Search results for: Spatio-temporal analysis
28064 Spatiotemporal Evaluation of Climate Bulk Materials Production in Atmospheric Aerosol Loading
Authors: Mehri Sadat Alavinasab Ashgezari, Gholam Reza Nabi Bidhendi, Fatemeh Sadat Alavinasab Ashkezari
Abstract:
Atmospheric aerosol loading (AAL) from anthropogenic sources is an evidence in industrial development. The accelerated trends in material consumption at the global scale in recent years demonstrate consumption paradigms sensible to the planetary boundaries (PB). This paper is a statistical approach on recognizing the path of climate-relevant bulk materials production (CBMP) of steel, cement and plastics to AAL via an updated and validated spatiotemporal distribution. The methodology of statistical analysis used the most updated regional or global databases or instrumental technologies. This corresponded to a selection of processes and areas capable for tracking AAL within the last decade, analyzing the most validated data while leading to explore the behavior functions or models. The results also represented a correlation within socio economic metabolism idea between the materials specified as macronutrients of society and AAL as a PB with an unknown threshold. The selected country contributors of China, India, US and the sample country of Iran show comparable cumulative AAL values vs to the bulk materials domestic extraction and production rate in the study period of 2012 to 2022. Generally, there is a tendency towards gradual descend in the worldwide and regional aerosol concentration after 2015. As of our evaluation, a considerable share of human role, equivalent 20% from CBMP, is for the main anthropogenic species of aerosols, including sulfate, black carbon and organic particulate matters too. This study, in an innovative approach, also explores the potential role of AAL control mechanisms from the economy sectors where ordered and smoothing loading trends are accredited through the disordered phenomena of CBMP and aerosol precursor emissions. The equilibrium states envisioned is an approval to the well-established theory of Spin Glasses applicable in physical system like the Earth and here to AAL.Keywords: atmospheric aeroso loading, material flows, climate bulk materials, industrial ecology
Procedia PDF Downloads 8228063 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG
Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil
Abstract:
A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.Keywords: brain activity, categorization, dense EEG, evoked responses, spatio-temporal analysis, SVM, time perception
Procedia PDF Downloads 42628062 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey
Authors: Owolabi Kolade Matthew
Abstract:
In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system
Procedia PDF Downloads 41528061 Performance Analysis of Domotics System as Real-Time Non-Intrusive Load Monitoring
Authors: Dauda A. Oladosu, Kamorudeen A Olaiya, Abdurahman Bello
Abstract:
The deployment of smart meters by utility providers to gather fine grained spatiotemporal consumption data has grossly influenced the consumers’ emotion and behavior towards energy utilization. The quest for reduction in power consumption is now a subject of concern and one the methods adopted by the consumers to achieve this is Non-intrusive Load (appliance) Monitoring. Hence, this work presents performance Analysis of Domotics System as a tool for load monitoring when integrated with Consumer Control Unit of residential building. The system was developed with basic elements which enhance remote sensing, DTMF (Dual Tone Multi-frequency) recognition and cryptic messaging when specific task was performed. To demonstrate its applicability and suitability, this prototype was used consistently for six months at different load demands and the utilities consumed were documented. The results obtained shows good response when phone dialed, and the packet delivery of feedback SMS was quite satisfactory, making the implemented system to be of good quality with affordable cost and performs the desired functions. Besides, comparative analysis showed notable reduction in energy consumption and invariably lessened electrical bill of the consumer.Keywords: automation, domotics, energy, load, remote, schedule
Procedia PDF Downloads 32128060 Urban Landscape Composition and Configuration Dynamics and Expansion of Hawassa City Analysis, Ethiopia Using Satellite Images and Spatial Metrics Approach
Authors: Berhanu Keno Terfa
Abstract:
To understand the consequences of urbanization, accurate, and long-term representation of urban dynamics is essential. Remote sensing data from various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used. An integrated method, landscape metrics, built-up density, and urban growth type analysis were employed to analyze the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 541.3% between 1987 and 2017, at an average annual increment of 8.9%. The area of urban expansion in a city has tripled during the 2005-2017 period as compared to 187- 1995. The major growth took place in the east and southeast directions during 1987–1995 period, whereas predominant built-up development was observed in south and southeast direction during 1995–2017 period. The analysis using landscape metrics and urban typologies showed that Hawassa experienced a fragmented and irregular spatiotemporal urban growth patterns, mostly by extension, suggesting a strong tendency towards sprawl in the past three decades.Keywords: Hawassa, spatial patterns, remote sensing, multi-temporal, urban sprawl
Procedia PDF Downloads 15228059 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid
Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang
Abstract:
Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal
Procedia PDF Downloads 8328058 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion
Authors: Hantian Wu, Bo Huang, Yuan Zeng
Abstract:
Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management
Procedia PDF Downloads 12928057 An Exploratory Analysis of Brisbane's Commuter Travel Patterns Using Smart Card Data
Authors: Ming Wei
Abstract:
Over the past two decades, Location Based Service (LBS) data have been increasingly applied to urban and transportation studies due to their comprehensiveness and consistency. However, compared to other LBS data including mobile phone data, GPS and social networking platforms, smart card data collected from public transport users have arguably yet to be fully exploited in urban systems analysis. By using five weekdays of passenger travel transaction data taken from go card – Southeast Queensland’s transit smart card – this paper analyses the spatiotemporal distribution of passenger movement with regard to the land use patterns in Brisbane. Work and residential places for public transport commuters were identified after extracting journeys-to-work patterns. Our results show that the locations of the workplaces identified from the go card data and residential suburbs are largely consistent with those that were marked in the land use map. However, the intensity for some residential locations in terms of population or commuter densities do not match well between the map and those derived from the go card data. This indicates that the misalignment between residential areas and workplaces to a certain extent, shedding light on how enhancements to service management and infrastructure expansion might be undertaken.Keywords: big data, smart card data, travel pattern, land use
Procedia PDF Downloads 28728056 Variability of Surface Air Temperature in Sri Lanka and Its Relation to El Nino Southern Oscillation and Indian Ocean Dipole
Authors: Athdath Waduge Susantha Janaka Kumara, Xiefei Zhi, Zin Mie Mie Sein
Abstract:
Understanding the air temperature variability is crucially important for disaster risk reduction and management. In this study, we used 15 synoptic meteorological stations to assess the spatiotemporal variability of air temperature over Sri Lanka during 1972–2021. The empirical orthogonal function (EOF), Principal component analysis (PCA), Mann-Kendall test, power spectrum analysis and correlation coefficient analysis were used to investigate the long-term trends of air temperature and their possible relation to sea surface temperature (SST) over the region. The results indicate that an increasing trend in air temperature was observed with the abrupt climate change noted in the year 1994. The spatial distribution of EOF1 (63.5%) shows the positive and negative loading dipole patterns from south to northeast, while EOF2 (23.4%) explains warmer (colder) in some parts of central (south and east) areas. The power spectrum of PC1 (PC2) indicates that there is a significant period of 3-4 years (quasi-2 years). Moreover, Indian Ocean Dipole (IOD) provides a strong positive correlation with the air temperature of Sri Lanka, while the EL Nino Southern Oscillation (ENSO) presents a weak negative correlation. Therefore, IOD events led to higher temperatures in the region. This study’s findings can help disaster risk reduction and management in the country.Keywords: air temperature, interannaul variability, ENSO, IOD
Procedia PDF Downloads 10328055 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology
Authors: Mahdi Farajzadeh Ajirlou
Abstract:
Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter
Procedia PDF Downloads 4528054 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact
Authors: Guillaume Richard, Sarra Zaied
Abstract:
Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.Keywords: marine litter, advection-diffusion equation, sea current, numerical model
Procedia PDF Downloads 9128053 Urban Flood Risk Mapping–a Review
Authors: Sherly M. A., Subhankar Karmakar, Terence Chan, Christian Rau
Abstract:
Floods are one of the most frequent natural disasters, causing widespread devastation, economic damage and threat to human lives. Hydrologic impacts of climate change and intensification of urbanization are two root causes of increased flood occurrences, and recent research trends are oriented towards understanding these aspects. Due to rapid urbanization, population of cities across the world has increased exponentially leading to improperly planned developments. Climate change due to natural and anthropogenic activities on our environment has resulted in spatiotemporal changes in rainfall patterns. The combined effect of both aggravates the vulnerability of urban populations to floods. In this context, an efficient and effective flood risk management with its core component as flood risk mapping is essential in prevention and mitigation of flood disasters. Urban flood risk mapping involves zoning of an urban region based on its flood risk, which depicts the spatiotemporal pattern of frequency and severity of hazards, exposure to hazards, and degree of vulnerability of the population in terms of socio-economic, environmental and infrastructural aspects. Although vulnerability is a key component of risk, its assessment and mapping is often less advanced than hazard mapping and quantification. A synergic effort from technical experts and social scientists is vital for the effectiveness of flood risk management programs. Despite an increasing volume of quality research conducted on urban flood risk, a comprehensive multidisciplinary approach towards flood risk mapping still remains neglected due to which many of the input parameters and definitions of flood risk concepts are imprecise. Thus, the objectives of this review are to introduce and precisely define the relevant input parameters, concepts and terms in urban flood risk mapping, along with its methodology, current status and limitations. The review also aims at providing thought-provoking insights to potential future researchers and flood management professionals.Keywords: flood risk, flood hazard, flood vulnerability, flood modeling, urban flooding, urban flood risk mapping
Procedia PDF Downloads 59428052 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia
Authors: Nguyen-Thanh Son
Abstract:
Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.Keywords: MODIS, flood, mapping, Cambodia
Procedia PDF Downloads 12928051 Walking Progression in Ambulatory Individuals with Spinal Cord Injury Who Daily Walked with a Walking Device
Authors: Makamas Kumprou, Pipatana Amatachaya, Sugalya Amatachaya, Thiwabhorn Thaweewannakij, Preeda Arayawichanon
Abstract:
Many individuals with spinal cord injury (SCI) need an ambulatory assistive device (AAD) to promote their independence and experience of task-specific walking practice. Without a periodic follow-up for their walking progression, however, many individuals may use the same AAD even though up to 66% of them had the potential to progress walking ability. This may distort their optimal ability and increase the possibility of having negative impacts due to the long-lasting used of an AAD. However, these findings were cross-sectionally collected without data confirmation for the benefit or negative impacts of those who changed the types of AAD used. Therefore, this study prospectively assessed the proportion of ambulatory individuals with SCI who were able to progress their walking ability as determined using a type of AAD, and the changes of their functional ability as well as the incidence of falls over 6 months. Twenty-four subjects with SCI who daily walked with an AAD were involved in the study for 2 visits over 6 months. At the first visit (baseline assessments), the subjects were assessed for their spatiotemporal variables (i.e., cadence, step length, stride length, and step symmetry) and walking ability using the 10-meter walk test (10MWT). Then, they were assessed for the possibility of their walking progression as determined using the ability of walking with the least support AAD with no more than contact guarding assist. Those who were capable of changing an AAD were trained for the ability to walk with a new AAD. Thereafter, all subjects were monthly monitored for incidence of fall over 6 months. At the second visit (after 6 months followed-up), subjects were reassessed for their spatiotemporal variables and 10MWT. The findings indicated that, of all 24 subjects, 8 subjects (33.3%) were able to walk with less support AAD than their usual one. The walking cadence, step length symmetry, and walking ability of these subjects improved significantly greater than those who walked with the same AAD (p < 0.05). Among these subjects, one subject (12.5%) reported fell (3 times) during the follow-up period, whereas 5 subjects (31.3%) who walked with the same AAD experienced at least one fall (range 1 – 16 times). The findings indicated that a large proportion of ambulatory individuals with SCI who daily walked with an AAD could progress their walking ability, whereby their walking ability and safety also significantly improved after they walked with an optimal AAD. The findings suggest the need for a periodic follow-up for an appropriate AAD used for these individuals.Keywords: walking device, walker, crutches, cane, rehabilitation
Procedia PDF Downloads 12928050 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 15828049 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example
Abstract:
Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness
Procedia PDF Downloads 13728048 Learning Traffic Anomalies from Generative Models on Real-Time Observations
Authors: Fotis I. Giasemis, Alexandros Sopasakis
Abstract:
This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.Keywords: traffic, anomaly detection, GNN, GAN
Procedia PDF Downloads 1428047 Impact of Drought on Agriculture in the Upper Middle Gangetic Plain in India
Authors: Reshmita Nath
Abstract:
In this study, we investigate the spatiotemporal characteristics of drought in India and its impact on agriculture during the summer season (April to September). For our analysis, we have used Standardized Precipitation Evapotranspiration Index (SPEI) datasets between 1982 and 2012 at six-month timescale. Based on the criteria SPEI<-1 we obtain the vulnerability map and have found that the Humid subtropical Upper Middle Gangetic Plain (UMGP) region is highly drought prone with an occurrence frequency of 40-45%. This UMGP region contributes at least 18-20% of India’s annual cereal production. Not only the probability, but the region becomes more and more drought-prone in the recent decades. Moreover, the cereal production in the UMGP has experienced a gradual declining trend from 2000 onwards and this feature is consistent with the increase in drought affected areas from 20-25% to 50-60%, before and after 2000, respectively. The higher correlation coefficient (-0.69) between the changes in cereal production and drought affected areas confirms that at least 50% of the agricultural (cereal) losses is associated with drought. While analyzing the individual impact of precipitation and surface temperature anomalies on SPEI (6), we have found that in the UMGP region surface temperature plays the primary role in lowering of SPEI. The linkage is further confirmed by the correlation analysis between the SPEI (6) and surface temperature rise, which exhibits strong negative values in the UMGP region. Higher temperature might have caused more evaporation and drying, which therefore increases the area affected by drought in the recent decade.Keywords: drought, agriculture, SPEI, Indo-Gangetic plain
Procedia PDF Downloads 26028046 Regional Response of Crop Productivity to Global Warming - A Case Study of the Heat Stress and Cold Stress on UK Rapeseed Crop Over 1961-2020
Authors: Biao Hu, Mark E. J. Cutler, Alexandra C. Morel
Abstract:
Global climate change introduces both opportunities and challenges for crop productivity, with differences in temperature stress across latitudes and crop types, one of the most important meteorological factors impacting crop productivity. The development and productivity of crops are particularly impacted when temperatures occur outwith their preferred ranges, which has implications for global agri-food sector. This study investigated the spatiotemporal dynamics of heat stress and cold stress on UK arable lands for rapeseed cropping between 1961 and 2020, using a 1 km spatial resolution temperature dataset. Stress indices, including heat stress index (fHS) defined as the ratio of “Tmax - Tcrit_h” to “Tlimit_h - Tcrit_h” where Tmax, Tcrit_h and Tlimit_h represent the daily maximum temperature (°C), critical high temperature threshold (°C) and limiting high temperature threshold (°C) of rapeseed crop respectively; cold degree days (CDD) as the difference between daily Tmin (minimum temperature) and Tcrit_l (critical low temperature threshold); and a normalized rapeseed production loss index (fRPL) as the product of fHS and attainable rapeseed yield in the same land pixel were established. The values of fHS and CDD, percentages of days experiencing each stress and fRPL were investigated. Results found increasing fHS and the areas impacted by heat stress during flowering (from April to May) and reproductive (from April to July) stages over time, with the mean fHS being negatively correlated with latitude. This pattern of increased heat stress agrees with previous research on rapeseed cropping, which have been noted at global scale in response to changes in climate. The decreasing number of CDD and frequency of cold stress suggest cold stress decreased during flowering, vegetative (from September to March next year) and reproductive stages, and the magnitude of cold stress in the south of the UK was smaller to that compared to northern regions over the studied periods. The decreasing CDD matches observed declining cold stress of global rapeseed and of other crops such as rice in the northern hemisphere. Notably, compared with previous studies which mainly tracked the trends of heat stress and cold stress individually, this study conducted a comparative analysis of the rate of their changes and found heat stress of rapeseed crops in the UK was increasing at a faster rate than cold stress, which was seen to decrease during flowering. The increasing values of fRPL, with statistically significant differences (p < 0.05) between regions of the UK, suggested an increasing loss in rapeseed due to heat stress in the studied period. The largest increasing trend in heat stress was observed in South-eastern England, where a decreasing cold stress was taking place. While the present study observed a relatively slowly increasing heat stress, there is a worrying trend of increasing heat stress for rapeseed cropping into the future, as the cases of other main rapeseed cropping systems in the northern hemisphere including China, European counties, the US, and Canada. This study demonstrates the negative impact of global warming on rapeseed cropping, highlighting the adaptation and mitigations strategies for sustainable rapeseed cultivation across the globe.Keywords: rapeseed, UK, heat stress, cold stress, global climate change, spatiotemporal analysis, production loss index
Procedia PDF Downloads 6828045 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region
Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski
Abstract:
Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.Keywords: lightning, urbanization, thunderstorms, climatology
Procedia PDF Downloads 7828044 Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories
Authors: Michael Sonne Kristensen, Frank Loesche, James Foster, Elif Ozcan, Judy Edworthy
Abstract:
Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment.Keywords: auditory spatiotemporal trajectory, medical alarms, social cognition, video-ethography
Procedia PDF Downloads 19328043 Spatiotemporal Variability in Rainfall Trends over Sinai Peninsula Using Nonparametric Methods and Discrete Wavelet Transforms
Authors: Mosaad Khadr
Abstract:
Knowledge of the temporal and spatial variability of rainfall trends has been of great concern for efficient water resource planning, management. In this study annual, seasonal and monthly rainfall trends over the Sinai Peninsula were analyzed by using absolute homogeneity tests, nonparametric Mann–Kendall (MK) test and Sen’s slope estimator methods. The homogeneity of rainfall time-series was examined using four absolute homogeneity tests namely, the Pettitt test, standard normal homogeneity test, Buishand range test, and von Neumann ratio test. Further, the sequential change in the trend of annual and seasonal rainfalls is conducted using sequential MK (SQMK) method. Then the trend analysis based on discrete wavelet transform technique (DWT) in conjunction with SQMK method is performed. The spatial patterns of the detected rainfall trends were investigated using a geostatistical and deterministic spatial interpolation technique. The results achieved from the Mann–Kendall test to the data series (using the 5% significance level) highlighted that rainfall was generally decreasing in January, February, March, November, December, wet season, and annual rainfall. A significant decreasing trend in the winter and annual rainfall with significant levels were inferred based on the Mann-Kendall rank statistics and linear trend. Further, the discrete wavelet transform (DWT) analysis reveal that in general, intra- and inter-annual events (up to 4 years) are more influential in affecting the observed trends. The nature of the trend captured by both methods is similar for all of the cases. On the basis of spatial trend analysis, significant rainfall decreases were also noted in the investigated stations. Overall, significant downward trends in winter and annual rainfall over the Sinai Peninsula was observed during the study period.Keywords: trend analysis, rainfall, Mann–Kendall test, discrete wavelet transform, Sinai Peninsula
Procedia PDF Downloads 17328042 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories
Authors: Heba M. Wagih, Hoda M. O. Mokhtar
Abstract:
Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.Keywords: human behavior trajectory, location-based social network, ontology, social network
Procedia PDF Downloads 45428041 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example
Authors: Guantao Bai
Abstract:
Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.Keywords: computer vision, deep learning, public spaces, using features
Procedia PDF Downloads 7328040 Quantifying Spatiotemporal Patterns of Past and Future Urbanization Trends in El Paso, Texas and Their Impact on Electricity Consumption
Authors: Joanne Moyer
Abstract:
El Paso, Texas is a southwest border city that has experienced continuous growth within the last 15-years. Understanding the urban growth trends and patterns using data from the National Land Cover Database (NLCD) and landscape metrics, provides a quantitative description of growth. Past urban growth provided a basis to predict 2031 future land-use for El Paso using the CA-Markov model. As a consequence of growth, an increase in demand of resources follows. Using panel data analysis, an understanding of the relation between landscape metrics and electricity consumption is further analyzed. The studies’ findings indicate that past growth focused within three districts within the City of El Paso. The landscape metrics suggest as the city has grown, fragmentation has decreased. Alternatively, the landscape metrics for the projected 2031 land-use indicates possible fragmentation within one of these districts. Panel data suggests electricity consumption and mean patch area landscape metric are positively correlated. The study provides local decision makers to make informed decisions for policies and urban planning to ensure a future sustainable community.Keywords: landscape metrics, CA-Markov, El Paso, Texas, panel data
Procedia PDF Downloads 14528039 Comparing the Effect of Virtual Reality and Sound on Landscape Perception
Authors: Mark Lindquist
Abstract:
This paper presents preliminary results of exploratory empirical research investigating the effect of viewing 3D landscape visualizations in virtual reality compared to a computer monitor, and how sound impacts perception. Five landscape types were paired with three sound conditions (no sound, generic sound, realistic sound). Perceived realism, preference, recreational value, and biodiversity were evaluated in a controlled laboratory environment. Results indicate that sound has a larger perceptual impact than display mode regardless of sound source across all perceptual measures. The results are considered to assess how sound can impact landscape preference and spatiotemporal understanding. The paper concludes with a discussion of the impact on designers, planners, and the public and targets future research endeavors in this area.Keywords: landscape experience, perception, soundscape, virtual reality
Procedia PDF Downloads 17128038 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan
Authors: Basit Aftab, Zhichao Wang, Feng Zhongke
Abstract:
Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.
Procedia PDF Downloads 3728037 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions
Authors: A. Kyprianou, A. Tjirkallis
Abstract:
Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature
Procedia PDF Downloads 28228036 The Effect of War on Spatial Differentiation of Real Estate Values and Urban Disorder in Damascus Metropolitan Area
Authors: Mounir Azzam, Valerie Graw, Andreas Rienow
Abstract:
The Syrian war, which commenced in 2011, has resulted in significant changes in the real estate market in the Damascus metropolitan area, with rising levels of insecurity and disputes over tenure rights. The quest for spatial justice is, therefore, imperative, and this study performs a spatiotemporal analysis to investigate the impact of the war on real estate differentiation. Using the hedonic price models including 2,411 housing transactions over the period 2010-2022, this study aims to understand the spatial dynamics of the real estate market in wartime. Our findings indicate that war variables have had a significant impact on the differentiation and depreciation of property prices. Notably, property attributes have a more substantial impact on real estate values than district location, with severely damaged buildings in Damascus city resulting in an 89% decline in prices, while prices in Rural Damascus districts have decreased by 50%. Additionally, this study examines the urban texture of Damascus using correlation and homogeneity statistics derived from the gray-level co-occurrence matrix obtained from Google Earth Engine. We monitored 250 samples from hedonic datasets within three different years of the Syrian war (2015, 2019, and 2022). Our findings show that correlation values were highly differentiated, particularly among Rural Damascus districts, with a total decline of 87.2%. While homogeneity values decreased overall between 2015 and 2019, they improved slightly after 2019. The findings have valuable implications, not only for investment prospects in setting up a successful reconstruction strategy but also for spatial justice of property rights in strongly encouraging sustainable real estate development.Keywords: hedonic price, real estate differentiation, reconstruction strategy, spatial justice, urban texture analysis
Procedia PDF Downloads 9228035 Assessing the Effect of Urban Growth on Land Surface Temperature: A Case Study of Conakry Guinea
Authors: Arafan Traore, Teiji Watanabe
Abstract:
Conakry, the capital city of the Republic of Guinea, has experienced a rapid urban expansion and population increased in the last two decades, which has resulted in remarkable local weather and climate change, raise energy demand and pollution and treating social, economic and environmental development. In this study, the spatiotemporal variation of the land surface temperature (LST) is retrieved to characterize the effect of urban growth on the thermal environment and quantify its relationship with biophysical indices, a normalized difference vegetation index (NDVI) and a normalized difference built up Index (NDBI). Landsat data TM and OLI/TIRS acquired respectively in 1986, 2000 and 2016 were used for LST retrieval and Land use/cover change analysis. A quantitative analysis based on the integration of a remote sensing and a geography information system (GIS) has revealed an important increased in the LST pattern in the average from 25.21°C in 1986 to 27.06°C in 2000 and 29.34°C in 2016, which was quite eminent with an average gain in surface temperature of 4.13°C over 30 years study period. Additionally, an analysis using a Pearson correlation (r) between (LST) and the biophysical indices, normalized difference vegetation index (NDVI) and a normalized difference built-up Index (NDBI) has revealed a negative relationship between LST and NDVI and a strong positive relationship between LST and NDBI. Which implies that an increase in the NDVI value can reduce the LST intensity; conversely increase in NDBI value may strengthen LST intensity in the study area. Although Landsat data were found efficient in assessing the thermal environment in Conakry, however, the method needs to be refined with in situ measurements of LST in the future studies. The results of this study may assist urban planners, scientists and policies makers concerned about climate variability to make decisions that will enhance sustainable environmental practices in Conakry.Keywords: Conakry, land surface temperature, urban heat island, geography information system, remote sensing, land use/cover change
Procedia PDF Downloads 249