. Thus, we can conclude the proposed method using full polarimetric data has great potential for damage assessment of landslides.

Keywords: Synthetic Aperture Radar (SAR), polarimetric decomposition, damage assessment, landslide

Procedia PDF Downloads 390
19251 Pyrolysis and Combustion Kinetics of Palm Kernel Shell Using Thermogravimetric Analysis

Authors: Kanit Manatura

Abstract:

The combustion and pyrolysis behavior of Palm Kernel Shell (PKS) were investigated in a thermogravimetric analyzer. A 10 mg sample of each biomass was heated from 30 °C to 800 °C at four heating rates (within 5, 10, 15 and 30 °C/min) in nitrogen and dry air flow of 20 ml/min instead of pyrolysis and combustion process respectively. During pyrolysis, thermal decomposition occurred on three different stages include dehydration, hemicellulose-cellulose and lignin decomposition on each temperature range. The TG/DTG curves showed the degradation behavior and the pyrolysis/combustion characteristics of the PKS samples which led to apply in thermogravimetric analysis. The kinetic factors including activation energy and pre-exponential factor were determined by the Coats-Redfern method. The obtained kinetic factors are used to simulate the thermal decomposition and compare with experimental data. Rising heating rate leads to shift the mass loss towards higher temperature.

Keywords: combustion, palm kernel shell, pyrolysis, thermogravimetric analyzer

Procedia PDF Downloads 227
19250 The Power of the Proper Orthogonal Decomposition Method

Authors: Charles Lee

Abstract:

The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.

Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios

Procedia PDF Downloads 84
19249 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Authors: Supriyono, Sumardiyono, Rendy J. Pramono

Abstract:

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

Keywords: antioxidant, palm oil biodiesel, decomposition, oxidation, tocopherol

Procedia PDF Downloads 354
19248 Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728

Authors: Siti Noor Farwina Anwar, Hailiza Kamarulhaili

Abstract:

In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field.

Keywords: efficiently computable endomorphism, elliptic scalar multiplication, j-invariant 1728, quadratic field

Procedia PDF Downloads 199
19247 Synthesis of Nickel Oxide Nanoparticles in Presence of Sodium Dodecyl Sulphate

Authors: Fereshteh Chekin, Sepideh Sadeghi

Abstract:

Nickel nanoparticles have attracted much attention because of applications in catalysis, medical diagnostics and magnetic applications. In this work, we reported a simple and low-cost procedure to synthesize nickel oxide nanoparticles (NiO-NPs) by using sodium dodecyl sulphate (SDS) and gelatin as stabilizer. The synthesized NiO-NPs were characterized by a variety of means such as transmission electron microscope (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis spectroscopy. The results show that the NiO nanoparticles with high crystalline can be obtained using this simple method. The grain size measured by TEM was 16 in presence of SDS, which agrees well with the XRD data. SDS plays an important role in the formation of the NiO nanoparticles. Moreover, the NiO nanoparticles have been used as a solid phase catalyst for the decomposition of hydrazine hydrate at room temperatures. The decomposition process has been monitored by UV–vis analysis. The present study showed that nanoparticles are not poisoned after their repeated use in decomposition of hydrazine.

Keywords: nickel oxide nanoparticles, sodium dodecyl sulphate, synthesis, stabilizer

Procedia PDF Downloads 484
19246 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform

Authors: Hana Rabbouch

Abstract:

In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.

Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets

Procedia PDF Downloads 141
19245 Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion

Authors: Doyoung Kim, Hyo Seon Park

Abstract:

Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared.

Keywords: modal assurance criterion, mode shape, operating deflection shape, system identification

Procedia PDF Downloads 410
19244 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error

Authors: Qianhua He, Weili Zhou, Aiwu Chen

Abstract:

A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.

Keywords: speech denoising, sparse representation, k-singular value decomposition, orthogonal matching pursuit

Procedia PDF Downloads 499
19243 Comparison of Wet and Microwave Digestion Methods for the Al, Cu, Fe, Mn, Ni, Pb and Zn Determination in Some Honey Samples by ICPOES in Turkey

Authors: Huseyin Altundag, Emel Bina, Esra Altıntıg

Abstract:

The aim of this study is determining amount of Al, Cu, Fe, Mn, Ni, Pb and Zn in the samples of honey which are gathered from Sakarya and Istanbul regions. In this study the evaluation of the trace elements in honeys samples are gathered from Sakarya and Istanbul, Turkey. The sample preparation phase is performed via wet decomposition method and microwave digestion system. The accuracy of the method was corrected by the standard reference material, Tea Leaves (INCY-TL-1) and NIST SRM 1515 Apple leaves. The comparison between gathered data and literature values has made and possible resources of the contamination to the samples of honey have handled. The obtained results will be presented in ICCIS 2015: XIII International Conference on Chemical Industry and Science.

Keywords: Wet decomposition, Microwave digestion, Trace element, Honey, ICP-OES

Procedia PDF Downloads 462
19242 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support

Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha

Abstract:

Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.

Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron

Procedia PDF Downloads 179
19241 Industry Openness, Human Capital and Wage Inequality: Evidence from Chinese Manufacturing Firms

Authors: Qiong Huang, Satish Chand

Abstract:

This paper uses a primary data from 670 Chinese manufacturing firms, together with the newly introduced regressionbased inequality decomposition method, to study the effect of openness on wage inequality. We find that openness leads to a positive industry wage premium, but its contribution to firm-level wage inequality is relatively small, only 4.69%. The major contributor to wage inequality is human capital, which could explain 14.3% of wage inequality across sample firms.  

Keywords: openness, human capital, wage inequality, decomposition, China

Procedia PDF Downloads 424
19240 On Direct Matrix Factored Inversion via Broyden's Updates

Authors: Adel Mohsen

Abstract:

A direct method based on the good Broyden's updates for evaluating the inverse of a nonsingular square matrix of full rank and solving related system of linear algebraic equations is studied. For a matrix A of order n whose LU-decomposition is A = LU, the multiplication count is O (n3). This includes the evaluation of the LU-decompositions of the inverse, the lower triangular decomposition of A as well as a “reduced matrix inverse”. If an explicit value of the inverse is not needed the order reduces to O (n3/2) to compute to compute inv(U) and the reduced inverse. For a symmetric matrix only O (n3/3) operations are required to compute inv(L) and the reduced inverse. An example is presented to demonstrate the capability of using the reduced matrix inverse in treating ill-conditioned systems. Besides the simplicity of Broyden's update, the method provides a mean to exploit the possible sparsity in the matrix and to derive a suitable preconditioner.

Keywords: Broyden's updates, matrix inverse, inverse factorization, solution of linear algebraic equations, ill-conditioned matrices, preconditioning

Procedia PDF Downloads 479
19239 Analysis of Vibratory Signals Based on Local Mean Decomposition (LMD) for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Medkour Mihoub, Slimane Mekhilef

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally nonstationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA), and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, rolling element bearing, local mean decomposition, condition monitoring

Procedia PDF Downloads 389
19238 A Heuristic for the Integrated Production and Distribution Scheduling Problem

Authors: Christian Meinecke, Bernd Scholz-Reiter

Abstract:

The integrated problem of production and distribution scheduling is relevant in many industrial applications. Thus, many heuristics to solve this integrated problem have been developed in the last decade. Most of these heuristics use a sequential working principal or a single decomposition and integration approach to separate and solve sub-problems. A heuristic using a multi-step decomposition and integration approach is presented in this paper and evaluated in a case study. The result show significant improved results compared with sequential scheduling heuristics.

Keywords: production and outbound distribution, integrated planning, heuristic, decomposition, integration

Procedia PDF Downloads 429
19237 Aqua Logo Design 2013 Decomposition and Meanings

Authors: Peni Rizki

Abstract:

This article presents decomposition on Aqua logo design 2013 as well as exploration on the meanings denoting marketing resolution. In the analysis, it is described decomposition details on Aqua logo design 2013, a semiotics implementation on marketing enterprise. 2013’s design is different in parts from its first establishment in 1973. Upon that, design elements such as pictures and colors are examined in semiotic theories of sign utilized as directives to the meaning constructed. Each part of the design is analyzed based on its significations that generate denotation and connotation as well as myth. At the end will be concluded the converses of Aqua logo design 2013 in reflection to its initiated marketing creativity; what pictures and colors do in it.

Keywords: design, aqua, semiotics, signification

Procedia PDF Downloads 377