Search results for: Jian Jiao
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 152

Search results for: Jian Jiao

122 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
121 Study on Roll Marks of Stainless Steel in Rolling Mill

Authors: Cai-Wan Chang-Jian, Han-Ting Tsai

Abstract:

In the processing industry of metal forming, rolling is the most used method of processing. In a cold rolling factory of stainless steel, there occurs a product defect on temper rolling process within cold rolling. It is called 'roll marks', which is a phenomenon of undesirable flatness problem. In this research, we performed a series of experimental measurements on the roll marks, and we used optical sensors to measure it and compared the vibration frequency of roll marks with the vibration frequency of key components in the skin pass mill. We found there is less correlation between the above mentioned data. Finally, we took measurement on the motor driver in rolling mill. We found that the undulation frequency of motor could match with the frequency of roll marks, and then we have confirmed that the motor’s undulation caused roll marks.

Keywords: roll mark, plane strain, rolling mill, stainless steel

Procedia PDF Downloads 455
120 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: knowledge clustering, knowledge acquisition, knowledge based engineering, knowledge cell, biologically inspired design

Procedia PDF Downloads 427
119 Fat-Tail Test of Regulatory DNA Sequences

Authors: Jian-Jun Shu

Abstract:

The statistical properties of CRMs are explored by estimating similar-word set occurrence distribution. It is observed that CRMs tend to have a fat-tail distribution for similar-word set occurrence. Thus, the fat-tail test with two fatness coefficients is proposed to distinguish CRMs from non-CRMs, especially from exons. For the first fatness coefficient, the separation accuracy between CRMs and exons is increased as compared with the existing content-based CRM prediction method – fluffy-tail test. For the second fatness coefficient, the computing time is reduced as compared with fluffy-tail test, making it very suitable for long sequences and large data-base analysis in the post-genome time. Moreover, these indexes may be used to predict the CRMs which have not yet been observed experimentally. This can serve as a valuable filtering process for experiment.

Keywords: statistical approach, transcription factor binding sites, cis-regulatory modules, DNA sequences

Procedia PDF Downloads 293
118 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 217
117 Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis

Authors: Jian Xu, Xiaochun Yun, Yongzheng Zhang, Yafei Sang, Zhenyu Cheng

Abstract:

Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces.

Keywords: attribution trace, probabilistic relevance, network attack, attacker identification

Procedia PDF Downloads 368
116 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data

Authors: Tiee-Jian Wu, Chih-Yuan Hsu

Abstract:

Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.

Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method

Procedia PDF Downloads 285
115 The Gap of Green Consumption Behavior: Driving from Attitude to Behavior

Authors: Yu Du, Jian-Guo Wang

Abstract:

Green consumption is a key link to develop the ecological economy, and consumers are vital to carry out green consumption. With environmental awareness gradually being aroused, consumers often fail to turn their positive attitude into actual green consumption behavior. According to behavior reasoning theory, reasons for adoption have a direct (positive) influence on consumers’ attitude while reasons against adoption have a direct (negative) influence on consumers’ adoption intentions, the incongruous coexistence of which leads to the attitude-behavior gap of green consumption. Based on behavior reasoning theory, this research integrates reasons for adoption and reasons against adoption into a proposed model, in which reasons both for and against green consumption mediate the relationship between consumer’ values, attitudes, and behavioral intentions. It not only extends the conventional theory of reasoned action but also provides a reference for the government and enterprises to design the repairing strategy of green consumption attitude-behavior gap.

Keywords: green product, attitude-behavior gap, behavior reasoning theory, green consumption, SEM

Procedia PDF Downloads 463
114 The Acquisition of Case in Biological Domain Based on Text Mining

Authors: Shen Jian, Hu Jie, Qi Jin, Liu Wei Jie, Chen Ji Yi, Peng Ying Hong

Abstract:

In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text.

Keywords: text mining, vector space model, feature selection, biologically inspired design

Procedia PDF Downloads 262
113 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations

Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge

Abstract:

Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.

Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism

Procedia PDF Downloads 69
112 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi

Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu

Abstract:

A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.

Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi

Procedia PDF Downloads 173
111 SiC Particulate-Reinforced SiC Composites Fabricated by PIP Method Using Highly Concentrated SiC Slurry

Authors: Jian Gu, Sea-Hoon Lee, Jun-Seop Kim

Abstract:

SiC particulate-reinforced SiC ceramic composites (SiCp/SiC) were successfully fabricated using polymer impregnation and pyrolysis (PIP) method. The effects of green density, infiltrated method, pyrolytic temperature, and heating rate on the densification behavior of the composites were investigated. SiCp/SiC particulate reinforced composites with high relative density up to 88.06% were fabricated after 4 PIP cycles using SiC pellets with high green density. The pellets were prepared by drying 62-70 vol.% aqueous SiC slurries, and the maximum relative density of the pellets was 75.5%. The hardness of the as-fabricated SiCp/SiCs was 21.05 GPa after 4 PIP cycles, which value increased to 23.99 GPa after a heat treatment at 2000℃. Excellent mechanical properties, thermal stability, and short processing time render the SiCp/SiC composite as a challenging candidate for the high-temperature application.

Keywords: high green density, mechanical property, polymer impregnation and pyrolysis, structural application

Procedia PDF Downloads 140
110 Statistical Analysis of Cables in Long-Span Cable-Stayed Bridges

Authors: Ceshi Sun, Yueyu Zhao, Yaobing Zhao, Zhiqiang Wang, Jian Peng, Pengxin Guo

Abstract:

With the rapid development of transportation, there are more than 100 cable-stayed bridges with main span larger than 300 m in China. In order to ascertain the statistical relationships among the design parameters of stay cables and their distribution characteristics, 1500 cables were selected from 25 practical long-span cable-stayed bridges. A new relationship between the first order frequency and the length of cable was found by conducting the curve fitting. Then, based on this relationship other interesting relationships were deduced. Several probability density functions (PDFs) were used to investigate the distributions of the parameters of first order frequency, stress level and the Irvine parameter. It was found that these parameters obey the Lognormal distribution, the Weibull distribution and the generalized Pareto distribution, respectively. Scatter diagrams of the three parameters were plotted and their 95% confidence intervals were also investigated.

Keywords: cable, cable-stayed bridge, long-span, statistical analysis

Procedia PDF Downloads 635
109 Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance

Authors: Jian Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Cobalt catalysts were supported on extruded silica carrier and different-type (SiO2, γ-Al2O3) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N2 physisorption and H2-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C5+ products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons.

Keywords: fischer-tropsch synthesis, cobalt catalyst, support shape, heavy hydrocarbons

Procedia PDF Downloads 283
108 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 86
107 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
106 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport

Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto

Abstract:

The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.

Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell

Procedia PDF Downloads 92
105 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 178
104 Compensation Analysis on Secondary Public Hospitals of Pudong New Area in Shanghai

Authors: Wei Fang, Jian Jun Gu, Di Xue

Abstract:

Objective: To analyze the employee compensation status of secondary public hospitals of Pudong New Area in Shanghai in order to provide information for compensation reform of public hospitals in Shanghai and as well as in China. Methods: We surveyed all 15 secondary public hospitals of Pudong New Area in Shanghai to collect hospital annual compensation data for their employees and to investigate their suggestions for compensation reform in public hospitals in China. We also collected related annual compensation data of employees in Shanghai and of physicians in the USA from Shanghai statistical Yearbook 2013 and from Bureau of Labor Statistics, U.S. Department of Labor. Results: The average annual compensation for the employees in secondary public hospitals of Pudong New Area in Shanghai in 2012 was 2.65 times of that for overall employees in Shanghai. The physician’s compensation in these public hospitals was relatively lower than that in the USA. Conclusion: The physicians’ compensation in the secondary public hospitals of Pudong New Area in Shanghai should be increased rationally and new compensation reform in public hospitals in Shanghai should be carefully designed.

Keywords: human resource, compensation, public hospital, Shanghai

Procedia PDF Downloads 372
103 Goal Orientation, Learning Strategies and Academic Performance in Adult Distance Learning

Authors: Ying Zhou, Jian-Hua Wang

Abstract:

Based upon the self-determination theory and self-regulated learning theory, this study examined the predictiveness of goal orientation and self-regulated learning strategies on academic achievement of adult students in distance learning. The results show a positive relation between goal orientation and the use of self-regulated strategies, and academic achievements. A significant and positive indirect relation of mastery goal orientation through self-regulated learning strategies was also found. In addition, results pointed to a positive indirect impact of performance-approach goal orientation on academic achievement. The effort regulation strategy fully mediated this relation. The theoretical and instructional implications are discussed. Interventions can be made to motivate students’ mastery or performance approach goal orientation and help them manage their time or efforts.

Keywords: goal orientation, self-regulated strategies, achievement, adult distance students

Procedia PDF Downloads 276
102 Study on Constitutive Model of Particle Filling Material Considering Volume Expansion

Authors: Xu Jinsheng, Tong Xin, Zheng Jian, Zhou Changsheng

Abstract:

The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests.

Keywords: dewetting, constitutive model, uniaxial tensile tests, visco-hyperelastic, nonlinear

Procedia PDF Downloads 303
101 Identifying Dominant Anaerobic Microorganisms for Degradation of Benzene

Authors: Jian Peng, Wenhui Xiong, Zheng Lu

Abstract:

An optimal recipe of amendment (nutrients and electron acceptors) was developed and dominant indigenous benzene-degrading microorganisms were characterized in this study. Lessons were learnt from the development of the optimal amendment recipe: (1) salinity and substantial initial concentration of benzene were detrimental for benzene biodegradation; (2) large dose of amendments can shorten the lag time for benzene biodegradation occurrence; (3) toluene was an essential co-substance for promoting benzene degradation activity. The stable isotope probing study identified incorporation 13C from 13C-benzene into microorganisms, which can be considered as a direct evidence of the occurrence of benzene biodegradation. The dominant mechanism for benzene removal was identified by quantitative polymerase chain reaction analysis to be nitrate reduction. Microbial analyses (denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that members of genus Dokdonella spp., Pusillimonas spp., and Advenella spp. were predominant within the microbial community and involved in the anaerobic benzene bioremediation.

Keywords: benzene, enhanced anaerobic bioremediation, stable isotope probing, biosep biotrap

Procedia PDF Downloads 342
100 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 91
99 Patching and Stretching: Development of Policy Mixes for Entrepreneurship in China

Authors: Jian Shao

Abstract:

The effect of entrepreneurship on economic, innovation, and employment has been widely acknowledged by scholars and governments. As an essential factor of influencing entrepreneurship activities, entrepreneurship policy creates a conducive environment to support and develop entrepreneurship. However, the challenge in developing entrepreneurship policy is that policy is normally a combination of many different goals and instruments. Instead of examining the effect of individual policy instruments, we argue that attention to a policy mix is necessary. In recent years, much attention has been focused on comparing a single policy instrument to a policy mix, evaluating the interactions between different instruments within a mix or assessment of particular policy mixes. However, another required step in understanding policy mixes is to understand how and why mixes evolve and change over time and to determine whether any changes are an improvement. In this paper, we try to trace the development of the policy mix for entrepreneurship in China by mapping the policy goals and instruments and reveal the process of policy mix changing over time. We find two main process mechanisms of the entrepreneurship policy mix in China: patching and stretching. Compared with policy repackaging, patching and stretching are more realistic processes in the real world of the policy mix, and they are possible to achieve effectiveness by avoiding conflicts and promoting synergies among policy goals and instruments.

Keywords: entrepreneurship, China, policy design, policy mix, policy patching

Procedia PDF Downloads 198
98 An Experimental Study of the Effectiveness of Lubricants in Reducing the Sidewall Friction

Authors: Jian Zheng, Li Li, Maxime Daviault

Abstract:

In several cases, one needs apply lubrication materials in laboratory tests to reduce the friction (shear strength) along the interfaces between a tested soil and the side walls of container. Several types of lubricants are available. Their effectiveness had been tested mostly through direct shear tests. These testing conditions are quite different than those when the tested soil is placed in the container. Thus, the shear strengths measured from direct shear tests may not be totally representative of those of interfaces between the tested soil and the sidewalls of container. In this paper, the effectiveness of different lubricants used to reduce the friction (shear strength) of soil-structure interfaces has been studied. Results show that the selected lubricants do not significantly reduce the sidewall friction (shear strength). Rather, the application of wax, graphite, grease or lubricant oil has effect to increase the sidewall shear strength due probably to the high viscosity of such materials. Subsequently, the application of lubricants between tested soil and sidewall and neglecting the friction (shear strength) along the sidewalls may lead to inaccurate test results.

Keywords: arching, friction, laboratory tests, lubricants

Procedia PDF Downloads 284
97 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni

Abstract:

The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 258
96 Air Cargo Network Structure Characteristics and Robustness Analysis under the Belt and Road Area

Authors: Feng-jie Xie, Jian-hong Yan

Abstract:

Based on the complex network theory, we construct the air cargo network of the Belt and Road area, analyze its regional distribution and structural characteristics, measure the robustness of the network. The regional distribution results show that Southeast Asia and China have the most prominent development in the air cargo network of the Belt and Road area, Central Asia is the least developed. The structure characteristics found that the air cargo network has obvious small-world characteristics; the degree distribution has single-scale property; it shows a significant rich-club phenomenon simultaneously. The network robustness is measured by two attack strategies of degree and betweenness, but the betweenness of network nodes has a greater impact on network connectivity. And identified 24 key cities that have a large impact on the robustness of the network under the two attack strategies. Based on these results, recommendations are given to maintain the air cargo network connectivity in the Belt and Road area.

Keywords: air cargo, complex network, robustness, structure properties, The Belt and Road

Procedia PDF Downloads 198
95 The Interfaith Dialogue by William Milne by the First Chinese Study Bible

Authors: Liu Yuan-Jian, Chou Fu-Chu

Abstract:

The study Bible was published in 1825 after Milne’s death, containing large amounts of paraphrasing, exhortations, notes, and commentaries to facilitate readers' scripture engagement. The methodologies employed include text analysis and discourse analysis. This study shows that to enable Chinese readers, uninitiated in the Gospel and deeply influenced by Confucian ethics and paganism, to understand the Bible and apply it to their daily living, Milne not only paraphrased the verses but also used metaphors and rhetorical techniques for explaining the background information of the Bible, teaching biblical doctrine, combating paganism, and exhorting readers to believe in the Gospel. Moreover, Milne also tries to clarify the scripture in the context of Chinese culture, giving the readers a clear way to put the scripture into practice in their daily living. His exposition had successfully made a breakthrough from the British and Foreign Bible Society's “Without Note or Comment” principle and showed a useful instrument for promoting interfaith dialogue.

Keywords: interfaith dialogue, William Milne, Chinese study Bible, exposition, “Without Note or Comment” principle

Procedia PDF Downloads 83
94 Numerical Investigation on the Interior Wind Noise of a Passenger Car

Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian

Abstract:

With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.

Keywords: wind noise, computational fluid dynamics, finite element method, passenger car

Procedia PDF Downloads 173
93 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 103