Search results for: k-means clustering based feature weighting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28595

Search results for: k-means clustering based feature weighting

22655 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow

Procedia PDF Downloads 295
22654 Efficacy of Methyl Eugenol and Food-Based Lures in Trapping Oriental Fruit Fly Bactrocera dorsalis (Diptera: Tephritidae) on Mango Homestead Trees

Authors: Juliana Amaka Ugwu

Abstract:

Trapping efficiency of methyl eugenol and three locally made food-based lures were evaluated in three locations for trapping of B. dorsalis on mango homestead trees in Ibadan South west Nigeria. The treatments were methyl eugenol, brewery waste, pineapple juice, orange juice, and control (water). The experiment was laid in a Complete Randomized Block Design (CRBD) and replicated three times in each location. Data collected were subjected to analysis of variance and significant means were separated by Turkey’s test. The results showed that B. dorsalis was recorded in all locations of study. Methyl eugenol significantly (P < 0.05) trapped higher population of B. dorsalis in all the study area. The population density of B. dorsalis was highest during the ripening period of mango in all locations. The percentage trapped flies after 7 weeks were 77.85%-82.38% (methyl eugenol), 7.29%-8.64% (pineapple juice), 5.62-7.62% (brewery waste), 4.41%-5.95% (orange juice), and 0.24-0.47% (control). There were no significance differences (p > 0.05) on the population of B. dorsalis trapped in all locations. Similarly, there were no significant differences (p > 0.05) on the population of flies trapped among the food attractants. However, the three food attractants significantly (p < 0.05) trapped higher flies than control. Methyl eugenol trapped only male flies while brewery waste and other food based attractants trapped both male and female flies. The food baits tested were promising attractants for trapping B. dorsalis on mango homestead tress, hence increased dosage could be considered for monitoring and mass trapping as management strategies against fruit fly infestation.

Keywords: attractants, trapping, mango, Bactrocera dorsalis

Procedia PDF Downloads 104
22653 Fragility Analysis of Weir Structure Subjected to Flooding Water Damage

Authors: Oh Hyeon Jeon, WooYoung Jung

Abstract:

In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure.

Keywords: weir structure, seepage, flood disaster fragility, probabilistic risk assessment, Monte-Carlo simulation, permeability coefficient

Procedia PDF Downloads 328
22652 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin

Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin

Abstract:

The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.

Keywords: climate change, climatic model, dry events, precipitation projections

Procedia PDF Downloads 124
22651 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.

Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system

Procedia PDF Downloads 67
22650 Physical Activity Levels in Qatar: A Pedometer-Based Assessment

Authors: Suzan Sayegh, Izzeldin Ibrahim, Mercia Van Der Walt, Mohamed Al-Kuwari

Abstract:

Background: Walking is the most common form of physical activity which can promote a healthy well-being among people of different age groups. In this regard, pedometers are becoming more popular within research and are considered useful tools in monitoring physical activity levels based on individuals’ daily steps. A value of ˂5,000 steps/day is identified as a sedentary lifestyle index where individuals are physically inactive. Those achieving 5,000-7,499 steps/day have a low active lifestyle as they do not meet the moderate-to-vigorous physical activity (MVPA) recommendations. Moreover, individuals achieving ≥7,500 steps/day are classified as physically active. The objective of this study is to assess the physical activity levels of adult population in Qatar through a pedometer-based program over a one-year period. Methods: A cross-sectional analysis, as part of a longitudinal study, was carried out over one year to assess the daily step count. “Step into Health” is a community-based program launched by Aspire as an approach for the purpose of improving physical activity across the population of Qatar. The program involves distribution of pedometers to registered members which is supported by a self-monitoring online account and linked to a web database. Daily habitual physical activity (daily total step count) was assessed through Omron HJ-324U pedometer. Analyses were done on data extracted from the web database. Results: A total of 1,988 members were included in this study (males: n=1,143, 57%; females: n=845, 43%). Average age was 37.8±10.9 years distributed as 60% of age between age 25-54 (n=1,186), 27% of age 45-64 (n=546), and 13% of age 18-24 years (n=256). Majority were non-Qataris, 81% (n=1,609) compared with 19% of the Qatari nationality (n=379). Average body mass index (BMI) was 27.8±6.1 (kg/m2) where most of them (41%, n=809) were found to be overweight, between 25-30 kg/m2. Total average step count was 5,469±3,884. Majority were found to be sedentary (n=1110, 55.8%). Middle aged individuals were more active than the other two age groups. Males were seen as more active than females. Those who were less active had a higher BMI. Older individuals were more active. There was a variation in the physical activity level throughout the year period. Conclusion: It is essential to further develop the available intervention programs and increase their physical activity behavior. Planning such physical activity interventions for female population should involve aspects such as time, environmental variables and aerobic steps.

Keywords: adults, pedometer, physical activity, step-count

Procedia PDF Downloads 338
22649 Removal of Acetaminophen with Chitosan-Nano Activated Carbon Beads from Aqueous Sources

Authors: Parisa Amouzgar, Chan Eng Seng, Babak Salamatinia

Abstract:

Pharmaceutical products are being increasingly detected in the environment. However, conventional treatment systems do not provide an adequate treatment for pharmaceutical drug elimination and still there is not a regulated standard for their limitation in water. Since decades before, pharmaceuticals have been in the water but only recently, their levels in the environment have been recognized and quantified as potentially hazardous to ecosystems. In this study chitosan with a bio-based NAC (Ct-NAC) were made as beads with extrusion dripping method and investigated for acetaminophen removal from water. The effects of beading parameters such as flow rate in dripping, the distance from dipping tip to the solution surface, concentration of chitosan and percentage of NAC were analyzed to find the optimum condition. Based on the results, the overall adsorption rate and removal efficiency increased during the time till the equilibrium rate which was 80% removal of acetaminophen. The maximum adsorption belonged to the beads with 1.75% chitosan, 60% NAC, flow-rate of 1.5 ml/min while the distance of dripping was 22.5 cm.

Keywords: pharmaceuticals, water treatment, chitosan nano activated carbon beads, Acetaminophen

Procedia PDF Downloads 336
22648 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 296
22647 Date Pits Oil Used as Potential Source for Synthesizing Jet Fuel and Green Diesel Fractions

Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Date pits are major agricultural waste produced in Oman. Current work was conducted to produce jet fuel and green diesel from hydrodeoxygenation of Date pits oil in the presence of Pd/C catalyst. The hydrodeoxygenation of Date pits oil occurred to be highly efficient at following mild operating conditions such as conditions temperature 300°C pressure 10bar with continuous stirring at 500rpm. Detailed product characterization revealed that large fraction of paraffinic hydrocarbons was found which accounts up to 91.1 % which attributed due to efficient hydrodeoxygenation. Based on the type of components in product oil, it was calculated that the maximum fraction of hydrocarbons formed lies within the range of green diesel 72.0 % then jet fuel 30.4% by using Pd/C catalysts. The densities of product oil were 0.88 kg/m³, the viscosity of products calculated was 3.49 mm²/s. Calorific values for products obtained were 44.11 MJ/kg when Pd/C catalyst was used for hydrodeoxygenation. Based on products analysis it can conclude that Date pits oil could successfully utilize for synthesizing green diesel and jet fuel fraction.

Keywords: biomass, jet fuel, green diesel, catalyst

Procedia PDF Downloads 279
22646 Using the Yield-SAFE Model to Assess the Impacts of Climate Change on Yield of Coffee (Coffea arabica L.) Under Agroforestry and Monoculture Systems

Authors: Tesfay Gidey Bezabeh, Tânia Sofia Oliveira, Josep Crous-Duran, João H. N. Palma

Abstract:

Ethiopia's economy depends strongly on Coffea arabica production. Coffee, like many other crops, is sensitive to climate change. An urgent development and application of strategies against the negative impacts of climate change on coffee production is important. Agroforestry-based system is one of the strategies that may ensure sustainable coffee production amidst the likelihood of future impacts of climate change. This system involves the combination of trees in buffer extremes, thereby modifying microclimate conditions. This paper assessed coffee production under 1) coffee monoculture and 2) coffee grown using an agroforestry system, under a) current climate and b) two different future climate change scenarios. The study focused on two representative coffee-growing regions of Ethiopia under different soil, climate, and elevation conditions. A process-based growth model (Yield-SAFE) was used to simulate coffee production for a time horizon of 40 years. Climate change scenarios considered were representative concentration pathways (RCP) 4.5 and 8.5. The results revealed that in monoculture systems, the current coffee yields are between 1200-1250 kg ha⁻¹ yr⁻¹, with an expected decrease between 4-38% and 20-60% in scenarios RCP 4.5 and 8.5, respectively. However, in agroforestry systems, the current yields are between 1600-2200 kg ha⁻¹ yr⁻¹; the decrease was lower, ranging between 4-13% and 16-25% in RCP 4.5 and 8.5 scenarios, respectively. From the results, it can be concluded that coffee production under agroforestry systems has a higher level of resilience when facing future climate change and reinforces the idea of using this type of management in the near future for adapting climate change's negative impacts on coffee production.

Keywords: Albizia gummifera, CORDEX, Ethiopia, HADCM3 model, process-based model

Procedia PDF Downloads 89
22645 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 71
22644 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory

Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming

Abstract:

To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.

Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model

Procedia PDF Downloads 376
22643 Prevalence of Oral Mucosal Lesions in Malaysia: A Teaching Hospital Based Study

Authors: Renjith George Pallivathukal, Preethy Mary Donald

Abstract:

Asymptomatic oral lesions are often ignored by the patients and usually will be identified only in advanced stages. Early detection of precancerous lesions is important for better prognosis. It is also important for the oral health care person to be aware of the regional prevalence of oral lesions in order to provide early care for the same. We conducted a retrospective study to assess the prevalence of oral lesions based on the information available from patient records in a teaching dental school. Dental records of patients who attended the department of Oral medicine and diagnosis between September 2014 and September 2016 were retrieved and verified for oral lesions. Results: The ages of the patients ranged from 13 to 38 years with a mean age of 21.8 years. The lesions were classified as white (40.5%), red (23%), ulcerated (10.5%), pigmented (15.2%) and soft tissue enlargements (10.8%). 52% of the patients were unaware of the oral lesions before the dental visit. Overall, the prevalence of lesions in dental patients lower to national estimates, but the prevalence of some lesions showed variations.

Keywords: oral mucosal lesion, pre-cancer, prevalence, soft tissue lesion

Procedia PDF Downloads 334
22642 Decision Support System for the Management of the Shandong Peninsula, China

Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle

Abstract:

A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.

Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling

Procedia PDF Downloads 177
22641 Semi-Automatic Method to Assist Expert for Association Rules Validation

Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen

Abstract:

In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.

Keywords: association rules, rule-based classification, classification quality, validation

Procedia PDF Downloads 417
22640 Development of an Automatic Control System for ex vivo Heart Perfusion

Authors: Pengzhou Lu, Liming Xin, Payam Tavakoli, Zhonghua Lin, Roberto V. P. Ribeiro, Mitesh V. Badiwala

Abstract:

Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP.

Keywords: automatic control system, biomedical engineering, ex-vivo heart perfusion, human-machine interface, programmable logic controller

Procedia PDF Downloads 154
22639 Raising Forest Voices: A Cross-Country Comparative Study of Indigenous Peoples’ Engagement with Grassroots Climate Change Mitigation Projects in the Initial Pilot Phase of Community-Based Reducing Emissions from Deforestation and forest Degradation

Authors: Karl D. Humm

Abstract:

The United Nations’ Community-based REDD+ (Reducing Emissions from Deforestation and forest Degradation) (CBR+) is a programme that directly finances grassroots climate change mitigation strategies that uplift Indigenous Peoples (IPs) and other marginalised groups. A pilot for it in six countries was developed in response to criticism of the REDD+ programme for excluding IPs from dialogues about climate change mitigation strategies affecting their lands and livelihoods. Despite the pilot’s conclusion in 2017, no complete report has yet been produced on the results of CBR+. To fill this gap, this study investigated the experiences with involving IPs in the CBR+ programmes and local projects across all six pilot countries. A literature review of official UN reports and academic articles identified challenges and successes with IP participation in REDD+ which became the basis for a framework guiding data collection. A mixed methods approach was used to collect and analyse qualitative and quantitative data from CBR+ documents and written interviews with CBR+ National Coordinators in each country for a cross-country comparative analysis. The study found that the most frequent challenges were lack of organisational capacity, illegal forest activities, and historically-based contentious relationships in IP and forest-dependent communities. Successful programmes included IPs and incorporated respect and recognition of IPs as major stakeholders in managing sustainable forests. Findings are summarized and shared with a set of recommendations for improvement of future projects.

Keywords: climate change, forests, indigenous peoples, REDD+

Procedia PDF Downloads 104
22638 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data

Authors: Qiuxiao Chen, Yan Hou, Ning Wu

Abstract:

As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.

Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost

Procedia PDF Downloads 227
22637 Solar-Blind Ni-Schottky Photodetector Based on MOCVD Grown ZnGa₂O₄

Authors: Taslim Khan, Ray Hua Horng, Rajendra Singh

Abstract:

This study presents a comprehensive analysis of the design, fabrication, and performance evaluation of a solar-blind Schottky photodetector based on ZnGa₂O₄ grown via MOCVD, utilizing Ni/Au as the Schottky electrode. ZnGa₂O₄, with its wide bandgap of 5.2 eV, is well-suited for high-performance solar-blind photodetection applications. The photodetector demonstrates an impressive responsivity of 280 A/W, indicating its exceptional sensitivity within the solar-blind ultraviolet band. One of the device's notable attributes is its high rejection ratio of 10⁵, which effectively filters out unwanted background signals, enhancing its reliability in various environments. The photodetector also boasts a photodetector responsivity contrast ratio (PDCR) of 10⁷, showcasing its ability to detect even minor changes in incident UV light. Additionally, the device features an outstanding detective of 10¹⁸ Jones, underscoring its capability to precisely detect faint UV signals. It exhibits a fast response time of 80 ms and an ON/OFF ratio of 10⁵, making it suitable for real-time UV sensing applications. The noise-equivalent power (NEP) of 10^-17 W/Hz further highlights its efficiency in detecting low-intensity UV signals. The photodetector also achieves a high forward-to-backward current rejection ratio of 10⁶, ensuring high selectivity. Furthermore, the device maintains an extremely low dark current of approximately 0.1 pA. These findings position the ZnGa₂O₄-based Schottky photodetector as a leading candidate for solar-blind UV detection applications. It offers a compelling combination of sensitivity, selectivity, and operational efficiency, making it a highly promising tool for environments requiring precise and reliable UV detection.

Keywords: wideband gap, solar blind photodetector, MOCVD, zinc gallate

Procedia PDF Downloads 15
22636 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction

Authors: Jitka Hroudova, Jiri Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction

Procedia PDF Downloads 318
22635 Investigation the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery

Authors: Mohammadreza Nezamirad, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts.

Keywords: CFD, simulation, OpenFOAM, heart

Procedia PDF Downloads 124
22634 A Low Power and High-Speed Conditional-Precharge Sense Amplifier Based Flip-Flop Using Single Ended Latch

Authors: Guo-Ming Sung, Ramavath Naga Raju Naik

Abstract:

This paper presents a low power, high speed, sense-amplifier based flip-flop (SAFF). The flip-flop’s power con-sumption and delay are greatly reduced by employing a new conditionally precharge sense-amplifier stage and a single-ended latch stage. Glitch-free and contention-free latch operation is achieved by using a conditional cut-off strategy. The design uses fewer transistors, has a lower clock load, and has a simple structure, all of which contribute to a near-zero setup time. When compared to previous flip-flop structures proposed for similar input/output conditions, this design’s performance and overall PDP have improved. The post layout simulation of the circuit uses 2.91µW of power and has a delay of 65.82 ps. Overall, the power-delay product has seen some enhancements. Cadence Virtuoso Designing tool with CMOS 90nm technology are used for all designs.

Keywords: high-speed, low-power, flip-flop, sense-amplifier

Procedia PDF Downloads 141
22633 Wireless Based System for Continuous Electrocardiography Monitoring during Surgery

Authors: K. Bensafia, A. Mansour, G. Le Maillot, B. Clement, O. Reynet, P. Ariès, S. Haddab

Abstract:

This paper presents a system designed for wireless acquisition, the recording of electrocardiogram (ECG) signals and the monitoring of the heart’s health during surgery. This wireless recording system allows us to visualize and monitor the state of the heart’s health during a surgery, even if the patient is moved from the operating theater to post anesthesia care unit. The acquired signal is transmitted via a Bluetooth unit to a PC where the data are displayed, stored and processed. To test the reliability of our system, a comparison between ECG signals processed by a conventional ECG monitoring system (Datex-Ohmeda) and by our wireless system is made. The comparison is based on the shape of the ECG signal, the duration of the QRS complex, the P and T waves, as well as the position of the ST segments with respect to the isoelectric line. The proposed system is presented and discussed. The results have confirmed that the use of Bluetooth during surgery does not affect the devices used and vice versa. Pre- and post-processing steps are briefly discussed. Experimental results are also provided.

Keywords: electrocardiography, monitoring, surgery, wireless system

Procedia PDF Downloads 347
22632 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.

Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify

Procedia PDF Downloads 365
22631 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings

Authors: Lotfi O. Gargab, Ruichong R. Zhang

Abstract:

A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.

Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake

Procedia PDF Downloads 355
22630 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 498
22629 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 198
22628 Assessment of Dietary Intake of Pregnant Women

Authors: Tuleshova Gulnara, Abduldayeva Aigul

Abstract:

The goal is based on the studying the prevalence of micronutrient deficiencies among children and women of reproductive age to develop evidence-based recommendations aimed at improving the effectiveness of programs to prevent micronutrient deficiency. Subject: In our study we used a representative, random sample, carried out with the cluster method in the precinct of the principle areas of medical care for children 5 years of old. If the site has at least 60 children under 5 years of old, each second child was sampled, and if more than 60 children - each third child (first child selected by random sampling). The total number of investigated persons was within 80-86 women of reproductive age and children - within 80-92 people. Results: The studies found that the average prevalence of anemia among children aged 6-59 months was 35.2%, with the most susceptible to iron deficiency anemia in infants aged 6-23 months (53.3%). The prevalence of anemia among non-pregnant women was 39.0% among pregnant women - 43.8%. In children, the prevalence of folate deficiency was the highest (27.6%). Among non-pregnant women, frequent prevalence of folic acid deficiency was 37.0%. The prevalence of vitamin A deficiency was higher among children living in Astana (37.4%) compared with the medium-republican level (23.2%).

Keywords: nutrition, pregnant women, micronutrients, macronutrients

Procedia PDF Downloads 596
22627 On Supporting a Meta-Design Approach in Socio-Technical Ontology Engineering

Authors: Mesnan Silalahi, Dana Indra Sensuse, Indra Budi

Abstract:

Many research have revealed the fact of the complexity of ontology building process that there is a need to have a new approach which addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model in a socio-technical ontology engineering. Principles in the meta-design framework is applied in the construction phases on the ontology. A portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a web semantic application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.

Keywords: socio-technical, metadesign, ontology engineering methodology, semantic web application

Procedia PDF Downloads 423
22626 Preparation of Regional Input-Output Table for Fars Province in 2011: GRIT1Method

Authors: Maryam Akbarzadeh, F. Esmaeilzadeh, A. Poostvar, M. Manuchehri

Abstract:

Preparation of regional input-output tables requires statistical methods combined with high costs and too much time. Obtained estimates by non-statistical methods have low confidence coefficient. Therefore, integrated methods for this purpose are suggested by recent input–output studies. In this study, first GRIT method is introduced as an appropriate integrated method for preparation of input-output table of Fars province. Next, input-output table is prepared for Fars province using this method. Therefore, this study is based on input-output table of national economy in 2001. Necessary modifications performed in the field of changes at level of prices and differences of regional trade compared with other areas at national level. Moreover, up to date statistics and information and technical experts view on the various economic sectors along with input-output table 33 was used in 2011 followed by investigation of general structure of the province economy based on the amounts of added value obtained from this table.

Keywords: grit, input-output, table, regional

Procedia PDF Downloads 243